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Abstract: In the research field of bearing fault diagnosis, classical deep
learning models have the problems of too many parameters and high com-
puting cost. In addition, the classical deep learning models are not effective
in the scenario of small data. In recent years, deep forest is proposed, which
has less hyper parameters and adaptive depth of deep model. In addition,
weighted deep forest (WDF) is proposed to further improve deep forest by
assigning weights for decisions trees based on the accuracy of each decision
tree. In this paper, weighted deep forest model-based bearing fault diagnosis
method (WDBM) is proposed. The WDBM is regard as a novel bearing
fault diagnosis method, which not only inherits the WDF’s advantages-strong
robustness, good generalization, less parameters, faster convergence speed
and so on, but also realizes effective diagnosis with high precision and low
cost under the condition of small samples. To verify the performance of the
WDBM, experiments are carried out on Case Western Reserve University
bearing data set (CWRU). Experiments results demonstrate that WDBM can
achieve comparative recognition accuracy, with less computational overhead
and faster convergence speed.
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1 Introduction

Bearing is the core component of mechanical equipment, and its health is critical to the perfor-
mance of mechanical equipment. The fault problems of bearing can lead to the failure of the whole
machine equipment and reduce the production efficiency at least. In addition, the devastating problem
of bearing fault problems can even cause casualties and certain degree of impact on the production of
the manufacturing industry. To ensure the correct operation of large and high precision machinery, the
bearing fault diagnosis is essential. If the corresponding solutions are made in time according to the
diagnosis results, it can reduce, or eliminate the occurrence of mechanical failure accidents, improve
the utilization rate of mechanical equipment, and provide more efficient services for the manufacturing
industry. Therefore, bearing fault diagnosis plays an important role in industrialization [1].
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Bearing fault diagnosis is to diagnose the running state or fault of the bearing according to the
measurable operating information of the mechanical bearing. Currently, the mainstream bearing fault
diagnosis methods can be divided into feature engineering-based methods [2–4] and deep learning
based methods [5]. The feature engineering methods mainly exploit signal processing methods such
as frequency analysis [2], empirical mode decomposition [3], wavelet transform [4], etc. to extract the
features of bearing monitoring data, and then uses the classification model based on machine learning,
such as artificial neural network [6], support vector machine [7], hidden Markov model [8] and all
that to classify the extracted features for fault diagnosis. Therefore, in the feature engineering method,
feature extraction, classification and diagnosis process are separated. Additionally, feature engineering
method relies too much on artificial experience, resulting in large errors and lower diagnostic accuracy
using a single intelligent classification model. Compared with feature engineering methods, deep
learning can directly extract fault features from original bearing monitoring data for classification
and diagnosis, owing to powerful feature extraction capability and end-to-end characteristics, which
breaks the limitations of feature engineering method and draws great attention on the research of
deep learning-based fault diagnosis [5]. Tamilselvan et al. [9] proposed deep belief network-based fault
diagnosis method. In [9], deep learning is exploited in the field of fault diagnosis and the advantages of
deep learning-based method are confirmed. The literature [10] showed that a bearing fault diagnosis
method based on convolutional neural network has high diagnostic accuracy through experiments.
However, the model in [10] is unstable and requires a large amount of data for early learning. It is
evident from [11] that a one-dimensional deep learning model based on convolutional neural network
can directly diagnose bearing signals. A convolutional neural network method is proposed in [12].
However, the method of [12] has too many training hyperparameters, resulting in too much training
and diagnosis cost. Yuan et al. [13] proposed a bearing fault diagnosis method combining SVM and
PSO. Nevertheless, the method in [13] is prone to be over-fitting and has poor generalization ability
for complex bearing classification problems. In [14], an improved deep residual network-based bearing
fault diagnosis method was presented which was proved to reach high accuracy through experiments.
Unfortunately, these deep learning-based methods [12–14] need high computation cost and have
imperfection in scenario of small data set. Since the bearing works normally most of the time, it
is difficult to obtain real fault data samples. Although the above deep learning-based bearing fault
diagnosis methods have achieved good results to a certain extent, there are still some deficiencies in
these methods with small samples and low cost. In addition, some deep learning methods have poor
model instability, generalization ability and robustness.

In classical deep learning model, neural networks are stacked layer by layer to construct deep
learning model and improve the learning ability. However, there are too many hyper parameters in such
model which results in heavy computing overhead and slow convergence speed. In 2018, Zhou et al.
[15–17] proposed deep forest model (DF). In DF, random forest instead of neural network is exploited
at each layer to construct deep learning model. In addition, multi-grained scanning mechanism is
designed to extract feature of original data. Compared with deep neural network, DF model is simple,
highly interpretable, low computational overhead, adaptive and scalable in complexity, and has strong
robustness and fewer hyperparameters to a certain extent. Therefore, DF has attracted extensive
attention from research field and has been applied in many scenarios, such as financial analysis [18–21],
medical diagnosis [22–25], remote sensing [26–28], software defect prediction [29–32] and so on.

However, in DF the average value of all decision tree results is taken as the result of the
corresponding forest, which ignores the accuracy difference of each decision tree. Utkin et al. [31]
proposed weighted deep forest model which assigns weight to each decision tree according to its
accuracy. Therefore, in weighted deep forest model, the decision trees with better performance have
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greater influence on the result of current level, which speeds up the ending of cascading structure
and lows the computation overhead. The advantages of weighted deep forest model motivate us to
introduce the weighted deep forest model into the research field of bearing fault diagnosis.

In this paper, WDF based bearing fault Diagnosis Method (WDBM) is proposed. Experiments
results demonstrate that WDBM inherits the WDF’s advantages-strong robustness, good general-
ization, less parameters, faster convergence speed and so on. Additionally, WDBM realizes effective
diagnosis with high precision and low cost under the condition of small data sets.

The paper is organized as follows. Section 2 introduces the weighted deep forest model.
Section 3 gives the details of the weighted deep forest model-based bearing fault diagnosis method
(WDBM). The experiment results analysis is given in Section 4, including stability analysis, the
generalization performance analysis, the fault diagnosis effect and cost analysis for normal sample
data and small sample data. Finally, Section 5 concludes this paper.

2 Weighted Deep Forest Model

Weighted Deep Forest (WDF) model is based on the deep forest (DF) model. Therefore, WDF
has advantages of fewer parameters, learning ability on small data, robustness, and generalization as
DF. In classical deep forest model, the result of each random forest is the average ensemble result of
all its decision trees, whose classifying performance maybe quite different. In WDF, each decision tree
is assigned different weight according to its accuracy performance. The aim of weighting mechanism
is to enhance the positive influence of decision trees with better accuracy performance. Therefore, the
WDF can end deep cascading faster than the classical deep forest model. The WDF includes following
core parts: multi-grained scanning structure, weighting mechanism, and cascading structure.

2.1 Multi-Grained Scanning Structure
Multi-grained scanning is a structure to enhance the representation learning ability. There is

evidence that the original sample data can be scanned through small windows of different scales to
achieve feature transformation. And finally, the representation vectors with diversity can be obtained.

The multi-grained process is shown in Fig. 1. The original input is A dim sample, and the small
window B dim with step size 1 is used for sliding sampling. Through a series of characteristics
transformation, C = (A − B)/1 + 1 characteristic sub-sample vector B dim will be obtained and be
incorporated into the weighted random forest and weighted completely random forests. After training
on forests, each forest will produce a C ∗ E characterization vector. Stitching these vectors together,
and the final sample output for the cascade structure is obtained.

2.2 Weighting Mechanism
According to the principle of classical random forest, the result of classical random forest is

absolute mean ensemble result of all its decision trees. The results of each decision tree of a random
forest maybe quite different on the same data. It is obvious that if the decision tree with better results
exerts more influence in the cascade structure, the result may be more accurate, and the depth of the
deep model maybe reduced which will reduce the overall computation cost.
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Figure 1: Multi-grained scanning process of WDF

The averaging method of classical deep forest and the weighting method of WDF are illustrated
in Fig. 2. Assume there are n decision trees in a random forest. After training on data, the classifying
probability distribution is obtained for each decision tree. For the i-th decision tree, its probability
distribution vector is Pi = [p12 pi2 pi3 . . . pic], where c is the number of classes and pik is the probability
that one sample belongs to the k-th class using the i-th decision tree. If the classical averaging is used,
the final result is just the average of each decision tree and as follows.

pavg =
[

n∑
i=1

pi1/c
n∑

i=1

pi2/c . . .
n∑

i=1

pic/c
]T

(1)

In weighted deep forest model, weighting mechanism is exploited. After training, each decision
tree is assigned a weight parameter wi, and the result of the forest is the weighted sum of the probability
distribution vector of each decision tree. And the weighted result is as follow.

pwei =
[

n∑
i=1

wipi1

n∑
i=1

wipi2 . . .
n∑

i=1

wipic

]T

(2)

2.3 Cascading Structure
The cascading structure of weighted deep forest model is as shown in Fig. 3. At each layer of

cascading structure, there are 4 weighted random forests marked with yellow color and 4 weighted
completely random forests marked with blue color. For each completely random forest, there are
1000 decision trees. And for each decision tree of completely random forest, each node randomly
selects a feature as the discriminant condition and generates child nodes according to the discriminant
condition and the operation stops until each leaf node contains only instances of the same class.

Similarly, for each random forest, there are 1000 decision trees. For each decision tree of random
forest, each node is selected by randomly selecting

√
d features (d is the number of input features) and

then computing the Gini coefficient.

Gini (p) =
K∑

K=1

pk (1 − pk) = 1 −
K∑

K=1

pk
2 (3)

In the Eq. (3), k is the number of classes, pk is the probability of the k-th class, and Gini(p) is the
Gini coefficient. The node with biggest Gini coefficient is used as the discriminant basis until each leaf
node contains only instances of the same class and the operation is stopped.
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Compared with the classical deep forest model, the forests in WDF are weighted, i.e. the output
of each weighted forest is the weighted value of its all decision trees, instead of average of all decision
trees as in classical deep forest model. To prevent over-fitting of the result, K-fold cross-validation is
used, and the result of each layer is transmitted to the next layer. When the cascaded forest structure is
extended to a new layer, the effect of all previous cascaded forest structures will be evaluated through
the validation set, and the training process will automatically end as the evaluation result cannot
be further improved. The number and complexity of the cascade forest structure are determined
automatically by the training process, which saves a lot of parameter adjustment costs. Therefore,
it can save a lot of parameter adjustment overhead and improve the convergence speed of the cascade
forest structure. Therefore, the cascading structure of the weighted deep forest can maintain a stable
convergence state.

Figure 2: Weighting method of WDF and averaging method of DF
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Figure 3: Cascading structure of WDF

3 Details of Weighted Deep Forest Based Bearing Fault Diagnosis Method
3.1 Datasets

In this paper, the bearing dataset from Case Western Reserve University (CWRU) is used, which
is widely accepted as the standard dataset in the field of bearing fault diagnosis, for its objective,
reliability, and good quality. CWRU bearing fault data came from motor, torque sensor, power meter,
16-channel data logger, 6203-2RS JEM SKF/NTN deep groove ball bearing and electronic control
equipment. And the CWRU bearing fault data are processed manually by EDM technology.

3.2 Flow Chart of WDBM
The flow chart of weighted deep forest-based bearing fault diagnosis method (WDBM) is shown

in Fig. 4.

Bearing Data

Data Preprocessing

Training Set

Validation Set

Testing Set

Multi Grained Scaning

Cascade Forest Structure

Improvement less than 
threshold?

End Cascading

Save Model

Output Result

Figure 4: Flow chart of WDBM



CMC, 2022, vol.72, no.3 4747

Step 1: Using Case Western Reserve University bearing data set, 9 sets of fault data of bearing
inner ring, outer ring and rolling element fan end acceleration in 6 o’clock direction under the
condition that the motor load is 0, 1 and 2 HP with 12 khz sampling frequency and the fault diameter
is 0.007, 0.014 and 0.021 feet respectively, and 1 set of corresponding bearing health data. There are
10 sets of data and 10 sample characteristics in the experiment. There are about 3 million data point
samples. The data set used in this experiment is shown in Tab. 1.

Table 1: Parameter value of data in the experiment

Location of Damage (6 o’clock) Label Damage Diameter (ft)

Normal 0 0
Rolling body 1 0.007

2 0.014
3 0.021

Inner ring 4 0.007
5 0.014
6 0.021

Outer ring 7 0.007
8 0.014
9 0.021

Step 2: Carry out data enhancement and down sampling technology on the bearing health data
set. The time length of the data enhancement sliding window is set to 2048/12000, and the proportion
of data overlap is 50%. Enhance the bearing health data to twice the fault data, and then down
sampling and random deletion are carried out to prevent falling into local optimal diagnosis due to the
imbalance of fault and health data. Then all data are normalized and one-hot coded to obtain labeled
data samples, and the training set, test set and verification set are divided according to the proportion
of 7:2:1. After the final data pre-processing, 58577 data enhancement and Class 0 data samples are
obtained. The length of a single data is 2048 sampling points, the overlap amount is 2047, and the
number of sampling points is [(0, 5864), (1, 5822), (2, 5850), (3, 5864), (4, 5857), (5, 5850), (6, 5878),
(7, 5885), (8, 5850), (9, 5857)].

Step 3: Input the training set to the multi-grained scanning structure of the WDBM and set the
step size as 1. After a series of feature transformations, the generated representation vectors are stitched
together and sent into the cascade forest structure of the WDBM for learning.

Step 4: Set the number of weighted random forests and weighted completely random forests in
each layer of the cascade structure to 4, and the number of sub trees in the completely random forest
to 100, calculate the fault diagnosis effect of the current sub tree, and compute the weighted mean
result of all the sub trees as the result of the forest.

Step 5: Calculate the fault diagnosis rate of the current cascading structure on the training
set respectively, and the model automatically evaluates whether it is necessary to expand the next
cascading structure on the verification set. If necessary, return to step 4. If it is not necessary, stop
training immediately.

Step 6: Find out the layer with the highest diagnosis rate in the training set among all extension
layers as the final diagnosis result of the training set, and the learning process ends.
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Step 7: Input the test set to the WDBM, cycle steps 3–5, find the layer with the highest diagnosis
rate on the test set among all extension layers, and output the diagnosis result of this layer as the final
bearing fault diagnosis rate.

3.3 WDBM Procedure

WDBM Procedure
If T is mechanical bearing data, then

T = multi-grained scanning TS;
end if
for i = 1 to 4

for j = 1 to N
Use TS to train the sub-trees;
Calculated the diagnostic rate of the sub-trees;
Calculated the weights of the current sub-trees in the forest;
Enter S to the current sub-tree;

end for
Calculated the current forest diagnosis rate on TS and S respectively

end for
Calculated the diagnostic rates of the current hierarchical structure on TS and S respectively
If continues to extend the next level of linkage structure after evaluating on M then

Use diagnosis rate of the previous layer spliced into the original feature space to form new TS and
S;
Return to Step 1 to continue;
else

Get layer’s highest diagnostic rate on TS, and output the diagnostic results of this layer
end if

In this paper, the bearing dataset from Case Western Reserve University (CWRU) is used, which
is widely accepted as the standard data set in the field of bearing fault diagnosis, for its objective,
reliability, and good quality. CWRU bearing fault data came from motor, torque sensor, power meter,
16-channel data logger, 6203-2RS JEM SKF/NTN deep groove ball bearing and electronic control
equipment. And the CWRU bearing fault data are processed manually by EDM technology.

Input training set T , test set S, verification set M, N: the number of forest trees, TS: the training
set after multi-grained scanning.

4 Experimental Results
4.1 Parameter Values of Experiment

As shown in Tab. 2, 4 weighted completely random forests and 4 random forests were set in cascade
forest structure, among which 100 decision trees existed in each forest and were cross-verified by 2 and
10 folds. In the part of the multi-grained scanning structure, the size of the scanning window was set
as 4, the step size of the data slice was set as 1, the number of decision trees was set as 101, and the
minimum sample number in each node was set as 0.1.
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Table 2: Parameter values of experiment

Parameters Value

Weighted Random Forest (WRF) 4
Weighted Complete Random Forest (WCRF) 4
K-fold Cross Validation 2, 10
Decision Trees Number of Each WCRF& WRF 100
Scanning Window Size 4
Step Size of Data Slice 1
Decision Trees Number in Scanning 100

4.2 Results Analysis
4.2.1 Stability Analysis

In order to ensure the accuracy of the experimental data, the experiments in this paper were
repeated 10 times and the average value was taken as the result of the experiment. In addition to the
WDBM, other deep learning-based models, e.g., Convolution Neural Network model (CNN), Long
and short-term memory neural networks model (LSTM), Classical Deep Forest model (CDF) are used
for comparison in the bearing fault diagnosis experiments.

In this section, the F1 score measurement index is used to verify the robustness of WDBM by
dividing the training set, test set and verification set according to 7:2:1 for 9 types of fault samples and
1 type of health samples under 0 horsepower load. The calculation of F1 score is as shown in Eq. (4).

F1 = 2TP
2TP + FN + FP

(4)

In the Eq. (4), the F1 score is the mean value of precision and recall rate, and other indicators are
shown in Tab. 3. When the F1 score value is 1, it means that the model reaches the best state and 1 is
the highest value. When the F1 score value is 0, it means that the model reaches the worst state and 0
is the worst value. The closer the value is to 1, the more robust the diagnostic model is.

Table 3: F1-score evaluation index parameter

H(x) (predicted value) Y(x) (true value) Comments

H(xi) = 1 Yi = 1 TP (True Positive)
H(xi) = 1 Yi = 0 FP (False Positive)
H(xi) = 0 Yi = 1 FN (False Negative)
H(xi) = 0 Yi = 0 TN (True Negative)

As can be seen from Fig. 5, performance of these deep learning-based methods is similar. However,
by virtue of its strong feature extraction ability, the F1 score of the WDBM in 10 different data sets
is above 0.95, which proves that the WDBM has excellent stability and good robustness, and WDBM
can also adapt to complex bearing fault diagnosis.
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Figure 5: F1 scores of different diagnostic models

4.2.2 Generalization Performance Analysis

In the actual operation of mechanical equipment, the bearing loads are different. In order to
accurately verify the generalization performance of the WDBM method, the bearing data sets under
0, 1 and 2 horsepower loads are used for fault diagnosis to verify the fault diagnosis ability of the
WDBM under different load conditions. The fault diagnosis accuracy is shown in the Tab. 4.

Table 4: The accuracy of fault diagnosis of different load bearings using WDBM

Experimental setup Accuracy of bearing fault diagnosis using WDBM (%)

0hp 1hp 2hp

Normal 97.78 98.55 98.56
Rolling body fault 1 96.95 98.51 98.57
Rolling body fault 2 98.22 95.25 98.52
Rolling body fault 3 98.87 96.56 98.41
Inner roll fault 1 97.55 98.91 98.31
Inner roll fault 2 98.61 98.62 98.66
Inner roll fault 3 98.72 98.85 98.71
Outer roll fault 1 98.53 98.39 98.51
Outer roll fault 2 98.51 98.31 98.82
Outer roll fault 3 98.56 98.53 98.41

As can be seen from Tab. 4, the average diagnostic accuracy of WDBM in bearing fault diagnosis
is 98.27%. For purpose of verifying the generalization ability of the proposed method under other load
conditions, bearing data sets with 1 horsepower and 2 horsepower are introduced to carry out fault
diagnosis tests with the same configuration as 0 horsepower. The experimental results show that the
average accuracy of the proposed method is more than 98% under 1 horsepower and 2 horsepower
load conditions, which illustrates that WDBM has good generalization ability.
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4.2.3 The Fault Diagnosis Accuracy and Training Time Analysis

In this section, the standard bearing fault diagnosis testis set up, which selects 0 horsepower, the
12 khz sampling frequency, 9 groups of bearing inner ring, outer ring and rolling element fan end
acceleration fault data and 1 group of corresponding bearing health data. The test has 10 groups of
data, 10 sample characteristics and about 3 million data point samples. The data pre-processing is
processed according to step 2 in Section 3.2 to obtain the learning effect of WDBM cascade structure
on the training set, as shown in Fig. 6.

It can be seen from Fig. 6 that the accuracy of the WDBM is more than 90% in 75 training times
and 99.5% in about 1450 training times, and the convergence maintains a stable learning effect. It is
evident from Fig. 6 that, WDBM reaches higher bearing fault diagnosis accuracy than CDF when the
same number of layered cascading structure is conducted. The reason behind the phenomenon is that
weighted mechanism is exploited in WDBM and the influence of decision trees with better classifying
accuracy are taken into next cascading layer, which accelerate the improvement of classifying accuracy.

Figure 6: Accuracy vs. number of layering

The final diagnosis effect of WDBM on the test set is shown in Fig. 7. The lowest diagnosis rate
on data sets 0–9 is 99.23%, the highest is 99.45%, and the average diagnosis rate is 99.35%, which fully
proves that the proposed method has high fault diagnosis accuracy.

Figure 7: The diagnostic effect of the proposed method on the test set
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Fig. 8 shows the comparison of the training time cost of diagnoses of 3 million data points for
each model. The proposed WDBM performs well in these diagnosis models and the diagnosis cost of
WDBM is the least, which is 0.62 hour lower than that of the CDF. It is verified that as follows: (1)
WDBM has a low cost of diagnosis; (2) The cascade forest structure of WDBM is converged quickly.

Figure 8: Model training time comparison of various diagnostic methods

4.2.4 The Fault Diagnosis Performance Analysis for Small Sample Data

In this section, fault diagnosis experiments using small sample data are conducted to analyze the
performance of the bearing fault diagnosis methods through the average fault diagnosis accuracy of
4 different types of small samples. The results are shown in Tab. 5. “5 categories” means that there
is 1 category of healthy samples and 4 categories of fault samples when training the model and each
type of sample contain 1000 data points, and so on. When 5 types of samples are used to train the
model, the diagnosis rate of deep learning methods such as CNN and LSTM is seriously affected by
the number of samples. When used 20 types of sample data, CNN increased by 26.59% and LSTM
increased by 33.99%. For the tree-based model, CDF and WDBM are less affected by the sample data.
When 5 types of small sample data are used, the diagnostic rate of CDF is 92.53%, and the precision
rate of WDBM is 95.31%. The experimental results show that the number of training samples will
affect the training effect of the model to some extent, and the possible reasons are as follows: For
most deep learning methods, when sample data are relatively small, deep learning methods with more
super parameters will produce serious over-fitting.

Table 5: Bearing fault diagnosis accuracy for small sample data

Number of samples CNN LSTM CDF WDBM

5 categories 67.23 ± 6.31% 57.87 ± 4.49% 92.53 ± 0.31% 95.31 ± 0.45%
10 categories 86.27 ± 3.19% 74.72 ± 6.19% 93.46 ± 0.54% 98.11 ± 0.59%
15 categories 91.34 ± 3.62% 86.92 ± 3.83% 94.91 ± 0.87% 99.02 ± 0.64%
20 categories 93.82 ± 0.81% 91.86 ± 2.57% 96.67 ± 2.55% 99.27 ± 0.87%
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5 Conclusion

In engineering practice, the bearing is in normal operation for most of the time, combined with
its working environment and other reasons, which make it difficult to obtain many real fault data
samples. Therefore, fault diagnosis of small sample data sets is particularly important. In this paper,
weighted deep forest is exploited for bearing fault diagnosis. The method has strong robustness, good
generalization, and low cost. It can accurately diagnose on small data sets, and its accuracy rate is
more than 99%, which can provide new power for bearing fault diagnosis technology.
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