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Abstract: Breast cancer (BC) is the most common cause of women’s deaths
worldwide. The mammography technique is the most important modality
for the detection of BC. To detect abnormalities in mammographic images,
the Breast Imaging Reporting and Data System (BI-RADs) is used as a
baseline. The correct allocation of BI-RADs categories for mammographic
images is always an interesting task, even for specialists. In this work, to
detect and classify the mammogram images in BI-RADs, a novel hybrid
model is presented using a convolutional neural network (CNN) with the
integration of a support vector machine (SVM). The dataset used in this
research was collected from different hospitals in the Qassim health cluster
of Saudi Arabia. The collection of all categories of BI-RADs is one of the
major contributions of this paper. Another significant contribution is the
development of a hybrid approach through the integration of CNN and SVM.
The proposed hybrid approach uses three CNN models to obtain ensemble
CNN model results. This ensemble model saves the values to integrate them
with SVM. The proposed system achieved a classification accuracy, sensitivity,
specificity, precision, and F1-score of 93.6%, 94.8%, 96.9%, 96.6%, and 95.7%,
respectively. The proposed model achieved better performance compared to
previously available methods.

Keywords: Breast cancer; CNN; SVM; BIRADS; classification

http://dx.doi.org/10.32604/cmc.2022.027111
mailto:kaalshamrani@nu.edu.sa


4834 CMC, 2022, vol.72, no.3

1 Introduction

Breast cancer (BC) is considered the most fatal disease and is considered one of the major causes
of death among females [1]. BC spreads widely in women over the age of 30. Family history, older age,
and consuming lots of fats are influencing factors for BC [2]. Radiologists evaluate mammograms
regularly using the Breast Imaging Reporting and Data System (BI-RADs) [3,4]. The BI-RADs
mammography includes qualitative data to illustrate the shape, margin, and density of the mass, as well
as microcalcifications, architectural distortion, and association features. Based on these characteristics,
radiologists consign the mass lesion to one of the following BI-RADs categories: BI-RADs-2, benign;
BI-RADs-3, probably benign; BI-RADs-4, suspicious; BI-RADs-5, highly suggestive of malignancy.
As a result, radiologists advise annual screening for BI-RADs- 2, a short-interval follow-up in 6
months for BI-RADs-3, and biopsy for BI-RADs-4 and BI-RADs-5 [5].

Currently, many types of cancers are spreading around the world. According to the Global Cancer
Observatory (GCO) 2020 [6] statistical reports, the ratios of the estimated new cases of breast cancer
for females in the world, in Asia, and in Saudi Arabia are 24.5%, 22.9%, and 29%, respectively. On
the other hand, the death ratios in the world, in Asia, and in Saudi Arabia are 15.5%, 14.4%, and
20.4%, respectively. As compared to other cancers, the estimated reported new cases and death cases
of breast cancer are 29% and 20.4% in Saudi Arabia, as shown in Fig. 1. The estimated proportion of
new breast cancer cases represents an alarming situation in Saudi Arabia. Therefore, strong assessment
and controlling mechanisms must be introduced to reduce their effects.

Figure 1: Estimated age-standardized incidence and mortality rates (as per 100,000) of all cancers in
2020, saudi arabia

Research associated with BC has accelerated in the recent decade as it is considered the most
fatal disease. Many imaging methods can be used to screen and diagnose malignancy at an early stage
[7]. The survival rate of BC in developed countries is high compared to underdeveloped countries, as
there is a lack of early detection programs; thus, the patient is diagnosed at a late stage of the cancer,
which complicates cures and causes a high mortality rate [8]. To overcome this, an early detection
program for BC must be established, and women must be educated in self-examination. In some cases,
when the disease is diagnosed at an early stage, the likelihood of full recovery is increased. However,
in other cases, when the disease is recognized at a later stage, where it has already metastasized to
different organs, the probability of full recovery is decreased, and it becomes a challenge for the medical
team [9].
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In the last few decades, the mammogram was used to detect the abnormal growth of cells
in the case of breast cancer [10]. Females suffering from BC may show architectural distortion,
microcalcification, mass, and asymmetries in the breast on mammogram images [11].

Many imaging techniques such as mammography, ultrasound, and MRI are available to detect
cancer. Mammography is the best technique to help diagnose the disease, which uses low-energy X-
rays for diagnosis and screening purposes. Early detection of BC may help to save human lives [12].
Mammography utilizes ionizing radiation, and the breast is compressed to get images of flattened
tissues for early detection and to get rid of blurry images. However, the density of masses in the tissues
due to breast thickness in younger women is an obstacle in detecting tumors, and the mammogram has
low sensitivity in such cases [13]. The breast images obtained from mammography are processed by
eliminating normal and background areas from the mammogram so that the focus remains restricted
to the affected tissue only, as depicted in Fig. 2. The quality of the image and intensity of the pixel
are crucial in identifying the disease. A higher pixel intensity of malignant tissue helps in detecting
tumors [14].

Figure 2: Histogram equalizer

Different image processing techniques are applied during mammographic examination for feature
extraction and image format conversion to refine the dataset and enhance the study. In this regard,
neural networks provide an alternative for best feature extraction. Nonlinear processing layers are
introduced in deep learning with machine learning and artificial intelligence combined to extract
information from the dataset [15]. On mammogram images, dense breasts conceal the malignant cells;
in such cases, it becomes difficult for mammography to detect tumors, leading to false negatives [16,17].

In image classification, CNN has become very popular in recent years; in this paper, an automatic
BC detection method is presented using CNN with the integration of an SVM [18]. The proposed
method can be promising for supporting radiologists in accurate patient detection according to
spontaneously allocated BI-RADs classes in mammography images [19]. The key objective is to
make mammographic terminology clearer and more consistent among radiologists and referring
doctors. CNN effectively encapsulates spatial and temporal dependencies and differentiates images by
assigning weights and biases. Moreover, the approach in this study uses three models (models 1, 2, and
3) to get ensemble model results. They have different CNN structures with various layers, parametric
functionalities, learning rates, strides, and filter sizes. All models are combined to obtain a metric used
as an input for the ensemble model. The ensemble model saves the values to integrate them with SVM.
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This ensembled-based integration approach was selected to allow a fair comparison of the proposed
method with benchmark papers. Thus, the contributions of this paper are as follows:

• The availability of authentic data for various BI-RADs is a key challenge, and the prime
contribution of this paper is the data collection of BC patients for BI-RADs-1 to BI-RADs-
5 from the Qassim region of Saudi Arabia.

• The second contribution is the development of the CNN-based ensemble approach with the
integration of SVM for BC classification.

• Most published studies are limited to certain BI-RADs and did not consider all BI-RADs. Thus,
another significant contribution of this paper is the classification of all possible BI-RADs for
evaluation purposes.

2 Related Work

In recent years, many approaches based on different algorithms have been recommended for BC
detection. Some of the proposed methods are discussed below.

Ng et al. [20], in BC detection, obtained microwave images and applied gelatin oil technology to
improve the efficiency of the obtained images. The images of breasts containing malignant cells were
originally obtained using an ultrawideband (UWB) antenna. Kennedy et al. [21] offered an amalgam
technique combining both thermography and mammography. When experiments were conducted
using thermography and mammography, the accuracy was 83% and 90%, respectively, whereas the
combined approach achieved an accuracy of 95%. Al-Antari et al. [22] performed a fourfold cross-
validation test on the proposed full-resolution convolutional network using a computer-aided design
framework (CAD). The dataset obtained from an open-source database named INbreast database was
used to evaluate the performance of the suggested framework. To test the efficiency, mass detection
accuracy, Matthew’s correlation coefficient, and F1-score were applied, which generated scores of
98.96%, 97.62%, and 99.24%, respectively.

The feature extraction technique in image processing plays a significant part in classification as it
clarifies the area of interest in an image. Pramanik et al. [23], for thermogram BC detection, utilized a
small-scale dataset comprising 40 normal and 60 abnormal images. As an evolution of their proposed
method, a dataset of 100 images was obtained from the public database DMR. A feature extraction
method based on local texture named block variance (BV) was proposed. A hybrid method was used
for classification, including the gradient descent training rule and a feedforward neural network. The
results showed a very low false positive rate (0.1). Acharya et al. [24] proposed a method examining
a small dataset comprising 50 images obtained from thermography. The features were extracted from
these images, and SVM was applied to detect BC; the proposed method achieved 90.84% specificity.
Jamil et al. [25] compared two neural networks: radial basis function and backpropagation neural
network. The comparison revealed more efficient results when implementing the backpropagation
neural network.

Samala et al. [26] utilized a deep neural network for digital breast tomosynthesis through
multistage transfer learning. To obtain digital breast tomosynthesis (DBT) data, mammography
images were captured from a database named imageNet. The dataset was then enhanced via different
transfer processes. Both mammography datasets and DBT were optimized to obtain better accuracy
by comparing the CNNs. For BC detection using a thermogram in the classification phase of images
obtained from thermograms, Sathish et al. [27] uses spatial and spectral features and performed a
comparison of the ensemble of bagged trees algorithm and AdaBoost. The comparative study showed
that the ensemble of bagged trees algorithm performed better. Its accuracy, specificity, and sensitivity
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were 87%, 90.60%, and 83%, respectively. Another study was proposed using a small dataset by Gogoi
et al. [28] implementing singular value decomposition (SVD). A thermogram was used to distinguish
the regularity and irregularity of images. The accuracy was 98%, but the use of a small dataset was not
enough to justify the results.

To overcome classification issues, a novel fuzzy approach was proposed by Swarnalatha et al. [29].
The medical image classification method implemented a fuzzy approach using bit plane. Chunks of
images were obtained from filtering on the basis of a bit plane. A fuzzy approach was used to refine
the images, which generated a more efficient result in contrast to other available methods.

Chen et al. [30] proposed a method to improve the bit plane slicing feature by implementing a CNN
classifier to accurately detect BC. Bit plane images were effectively segmented into eight images using
a CNN classifier. Each segment provided a different level of information. On different bit planes, the
fusion features were deeply evaluated simultaneously. Classification and recognition were also applied
using the CNN classifier. The proposed method considerably improved both the classification and the
recognition of medical images.

Kumar et al. [31] presented a method involving a dual-layered CNN model. The recommended
method was applied to the ImageNet dataset. In the dual-layered model, the first layer identified
the affected region, while the second layer segmented the images and was also used for false
positive reduction. In a comparison analysis, DL-CNN outperformed previous methodologies. For
BC detection and classification, Shamy et al. [32] performed the experimentation in three stages and
proposed a K-means Gaussian mixture established on a CNN. The region of interest was identified in
the first stage. An optimized feature selection algorithm was implemented at the region of interest to
optimize the features and texture extraction. In the last stage, classification of normal and abnormal
images was achieved using the CNN. The proposed neural network approach provided good accuracy
of the learning algorithm. The analysis exhibited that the outcome of the proposed method took less
processing time and improved breast cancer detection.

Gaber et al. [33] proposed a method for malignant and benign classification and automatic
segmentation. The identification of malignant and benign images was based on an SVM classifier.
The sensitivity and accuracy of the proposed method were as high as 88.41%. For early detection
and diagnosis of BC, Zheng et al. [34] proposed the deep learning based AdaBoost algorithm. An
evaluation of the proposed method was carried out using neural networks, which greatly enhanced the
efficiency of the proposed method. An ensemble classifier was assembled using the AdaBoost algo-
rithm for prediction. The results showed that the deep learning classifier was superior in performance
to other classifiers. The convolutional neural network helped boost the accuracy.

3 Methodology

The proposed methodology is outlined in this section. The novel hybrid method consists of a
CNN-based approach with the integration of SVM in the last layer. The proposed technique was
executed on the computer system with GPU 4GB, Core i7, 10th generation with RAM 32GB. The
steps to integrate the whole model with the SVM are given below.

3.1 Image Preprocessing Phase
3.1.1 Noise Reduction

Every oscillation or accidental variation that occurs in measured signals is referred to as noise in
general. There is some noise in mammography images, and image processing activities are plagued by
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noise, which is especially problematic for identifying edges within images that necessitate differenti-
ation. The influence of higher-frequency pixels, including noise, is amplified by differentiation of a
histogram equalizer (HE), as shown in Fig. 2. Because this method underpins a significant portion of
our work, it was preferable to use a median filter as a preprocessing step before image segmentation.
This allowed assembling all regions in ascending order, before choosing the central element from the
ordered elements, and substituting the central pixel using a locality with size A × B. The median filter
substitutes the designated pixel with the median of its neighbors, as shown in Eq. (1), where � defines
the location of A × B around the central neighbor, and y, z are the image’s intendant points.

MfA,B = Medianfilter{x[y,z],(y,z)ε�} (1)

3.1.2 Segmentation

The term “image segmentation” denotes the procedure of distributing an image into parts with
parallel traits and features. The basic goal of segmentation is to make the image easier to understand
by presenting it logically. A segmentation approach was applied to the mammography images at
the preprocessing stage to identify homogeneous regions, thereby identifying the ROI for further
processing, as shown in Fig. 3. Many mammography image segmentation techniques may overlook
some regions of the periphery. The perceptibility of the peripheral area in mammography images was
improved using a strategy based on filtered region growing segmentation in this paper. In a previous
study, we discovered that the strategy was effective [35].

Figure 3: ROI extraction

3.1.3 Image Augmentation

One example of an image augmentation technique is adaptive contrast enhancement. This strategy
can improve the image’s native distinctiveness while also retrieving additional data. It can be used to
boost contrast in both natural and medical images; however, it can also add substantial noise. In this
study, contrast-limited adaptive histogram equalization (CLAHE) [36], a kind of adaptive histogram
equalization (AHE), was used to improve picture distinction. A comparison of the original image and
the enhanced image after CLAHE is presented in Fig. 4.
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Figure 4: Original image (A) and CLAHE resultant image (B)

3.2 Feature Extraction
Feature extraction can be completed using several different methods. In mammography, various

features can be used to classify the characteristics of breast cancer. Due to their superior performance,
convolutional neural networks (CNN) have received substantial attention in recent years. Although
studies have demonstrated the durability of CNN models in various applications, architectural
considerations such as kernel size, stride, padding, and the number of filter channels have an impact on
accuracy. The sizes of feature maps in CNN layers are influenced by these hyperparameters. As a result,
the amount of time taken for learning and the precision of classification are both affected [37,38]. Thus,
this paper employed a CNN due to its success in image classification and image examination. A CNN
consists of different layers, as explained below and shown in Fig. 7.

• Image Input Layer: This layer takes an image as input for the network and applies normal-
ization. It specifies the image size by using the input size argument. The size of the image
corresponds with width, height, and some number of color channels.

• Convolutional Layer: The convolutional layer is used for feature extraction, which is the
fundamental element of convolutional neural networks [39]. This layer contains different filters
to extract features. The output and size of this layer are calculated using Eq. (2) and Eq. (3),
respectively, where ni

L is the feature map resulting from the images, σ is the activation function,
yL is the input width, and xiεf

L , ziεf are the filter (f) channels.

ni
L = σ

(
xi

L − yL + zi
)

(2)

Convoluyional layer ouput size =
(

input − size of filter
stride

)
+ 1 (3)

• Batch Normalization Layer: This layer provides CNN with zero inputs as mean or variance,
thus strengthening the network [40].

• Nonlinear or ReLU Layer: Following the batch normalization layer, the nonlinear layer pro-
cesses the nonlinear values of the dataset, as well as the input images [41]. In this layer, all
negative and odd values are changed to zero, as shown in Fig. 5. The ReLU output is calculated
as shown in Eq. (4), where u is the given input.

Re (x) = max (0, u) where
�Re (x)

�x
= {

0
1 ifu ≤ 0 & u > 0 (4)

• Pooling Layer: The pooling layer is frequently used after every convolutional layer in a convo-
lutional neural network. This layer handles the parameters and is responsible for overfitting.



4840 CMC, 2022, vol.72, no.3

Figure 5: ReLU layer description

Various pooling layers perform different functions (e.g., max pooling, min pooling, and average
pooling); the most frequently used layer is max pooling [42], as shown in Fig. 6. The size and
output of the pooling layer are calculated using Eq. (5) and Eq. (6), respectively, where x is the
output, and R denotes the pooling region.

Figure 6: Pooling layer output description

Ploi,j = maxr,sεR. (5)

Pooling layer output size =
(

convo output − Pooling Size
stride

)
+ 1 (6)

• Softmax Layer: This layer processes data from the pooling layer and the convolutional layer for
the classification layer on CNN, which are then used as the initial input for the CNN [43].

• Fully Connected Layer: This is a fully connected layer that applies the real classification. It takes
the input from all layers and passes it through the network. A completely interconnected layer
is consistently the last layer of a neural organization. This kind of layer obtains an information
vector and generates a yield vector. This last, completely associated layer characterizes and
returns a vector of size N, where N is the number of classes in our picture arrangement task.
Every component of the vector shows the likelihood that the information picture has a place
within a class. However, to learn more about the odds of classification, the fully interconnected
layer duplicates each information component according to its weighting before appliation. The
convolutional neural network estimates weight in the same way as the convolutional layer: in the
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preparation stage, with the inclination proliferating in reverse [44]. The completely linked layer
decides the connection between the features in the picture and a class. Similar to activating
neurons in the human brain, a neural network is the hardware and/or software program
consisting of all layers. Basic neural networks are not ideal for image processing. Thus, images
should be fed as lower-resolution bits. A CNN contains its own “neurons” that are structured
similarly to those in the frontal lobe, i.e., the region in the brains of humans and other animals
that processes visual objects. To avoid a picture processing issue with basic neural networks,
layers of neurons are designed in such a way that they span the full visual field.

• Classification Layer: This layer computes the actual class entropy loss for multiple class
problems. It matches the features with their relevant class [45].

Figure 7: CNN architecture with fundamental layers

3.3 Feature Classification
After their extraction, the features are mapped according to a group of specific categories.

Moreover, the ROI features, in terms of dimensionality and grouping, are used to create a map
of similar and dissimilar features, while the CNN layers help to classify them. The softmax layer
formats the feature data for classification purposes, while the fully connected layer applies the actual
classification.

3.4 Proposed Convolutional Neural Network (CNN) Approach with SVM Integration
The proposed novel hybrid approach with SVM integration consists of a multi-model structure

with a convolutional neural network. Moreover, this approach uses three models (models 1, 2, and 3)
to get ensemble model results. These models have different structures with various layers, parametric
functionalities, learning rates, strides, and filter sizes, as explained in Tab. 1 and Fig. 9. All these models
are combined to establish a metric used as the input for the ensemble CNN model. The ensemble model
saves the values as the results to integrate them with SVM. The process of SVM integration is defined
in Algorithm 1.

The SVM is a supervised machine learning classifier that analyzes data for classification and
regression purposes. Supervised learning classifiers provide data for both input and output, which
can be used for the classification of breast cancer [46]. An SVM creates a learning model in which
fresh instances are assigned to one of two groups of BC with positive and negative hyperplanes, as
shown in Fig. 8.
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Table 1: All model layers description with parameters

Model 1 Model 2 Model 3

Learning rate: 0.001, Number of epoch = 20, Classifier = ADAM

Name Parameters Strides Name Parameters Strides Name Parameters Strides

Input 120 × 120 × 3 1 Convo 15 × 15 × 256, 3 × 3 1 Convo 4 × 4 × 390, 8 × 8 1
Convo 32 × 32, 3 × 3 1 Pooling 7 × 7 × 256 1 Relu 4 × 4 × 390 1
Relu 60 × 60 × 90 1 Relu 15 × 15 × 256 1 - - -
Pooling 30 × 30 × 90 1 - - - - - -

Figure 8: SVM architecture

Figure 9: Proposed model architecture

SVMs are sometimes referred to as non-probabilistic binary linear classifiers because of their
functions. They represent a commonly used machine learning technique that has been extensively
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applied in a variety of domains, including the analysis of gene expression data. For a binary
classification problem, the SVM seeks to discover an ideal hyperplane that divides the data into two
classes, as indicated by a subset of samples called support vectors [47]. By altering the data with
mapping kernel functions, SVM can tackle nonlinearly separable situations. Radial basis, polynomial,
and linear functions are among the functions that can be used. The value of hyperplane separation
can be expressed as shown in Eq. (7), where Wv is the weighted vector, Fv is the feature vector, and B
is the bias.

Wv × Fv + B = 0 (7)

Accordingly, the point nearest to the hyperplane is determined using Eq. (8).

|Wv × Fv + B| = 1 (8)

The separating hyperplane equations for the two classes are given in Eq. (9) and Eq. (10), where
Xiε {+1, −1} is the dimensional space vector for the classes.

Wv × Fv + B ≥ +1 (9)

Wv × Fv + B ≤ −1 (10)

Algorithim 1: Algorithm for Proposed CNN approach with SVM integration
Algorithm: Proposed novel hybrid approach with SVM integration
Input layer: Any sequence of breast images from n to m is given here where n ∈ m as m = 1,2,3,4,5 (n
is start image whereas m is the last one of category)
Outputs: Breast cancer detection and classification for different images.

1) Divide all the images data into training, testing, and validation groups.
2) Pass the given values to model 1, model 2, and model 3 and train them with parametric

functionalities.
3) Create an array of features for mapping.
4) for each test image sequence do
5) for n = 1 to m do
6) Save the model values into an ensemble model for breast cancer classification and detection.
7) end for
8) end for
9) Integrate the ensemble CNN model with SVM.

10) for each image sequence do
11) Obtain predicted breast cancer.
12) for n = 1 to m do
13) Save the feature map for SVM integration
14) end for
15) Make a pool of breast cancer classification values.
16) end for
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4 Results and Discussion
4.1 Dataset Description and Preprocessing

The dataset used for this research was collected from different hospitals in the Qassim health
cluster of Saudi Arabia by radiologists and validated by breast imaging radiologists.

The dataset consisted of a total of 12,476 images; some samples are shown in Fig. 10. In the
preprocessing phase, noise was removed from the images, the images were resized, and duplicates were
removed. Overall, the dataset was separated into testing, training, and validation sets in proportions
of 20%, 70%, and 10%, respectively. The details of the dataset are given in Tab. 2, along with the
distribution. The proportions of each category are shown in Fig. 11.

4.2 Evaluation Criterion
The confusion matrix, accuracy, receiver operating curve (ROC), precision, and F1-score are some

techniques used to evaluate a classifier.

Figure 10: Sample images of BI-RADs
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Table 2: Dataset description

Category Cases Total images Data cleaned (images) Test Train

BI-RADs-1 1000 3920 3116 564 2552
BI-RADs-2 882 3564 3471 525 2946
BI-RADs-3 388 1670 1772 310 1462
BI-RADs-4 477 2081 2221 397 1824
BI-RADs-5 273 1241 1219 179 1040
Total 3020 12, 476 11,799 1975 9824

Figure 11: Proportion of BI-RADs image categories

• Confusion Matrix (CM): This is a specific table that represents the classifier’s performance.
It is usually referred to as an error matrix in the field of machine learning. Dependent on the
data type, an image region can be positive or negative. The judgment of the observed result
can also be true or false. As a result, one of four options is considered: true positive (Tp), true
negative (Tn), false positive (Fp), and false negative (Fn). The diagonal of the CM denotes a
correct decision. Tab. 3 shows a case of a CM for the classification of two classes. A five-class
CM is shown in Fig. 14.

Table 3: Example of CM

Classes Predicted class

Class1 Class2

Class1 Tn Fn
Class2 Fp Tp

• Accuracy: The accuracy of a classifier’s prediction specifies the classifier’s overall perfor-
mance capability, as expressed in Eq. (11).

Accuracy = Tp + Tn
Tp + Tn + Fp + Fn

(11)

• Receiver Operating Curve (ROC): ROC analysis is a renowned task detection calculation
approach. The analysis was first utilized in medical decision making. It is a graph of operational
points that depicts the true positive rate (Tpr) as a function of the false positive rate (Fpr);
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it is also known as sensitivity (recall) and specificity, as expressed in Eq. (12) and Eq. (13),
respectively.

Sensitivity (recall) = Tp
Tp + Fn

(12)

Specificity = Tn
Tp + Fp

(13)

• Precision: The proportion of correctly predicted with respect to all anticipated annotations
is known as precision, as expressed in Eq. (14). A low FPR correlates with high precision.

Precision = Tp
Tp + Tp

(14)

• F1-score: The biased average of precision and recall is the F1-score. It is a statistical metric for
evaluating the classifier’s performance, which considers both false positives and false negatives,
as expressed in Eq. (15).

F1 − Score = 2 × (Sensitivity × Precision)

Sensitivity + Precision
(15)

4.3 Testing and Training Process
To evaluate the statistical metrics, training and testing processes were applied using five BI-RADs

classes. To train the model, 70% of the dataset was used. The preprocessed dataset was used as an input
into the CNN with different parametric configurations. The resultant metrics were saved in another
model known as the resultant model. The resultant model values were used as an input into the SVM
classifier. The whole process involved multiple configuration settings. On the other hand, the testing
process used 20% of the dataset, and the resultant metrics were integrated with SVM to test the results.
The BI-RADs were classified into five classes: BI-RADs-1, BI-RADs-2, BI-RADs-3, BI-RADs-4, and
BI-RADs-5. The resultant confusion matrix for the statistical evaluation of the training and testing
process is shown in Fig. 13. The features from the whole dataset and its subspaces are shown in Fig. 12
as a principal component analysis (PCA) projection to decrease the dimensionality of the dataset. The
PCA graph shows the individual class distribution ratios of the dataset. In Fig. 14, the blue dotted line
shows the training accuracy and loss, while the red dotted line shows the validation accuracy and loss.

Tab. 4 provides a comparison of the results with methods from the literature. The proposed
ensemble CNN with SVM integration was most suitable for BI-RADs classification of breast masses in
mammography in terms of accuracy (93.6%), sensitivity (94.8%), specificity (96.9%), precision (96.6%),
and F1-score (95.7%). Thus, the proposed method is promising for supporting radiologists in accurate
patient detection according to spontaneously allocated BI-RADs classes. It exhibited the best results
in terms of overall accuracy and other average statistical values, as revealed in Tab. 4.
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Figure 12: PCA projection of BI-RADs categories

Figure 13: Five class training (A) and testing (B) process

Figure 14: Training and validation process accuracy and loss
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Table 4: State-of-the-art comparison algorithms

Year/Method Dataset Sensitivity
(%)

Specificity
(%)

Precision
(%)

F1-Score Accuracy
(%)

2015 [48] DDSM 76 84 - - 76.67
2016 [49] DDSM 83 94 - - 83.85
2018 [50] DDSM - - - - 83.4
2020 [51] DDSM 84.5 94.2 - - 84.5
Proposed Private 94.8 96.9 96.6 95.7 93.6

5 Conclusion

A novel hybrid approach with SVM integration consisting of a multi-model CNN was proposed to
classify images into BI-RADs classes (B1, negative; B2, benign; B3, probably benign; B4, suspicious;
B5, highly suggestive of malignancy). The data were collected from the Qassim region in Saudi Arabia.
Initially, the region of interest included calcification asymmetry or architectural distortion regions,
which were enhanced using different ROI and segmentation techniques. The proposed system achieved
a classification accuracy, sensitivity, specificity, precision, and F1-score of 93.6%, 94.8%, 96.9%, 96.6%,
and 95.7%, respectively. A comparison of the proposed hybrid approach with other published studies
revealed a significant improvement in performance. It is foreseen that the proposed system can not
only help in the mammographic assessment of breast cancer BI-RADs, but also be used for general
classification in other medical applications.
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