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Abstract: Web of Things (WoT) resources are not only numerous, but also
have a wide range of applications and deployments. The centralized WoT
resource sharing mechanism lacks flexibility and scalability, and hence cannot
satisfy requirement of distributed resource sharing in large-scale environ-
ment. In response to this problem, a trusted and secure mechanism for WoT
resources sharing based on context and blockchain (CWoT-Share) was pro-
posed. Firstly, the mechanism can respond quickly to the changes of the appli-
cation environment by dynamically determining resource access control rules
according to the context. Then, the flexible resource charging strategies, which
reduced the fees paid by the users who shared more resources and increased
the fees paid by users who frequently used resources maliciously, were used to
fulfill efficient sharing of WoT resources. Meanwhile, the charging strategies
also achieve load balancing by dynamic selection of WoT resources. Finally,
the open source blockchain platform Ethereum was used for the simulation
and the simulation results show that CWoT-Share can flexibly adapt to the
application environment and dynamically adjust strategies of resource access
control and resource charging.

Keywords: Web of things; resource sharing; smart contract; context; billing
strategy

1 Introduction

The physical environment data and services provided by Internet of Things (IoT) for applications
through heterogeneous sensing devices are called resources [1,2]. This heterogeneity makes IoT
application development difficult [3,4]. In order to simplify the IoT applications development, the Web
of Things (WoT) adopts standardized Web technology to connect and control various physical and
virtual things [5] to realize the Web sharing of various resources of things. Therefore, WoT technology
can be utilized to build an open and shared WoT business ecosystem by integrating heterogeneous
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IoT technologies on a unified, open and standardized Web platform, thus reducing the cost of IoT
application development and deployment.

In the WoT open environment, the secure sharing and efficient billing of resources have become
important issues which are described by following smart tourism application scenarios. Before visiting
a scenic spot, tourist Alice wants to know the current information of the scenic spot, such as the
crowdedness, comfortableness, air quality, etc. Bob, a tourist in the scenic spot, can obtain such
information through his own perception device such as mobile phone and share it with Alice. On
the one hand, Bob needs to share such resources to Alice safely and quickly without obtaining Alice’s
information and establishing a trust relationship with Alice in advance. On the other hand, Bob decides
whether to share resources according to his actual situation, such as whether he is still in the scenic spot
or whether the remaining power of the mobile device is sufficient. However, the manual operation will
inevitably lead to cumbersome operations, thereby hindering resource sharing. Therefore, a mechanism
that does not require an authority center and can dynamically adapt to changes in the environment
has become an important requirement for WoT resource sharing.

The key factors for the success of WoT applications include such technologies as data security,
privacy protection [6], and policy-based access control [7,8]. The smart tourism application scenario
fully illustrates that in the open and complex WoT ecosystem, how to share resources securely and
efficiently is also very important for WoT applications. At present, resource access control technology
is a means to implement the secure sharing of resources. However, WoT resources are distributed in a
wide range and applied in different domains and areas. The limitations of the sensing device in terms of
memory, CPU and battery make its availability change quickly. Therefore, the traditional centralized
access control mechanism can no longer meet the security requirements of the WoT open ecosystem
[9–11].

In order to solve this problem, we proposed a trusted and secure sharing mechanism of WoT
resources based on contextual information by using smart contract in blockchain environment. The
main works are as follows.

1) A framework for WoT resource access control based on smart contracts in blockchain
environment was proposed to implement fine-grained access control of WoT resources.

2) Resource access control rules were dynamically generated by using the context information of
the requester and provider, so that WoT applications can respond quickly and flexibly to the
changes.

3) Reward and punishment mechanism based on flexible billing strategies was adopted to meet
the demand for efficient sharing of resources. The flexible billing strategies reduced the fees
paid by users who shared more resources and increased the fees paid by users who frequently
used resources maliciously, which implement the dynamic selection of WoT resources, thus
achieving load balancing.

4) The blockchain platform Ethereum was used for the simulation and the simulation results
show that the system can flexibly adapt to the application environment, user behavior and
dynamically adjust strategies of resource access control and resource billing.

2 Related Research

The traditional centralized resource access control mechanism lacks flexibility and scalability.
In response to these shortcomings, the IoT resource access control framework [12–14] based on the
OAuth2.0 [15] standard provides flexibility in authorization for applications. However, these methods
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still authenticate users by centralized authorization center, which cannot meet the WoT resource access
control requirements in distributed environment.

Blockchain technology has anonymity and distribution characteristic [16–19], and its distributed
ledger technology makes it suitable for various applications that rely on real and reliable transaction
data storage and data sharing between transaction parties [20,21], such as blockchain-based power
monitoring and trading [22]. Meanwhile, the smart contract can be deployed on the blockchain to
implement transactions based on the contract rules [23,24]. Therefore, in a distributed environment,
blockchain and smart contracts have gradually been applied in IoT resource access control. For exam-
ple, compared with the authorization mechanism in [12–14], the access control model of FairAccess
[7] uses Token to represent access right, and transfers Tokens between the provider and the requester
in a distributed manner through blockchain network. However, this mechanism does not consider
how the resource is charged and how the control strategy changes in a dynamic context environment.
Blockchain for edge of things (BEoT) architecture is used to provide safe surveillance data sharing
in smart city by combining edge computing and blockchain technology. The smart contracts are
deployed in the BeoT edge node for secured and trusted authentication [25]. Literature [26,27] propose
a distributed access control mechanism for IoT resources management by using blockchain and smart
contracts. Literature [27] also uses smart contracts to judge the legitimacy of user behaviors for
punishments. This framework emphasizes the punishment of malicious behavior and lacks rewards for
positive behaviors such as resources sharing. At the same time, it does not consider the context of the
resource provider. The EdgeChain [28] framework implements the access control of the cloud resources
based on the reputation of the edge IoT device by blockchain. Although EdgeChain bills centralized
cloud resources based on the available resources, the request priority, and the number of resources
requested, it cannot realize the billing of IoT resources of different owners. Therefore, EdgeChain
cannot meet the requirements of the WoT open environment for the flexibility and scalability of the
billing mechanism. In terms of resource sharing, literature [29] uses smart contract to implement
access control of big data to meet the needs of big data sharing within the enterprise. This method
lacks resource billing strategy. IoTShare [30] proposed a blockchain-based IoT resource sharing
protocol which can realize distributed management of IoT devices, discovery of IoT resources, and
billing operations for resource usage. However, IoTShare failed to realize the dynamic management
of resource access control, and did not consider the reward and punishment mechanism.

A blockchain-based framework CWoT-Share is proposed here to realize trusted and secure sharing
of WoT resources based on context in a distributed environment. Tab. 1 clarifies the characteristics of
CWoT-Share by comparing it with other mechanisms. In Tab. 1, solution [8] uses centralized method to
implement role-based access control of WoT resources, which can only be implemented in smaller-scale
applications. Compared with the literature [27], the dynamic adaptation mechanism proposed here also
involves the resources sharing. Moreover, CWoT-Share achieves fine-grained control in two aspects.
On the one hand, the control granularity for WoT resource operations is similar to that in t [31]. On the
other hand, CWoT-Share can determine its access control rules based on the context of the resource
provider and requester. For example, the requester’s access can be dynamically controlled based on
such information as the resource provider’s CPU usage, available memory, network bandwidth, and
current requests number.
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Table 1: Comparison of CWoT-share with existing scheme

Scheme Distribution Flexibility Adaptability Flexible
billing

Fine-grained Complexity

ASAM4IoT
[26]

√ √ × × √ Average

BAC_SC4IoT
[27]

√ √ Medium × × Average

EdgeChain
[28]

√ √ × Average √ High

FairAccess
[7]

√ √ × × √ High

IoTShare
[30]

√ √ × × × High

RBAC-SC
[32]

√ × × × × High

RBAC4WoT
[8]

× × × × × High

CWoT-Share √ √ √ √ √ Low

3 Trusted and Secure Sharing of WoT Resources

This section firstly describes the resource sharing abstract model, then gives the mechanism of
CwoT-Share, and finally describes the implementation of the efficient sharing of resources and load
balancing between WoT resources based on the reward and punishment mechanism.

3.1 Resource Sharing Abstract Model
Fig. 1 shows the resource sharing abstract model. Resource owners share WoT resources with

the outside world. The resource is used by other users with the support of the infrastructure. When
resources are shared, users should access them in accordance with access control rules. At the same
time, a fee should be paid for the usage. Efficient provision and use of resources are constrained by
the context of stakeholders. Each element in Fig. 1 is described in detail as follows.

1) Resource owner: It shares resources and obtains benefits from the sharing.
2) Resource user: It requests the shared resources for its requirements.
3) Fee: The cost paid for using the shared resource.
4) Permission: Constraint rules for resource operations.
5) Infrastructure: Common functions required for the resources sharing.
6) Context information [33]: The status of shared resources, owners, users, and infrastructure

in the WoT open ecosystem, which affects whether resources can be shared securely and
efficiently.

It can be seen from the model that the requirements for implementing end-to-end security of WoT
resources sharing mainly includes (SR, Security Requirement):

SR1: The authenticity of resources shared by resource providers.
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SR2: Resource users should use resources in a secure, efficient, and controllable manner.

SR3: The security of the infrastructure on which the resource depends.

A solution for SR2 is proposed here and the detailed description is as follows.

Figure 1: The abstract model of resource sharing

3.2 Trusted and Secure Resource Access Control
3.2.1 Trusted and Secure Resource Access Control Mechanism

Fig. 2 shows the implementation of CWoT-Share. The elements include:

(1) WoT environment. A variety of sensors and gateways responsible for managing these sensor
devices constitute the WoT environment. The gateway encapsulates the data and services
provided by the sensing device as WoT resources to implement the Web interconnection, and is
also responsible for the interaction between WoT resources. Access control rules of shared WoT
resources are updated in the smart contract by their owner and then queried by the requesters
through the gateway.

(2) Local certificate management module. The resource stakeholder obtains public and private
key corresponding to its identity through this module for data encryption and signing during
resource sharing. Meanwhile, there is no need to know the identity information of the resource
stakeholder.

(3) Blockchain network and smart contracts. The blockchain network stores the transaction
information of the shared resource, and automatically implements the consistency of this
information among nodes. Smart contracts are used for the management of resource access
control strategies. When WoT resources update their own access control rules, the smart
contract will be verified by miners in the blockchain and stores them throughout the network.

(4) Dynamic context processing. Fig. 3 shows the dynamic context model used in CWoT-Share.
It includes two roles: requester and provider. The context of the requester includes behavioral
state, geographic location, access time, and its own resource sharing situation, which changes
dynamically as the resource is accessed in the process of resource sharing. The requestor’s
behavior may be malicious, abnormal, and normal. The context of the provider includes status
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of CPU, memory, and battery, as well as active self-management capability. When the CPU
is overloaded, the memory or the battery is exhausted, it will stop providing service. Active
self-management capability means the owner also can decide when to provide or stop service.
Based on the context model, the provider can adjust the shared resource access rules according
to its own context combined with the behavior of the requester. For example, when the request
received by the WoT resource exceeds its capacity, the module will adjust the access control
rules of the resource. When the requester’s behavior is abnormal, the mechanism updates the
access control rules to restrict user behavior. The function of this module is handled by the
WoT environment deployed in various places.

5) Resource access control rules. According to the dynamic context model defined in Fig. 3,
the rule describes who can access the resource and how to access it. As shown in Tab. 2 the
rules consist of three parts: provider context, requester context and corresponding actions. For
example, When the provider’s available capabilities of CPU, memory, and battery are 35%, 65%
and 80% respectively, and the behavior of the requester is normal, the humidity resource will
accept the request. When the battery is only 20% left and the current request number is 10,
although the behavior is normal, the resource refuses the request and allows it to try again
after a period of time.

Figure 2: WoT resource sharing based on dynamic context information
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Figure 3: Dynamic context model

Table 2: WoT resource access control based on dynamic context information

Provider context Requester context Access control rule

Resource Operation Available
resource

Public key Behavior Rights Fee Valid period Frequency

Humidity
sensor

GET cpu:35%
memory:65%
concurrent
request:5
battery:80%

Provided Normal ALLOW 1 2021-8-1 100

Humidity
sensor

GET cpu:80%
memory:50%
concurrent
request:10
battery:20%

Provided Normal DENY Try again in
30 min

LED PUT Normal None DENY
LED PUT cpu:35%

memory:75%
concurrent
request:5
battery:60%

Provided abnormal DENY Try again in
10 h

Temperature
sensor

SUBSCRIBE Normal Provided Normal ALLOW 1 1 min 20

The implementation of CWoT-Share is shown in Fig. 2, and the details are as follows:

Step 1: Shared WoT resources are registered by the owner to the certificate management center to
obtain public and private key which are used for signing the transaction.
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Step 2: Certificate Authority returns the public/private key.

Step 3: The context processing module obtains the context of the stakeholders to judge user
behavior and resource status.

Step 4: According to the result of Step 3, resource access control rules are generated.

Step 5: The gateway in the WoT environment submits the generated rules to the smart contract.

Step 6: The access control rules are stored and updated in the smart contract.

Step 7: The blockchain network verifies the transaction to store the rules in the smart contract
distributedly and consistently.

Step 8: The resource requester accesses the blockchain network through the local gateway and the
request is forwarded by the gateway to the smart contract.

Step 9: The smart contract reads the access control rules and determines whether the request is
allowed to access the resource.

Step 10: The judgment result is sent to the requester.

Step 11: If the request is allowed, the requester sends request to the resource. During the request
process, the dynamic context information of both parties is processed by the context module to update
the access control rules in time. Resource access records are stored for subsequent context processing.

Fig. 4 shows the dynamic update process of WoT resource access control rules based on context
information. The update process includes two ways. The first way is that when the access is successful,
the provider updates the access control rules according to the access result. The process is as follows:
Steps 1 to 4 show the process of accessing resources according to the current access control rules. In step
5, when the access is successful, the provider publishes the requester’s access status and the provider’s
resource sharing information on the blockchain network. The information includes: the frequency of
requesting the resource, the duration of the request, whether the requester’s behavior is legal, and the
times of the requester’s abnormal behavior and so on. When the provider is also a requester of other
resources, its resource sharing information can be used to calculate the fees it should pay. In step 6,
the provider updates its own state information to the context processing module. In step 7 and step
8, the dynamic context processing module obtains the requester’s access history and resource sharing
information respectively for context processing. Step 9 generates new access control rules based on
the information from step 6 to step 8, and publishes it on the blockchain network for synchronization
(steps 10–11). The second way is implemented by step 12 to step 14. The provider regularly updates
the resource access control rules to the blockchain network through the context processing module
according to its own status or active management requirements.

3.2.2 Trusted and Secure Access Control Implementation

CWoT-Share generates rules to determine whether the resource can be accessed according to the
context and historical behavior of the resource requester. There are three types of requester behavior:
normal, abnormal and malicious. If the requester’s behavior is normal, it is allowed to access shared
resources. If it is an abnormal behavior caused by operations such as excessive frequent request, the
request will be forbidden for a certain period of time. If it is malicious, the request will be rejected.
Algorithm 1 presents the process of behavior judging based on the requester’s context and access
behavior.



CMC, 2022, vol.72, no.3 5087

Figure 4: Blockchain-oriented dynamic context processing mechanism

Algorithm 1: User behavior judgment algorithm based on context information. BeHJudge (REQ,
RESavail)
Input: REQ (Resource request), RESavail (number of available resource).
Output: User behavior: normal, abnormal, malicious.
(1) REQ.PBK = (URLresq)prikey||PBKreq

(2) PBKkey = GetPublicKey(REQ.PBK);
//Step (1) uses the requester’s private key to encrypt the requested resource URL, and then send the
information together with the requester’s public key to the resource provider. In step (2), the provider
uses the public key to obtain the URL address, and then compares it with the local resource URL.
If it matches, the public key is considered valid, and if it does not match, the public key is considered
invalid.
(3) if ( PBKkey == NULL || PBKkey == FAIL )
(4) return MALICIOUS;
(5) end if

(Continued)
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Algorithm 1: Continued
(6) f = Frequence(REQ, t); //Get the number of times of requests for the resource during the time t.
(7) Soper = GetOperation(REQ); /Get the operation performed by the request on the resource
(8) if (!allowed(Soper)&&(f > threshold))
//If the operation is not allowed and the access frequency exceeds the threshold, the request is
determined to be malicious.
(9) return MALICIOUS;
(10) end if
(11) if (!allowed(Soper) || f > threshold)//When the operation is not allowed or the frequency exceeds the
threshold, the behavior is determined to be abnormal
(12) return ABNORMAL;
(13) end if
(14) if (!isAuthedbyContractor(REQ)) //If the request is not allowed by the access control rules in the
smart contract, it will be considered abnormal.
(15) return ABNORMAL;
(16) end if
(17) . . . . . . //Execute other behavior judgment rules
(18) return NORMAL;

Based on the Algorithm 1, Algorithm 2 implements resource access control based on dynamic
context.

Algorithm 2: Resource access control method ACByContext() based on dynamic context information.
Input: resource request REQ, resource available number RESavail.
Output: Resource request response Resp and update of access control list.
(1) Receive external WoT request;
(2) acl = getACLbySC(); //Get list of access control rules from smart contract.
(3) permitted = validate(REQ, RESavail); // Call the validate method of the smart contract to determine
whether the request is allowed.
(4) if (permitted )
(5) if (BeHJudge(Req,RESavail) == NORMAL)
(6) Resp = invokeResource(REQ, RESavail);
(7) return Resp;
(8) end if
(9) end if
(10) UpdateACL(SC, Req, RESavail); (11) goto (1);

3.3 Resource Sharing Billing
3.3.1 Resource Sharing Billing Mechanism

The billing mechanism uses the reward and punishment mechanism to encourage more resources
to be shared. If the requester uses shared resources, but shares very few resources, the system will
increase the requester’s fee of using shared resources accordingly. The implementation of the reward
and punishment mechanism is represented by formula (1), Wherein, Xt refers to the number of times
the requester successfully accessed the shared resource in t minutes, St refers to the number of times
the requester’s shared resource was used by other users in t minutes, Rτ represents the number of
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resources accessed by the requester at time τ , Cτ refers to the number of available system resources of
the shared resource at time τ . The l in formula (1) refers to the service level of the resource requester. κ

indicates the importance of resource sharing. When κ = 1, it means that the fee of resource is inversely
proportional to the number of resources successfully accessed by the requester within a certain period
of time.

f (t, τ , l) = α ∗ Xt

1 + κSt

+ β ∗ Rτ

Cτ

+ ηl (1)

In formula (1), α, β, η respectively represent the weight coefficient of different billing items. α

indicates the importance of the proportion of the number of requested resources to the number of
shared resources. β indicates the importance of the proportion of the number of consumed system
resources to the currently available system resources. η indicates the priority of the resource requester
(>1).

Fig. 5 shows the fee change considering various context, resource sharing, and resource access
times, that is, the fee of the first two billing items in formula (1). The requester’s priority and service
level are determined under certain circumstances. Therefore, the simulation does not consider the third
term of formula (1). Fig. 5a shows the change of resource fee when α = 1, β = 10, κ = 2. Fig. 5b shows
the change of resource fee when α = 10, β = 1, κ = 2. Comparing Fig. 5a with Fig. 5b, it can be seen
that in Fig. 5a, the number of currently available resources has a greater impact on resource fees. In
Fig. 5b, the number of shared resources and the number of times the resource has been accessed have a
greater impact on the fees. It can also be seen from Figs. 5a, 5c and 5d that with the continuous increase
of the value, the correlation between resource fee and the number of currently available resources
continues to increase.

In the WoT ecosystem, different providers may provide resources with the same function at the
same time, and the fee of each resource will constantly change according to context. According to this,
the billing mechanism can be used to achieve load balancing between resources. For example, different
providers share the same functional resources S1 and S2. When S1 has less available resources than S2,
its fee is higher. Therefore, the requester will use S2. As S2’s requests number continue to increase, the
available resources become less and less. Hence, the fee of S2 will increase. Meanwhile, S1’s resource
requests continue to be completed, its available resources gradually increase, and hence its fees will
also be reduced accordingly. Therefore, new requests will choose S1 again, and the number of requests
for S1 continues to increase again. Hence, this billing mechanism efficiently implemented the dynamic
load balance between S1 and S2. This mechanism does not require complex protocols and can also be
adjusted on demand. Hence it is easy to implement and has good flexibility.

Using the Matlab R12 platform, the mechanism is simulated and analyzed from the number of
available resources and the number of concurrent requests. Figs. 6–8 shows the simulation results. The
number of resources consumed by each request is a random number between 1–13. The rising part in
the figure indicates that the consumed resources are released, and the falling part indicates that part
of resources are consumed.
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Figure 5: WoT resource billing mechanism

(a)  Concurrent number is 1 (b) Concurrent number is a random number between 1-5

Figure 6: WoT resource selection, when the number of the same resource is 2
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(a)  Concurrent number is 1 (b) Concurrent number is a random number between 1-5

Figure 7: WoT resource selection, when the number of the same resource is 5

(a) Concurrent number is 1 (b) Concurrent number is a random number between 1-5

Figure 8: WoT resource selection, when the number of the same resource is 10

Fig. 6 shows the simulation result when the number of the same resources is 2. Figs. 6a and 6b
respectively show the case where the number of concurrent requests is 1 and a random number between
1–5. Fig. 6a shows that the user requests resources at time 2. At this time, the number of available
resources of Res2 is more than that of Res1. When only considering the number of available resources,
the fee of Res2 is lower than that of Res1. Therefore, the requester will send request to Res2, and
hence the available resource number of Res2 will decrease accordingly. At time 12, Res1 has more
available resources than Res2, so it will provide services to users. It can also be seen in the figure that
as the resources are consumed and released, the number of available resources of Res1 and Res2 is
also dynamically changing, and the fee will also change between high and low. Therefore, they will
provide services to users in turn and achieve load balancing. Fig. 6b shows the situation when there
are multiple concurrent requests. At time 3, 13, and 16, multiple requests were generated concurrently.
Res2 has more available resources than Res1. Therefore, Res2 firstly serves some concurrent requests.
In simulation, concurrent requests are placed in a global queue, and services are provided by polling
the available resources. When the number of available resources of Res2 is less than that of Res1, Res1
will provide services for the request.

Figs. 7a and 7b show the case where the number of the same resource is 5, and the number of
requests is 1 and a random number between 1–5, respectively. Figs. 7a and 7b illustrate the situation
where resources Res1-Res5 take turns to serve the request. For example, in Fig. 7b, at time 3, Res1
and Res5 have the same number of available resources. At this time, there are two concurrent requests
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applying for different numbers of resources. One of the two resources is randomly selected to serve
one of the requests. Another resource serves the remaining requests. At time 14, there are 4 concurrent
requests. Res2 has the largest number of available resources 98, which serves one of concurrent requests
(set as request 1). Request 1 applied for 8 resources. Both Res4 and Res5 have 95 available resources,
which serve request 2 and request 3 respectively. The number of resources consumed by these two
requests is 9 and 12 respectively. The number of available resources of Res3 is 93. It serves request 4
which consumes 4 resources. At this moment, both Res2 and Res1 have the largest number of available
resources, 90, and Res1 is randomly selected to serve Request 5 which consumes 12 resources. Request
1–5 occupy 5, 5, 5, 3, and 1 second(s) respectively. At time 16, the consumed resources of Res1 are
released. The resources released at this time are the resources consumed by the request at time 6 and
the request at time 14. The Res1 resource requested at time 6 is occupied by 9 s. The Res1 resource
requested at time 14 is occupied by 1 s. Therefore, it can be seen from the figure that the number of
Res1 available resources at time 16 is more than that at time 14.

Figs. 8a and 8b show the case where the number of the same resource is 10, and the number of
requests is 1 and a random number between 1–5, respectively. Fig. 8a shows how the resources provide
services for a single request. In Fig. 8a, there are enough resources to choose and a few requests, hence
the Res5, Res8, and Res9 did not yet provide services during the simulation. But this does not affect
the results. As the number of concurrent requests increases, these resources will provide services in
succession. The analysis in Fig. 8b is similar to that in Fig. 7b. For example, at time 3, 10, and 30,
the number of requests is 5, 3, and 4, respectively. From the above analysis, it can be seen that the
resource billing mechanism can achieve load balancing among resources, avoiding the situation where
the performance of the provider is rapidly degraded due to excessive service provision.

3.3.2 Resource Sharing Billing Implementation

Algorithm 3 describes the implementation of the context-based billing mechanism for shared
resources.

Algorithm 3: Algorithm ResouceBillandSelect() for context-based shared resource billing and load
balancing.
Input: REQ (Resource request), RS (The collection of same resources shared by the open business
ecosystem), SC (smart contract interface), α, β, η, κ (weight coefficient).
Output: The selected shared resource and the current fee of the resource.
(1) Receive resource access request REQ;
(2) The record of the requester’s access to the shared resource is read from the smart contract to
calculate the number of successful access Xt within the time t;
(3) Read the successfully accessed times St of the resource shared by the requester during the time t
from the smart contract;
(4) Calculate the value of Xt/St;
(5) for i in {RS}
(6) Calculate the ratio of the resources applied by the request to the available resources of RSi at
the current moment τ ;
(7) Calculate the fee corresponding to the requested service level;
(8) Calculate the RSi fee f(RSi, REQ) according to formula (1);

(Continued)
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Algorithm 3: Continued
(9) end for
(10) Sort resources according to their fees from low to high;
(11) The request uses the ACByContext() method to access the shared resource with the lowest cost;
(12) goto (1);

4 Simulation Analysis
4.1 Simulation Environment Settings

The simulation environment is constructed by using the Ethereum platform. The blockchain
network is simulated by 8 Ethereum clients running on the host. The host is ThinkPad T470 and
the running environment is: Windows 10 64-bit operating system, 8G memory, Intel Core i5-7200U
2.71 GHz CPU.

4.2 Simulation Results and Analysis
4.2.1 The Impact of the Number of Miners on the Performance of the Blockchain Network

Fig. 9 analyzes the impact of the number of miners on the response time of WoT resource
requests in the simulation environment. The number of miners affects the response time from two
aspects. Firstly, the more miners there are, the faster the block generation and verification will be
accordingly. Secondly, as the number of miners increases, miners will use more local system resources,
thus affecting the performance of the blockchain network. Fig. 9 shows the response time of the
blockchain when the number of miners is 3–7. It can be seen from Fig. 9 that in terms of different
numbers of miners, as the number of requests increases, the response time of the blockchain changes
accordingly. Meanwhile, the response time did not decrease with the increase in the number of miners.
In the simulation environment, when the number of miners is 4, the blockchain network has the best
response performance.

Figure 9: The impact of the number of miners

4.2.2 Performance Analysis of Access Control Rules Updating

In CWoT-Share, the update time of access control rules includes context processing time, block
construction time, and data synchronization time of blockchain nodes. Fig. 10 shows the performance
analysis of dynamic access control rule update when the number of miners is 4. It can be seen from
Fig. 10, that as the number of access control rules increases, the system response time also increases.
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When the number of rules is 45 and 80 respectively, the required update time increases faster. It can
also be seen from the figure that in the simulation environment, when the number of updated rules is
less than 40, the update time is about 2–3 s, which is relatively stable. The rule update should be as fast
as possible, so that the access control rules read from the smart contract are the latest.

Figure 10: Performance analysis of dynamic rules update

4.2.3 Access Control Capability Analysis

Figs. 11–13 describes the simulation implementation of the CWoT-Share mechanism in the
Ethereum. In Fig. 11, when user requests a resource, the number of times she/he has used the resource
is 7, but it does not exceed the prescribed threshold. According to the rules, the user will be allowed
to use the resource. In Fig. 12, when the user makes a new request, the number of times he accesses
the resource is 8, which will exceed the threshold. Therefore, the request is rejected. Fig. 13 shows the
resource access control event AccessControlled activated by the smart contract.

Figure 11: Allowed to access WoT resources

Figure 12: Denied to access WoT resources
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Figure 13: Trigger of WoT resource access control event

4.2.4 Analysis of the Cost of Trusted and Secure Sharing

In the blockchain, the execution of the smart contract method requires corresponding fee, which
is described by the gas consumed. Tab. 3 shows the method implemented in the smart contract and
the corresponding gas consumption. Among them, the context update method requestContextUpdate
and the rule update method ruleUpdate will cost more gas, because they implement complex functions.
However, the methods of user register userRegister, resource register resourceRegister, and rule
acquisition getRule consume less gas.

Table 3: Cost analysis of smart contract methods

Smart contract method Function Consumed gas

userRegister() User register 25735
resourceRegister() Resource register 34102
accessResource() Access resource 31323
userContextUpdate() Update user context 127641
requestContextUpdate() Update requester context 138536
ruleUpdate() Update access control rules 150383
getRule() Get access control rules 68742
costCalculate() Calculate the fee 160237

5 Conclusion

A trusted and secure sharing mechanism (CWoT-Share) for WoT resources based on contextual
information in a blockchain environment was proposed. The main features of CWoT-Share include:

1) WoT resource access control strategies are dynamically generated to realize trusted and safe
sharing of resources by utilizing the context of resource stakeholders. `
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2) Based on the context of the resource provider and the resource sharing situation of the resource
requester, the reward and punishment mechanism for WoT resource sharing is implemented.
This mechanism reduces the fees paid by users who share more resources, increases the fees
paid by users who share fewer resources, and punishes malicious users in terms of billing and
access control to establish a good WoT resource sharing ecosystem.

3) The resource billing strategies can also implement the dynamic selection of WoT resources to
achieve their systems load balancing.

CWoT-Share still has some shortcomings. For example, it stores part of the information in the
blockchain, which will bring additional performance overload for blockchain network. In the future,
this information will be stored off-chain, and resource sharing will be implemented by combining
on-chain and off-chain technology. At the same time, future work will also combine lightweight
blockchain technology for the IoT environment [34] to conduct large-scale resource sharing research
and applications such as IoV (Internet of Vehicle) [35] and UAV-based traffic monitoring [36].
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