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Abstract: The design of evolutionary approaches has a vital role in the recent
development of scientific literature. To tackle highly nonlinear complex prob-
lems, nonlinear ordinary differential equations, partial differential equations,
stochastic differential equations, and many more may called computational
algorithms. The rotavirus causes may include severe diarrhea, vomiting, and
fever leading to rapid dehydration. By the report of the World Health Orga-
nization (WHO), approximately 600,000 children die worldwide each year,
80 percent of whom live in developing countries. Two million children are
hospitalized each year. In Asia, up to 45 percent of the children hospitalized
for diarrhea may be infected with rotavirus. The rotavirus model is categorized
into five-compartment like susceptible (S), breastfeeding (M), vaccinated (V),
infected (I), and recovered children (R). Positivity, boundedness, equilibria,
reproduction number, and stability results are part of the qualitative analysis
of the model. After that, the design of the evolutionary approaches on the
model predicts the efficiency, visualization, long-term behavior of the disease,
and best results of the rotavirus disease. In the end, evolutionary computations
are an appropriate tool for double-checking the qualitative examination of the
model.
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1 Literature Survey

Rotavirus is a double-stranded RNA virus. Rotavirus is the most common cause of diarrhea. Its
spread is contagious and affects every child before the age of five. Rotavirus is round in shape when
observed under a microscope. Rotavirus produces inflammation in the small bowel, especially in the
stomach and intestine. Diarrhea is most common in South Asia and Africa. In 2004, 2.5 billion cases
of diarrhea were reported, resulting in 1.5 million deaths. More than half of the patients were from
South Asia and Africa. Diarrhea is still a problem in the developing world. In America, the death rate
from diarrhea is 10% merely while in South Asia and Africa, the death rate is 31.3%. In Pakistan,
many children suffering from diarrhea are 27.7% in 2018. All the children were under five years of age.
Burnett et al. presented a cost-effective vaccine to prevent the rotavirus disease [1]. In 2020, Ahmed
et al. developed a mathematical analysis of epidemic modeling of diarrhea like rotavirus [2]. Lin et al.
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investigated the causes of diarrheal infectious disease rotavirus (Rotarix and Rotateq) in 2014 [3]. In
2019, Payne et al. presented a rotavirus vaccine to understand their effectiveness and recommend US
infant immunization [4]. Omondi et al. presented a mathematical model to explore the co-infection
of malaria and rotavirus [5]. In 2009, Effeltrerre et al. studied the dynamics of rotavirus to check the
indirect effect of vaccination [6]. Chan et al. presented epidemiology in 1998 of rotavirus infection
to calculate and estimate the burden of disease under five years of age in Hong Kong [7]. Linhares
et al. investigated a rotavirus infection that affects children before five in Brazil by a longitudinal
study in 2009 [8]. In 2010, Atchison et al. developed a determined age-structure model to investigate
the transmission and effect of rotavirus vaccination in England and Wales [9]. In 2013, Arnold et al.
presented a theory of rotavirus-like infections [10]. In 2020, Shuaib et al. developed a mathematical
analysis to study the effect of rotavirus on childhood mortality and diarrheal disease [11]. Guzel et al.
presented a met-analysis in 2020 regarding awareness programs and preventive policies of rotavirus
infection in younger children in Turkey [12]. In 2020, Folorunso et al. investigated oral rotavirus
vaccine in developed countries and its strategic preventive [13]. Bibera et al. studied the evolution of the
rotavirus vaccine [14]. In 2020, Ilmi et al. investigated the dynamics of the rotavirus epidemic model
with the effect of crowding infective individuals [15]. In 2018, Shumetie et al. suggested improving
child care to protect their children of a mother from diarrheal morbidity and rotavirus vaccination
[16]. Bennett studied the rotavirus epidemic model with the well-known assumption of mathematics
[17]. In 2016, Namawejje presented a mathematical model to check the affected regions of rotavirus
and illustrate the effects on children and treatment [18]. Omondi et al. studied a mathematical analysis
and simulation of rotavirus to check the quality of vaccination in 2015, whether it’s working or not
on the infection [19]. The paper’s strategy is as follows: Section 2 describes the model’s design and
qualitative analysis. Section 3 and 4 presented the model’s reproduction number and stability results,
respectively. Section 5 investigated the structure of evolutionary approaches and their efficiency with
comparative analysis. In the end, remarks and the conclusion of the paper are presented.

2 Model Formulation

For any time, the whole population E(t): is divided into the five compartments named: susceptible
(S), breastfeeding (M), vaccinated (V), infected (I), and recovered (R). The flow map of rotavirus
disease is presented in Fig. 1.

Figure 1: Flow transmission of rotavirus disease [11]

The fixed ratios of the model are presented as follows: �(1 − σ − η): represent the inclusion rate
into the susceptible compartment, σΛ : represent the inclusion rate into breastfeeding compartment,
ηΛ: represent the inclusion rate into the vaccinated box, Ψ: represent the breastfeeding rate of the
vaccinated box, γ: represent the vaccination rate of the susceptible compartment, Φ: represent the
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vaccination rate of breastfeeding compartment, β: represent the nominal contact rate, 	: illustrate
the waning rate of maternal antibodies from breast milk, ω: represent the waning rate of vaccine, ε:
represent the reduction in the risk of infection due to maternal antibodies, ξ: represent the reduction in
the risk of infection due to vaccination, τ: represent the disease mortality rate, μ: represent the natural
death rate and k: represent the recovery rate. The governing equations of the model are as follows:

S′(t) = (1 − σ − η) � + 	M (t) + ωV (t) − βS (t) I (t) − (μ + γ + Ψ) S(t), (1)

M ′(t) = σ� + ΨS (t) − εβI (t) M (t) − (	 + Φ + μ) M (t) , (2)

V ′(t) = η� + ΦM (t) + γS (t) − ξβI (t) V (t) − (μ + ω) V (t) , (3)

I ′(t) = βS (t) I (t) + εβM (t) I (t) + ξβV (t) I (t) − (τ + k + μ) I (t) , (4)

R′(t) = kI (t) − μR (t) , (5)

Here, we can observe from the system Eqs. (1)–(5), there is no term R(t), in first four equations.
So, by using the assumption of epidemiological modeling, we can consider the analysis of the model
without recovered compartment. Therefore,

S′(t) = (1 − σ − η) μ + 	M (t) + ωV (t) − βS (t) I (t) − (μ + γ + Ψ) S(t), (6)

M ′(t) = σ� + ΨS (t) − εβI (t) M (t) − (	 + Φ + μ) M (t) , (7)

V ′(t) = η� + ΦM (t) + γS (t) − ξβI (t) V (t) − (μ + ω) V (t) , (8)

I ′(t) = βS (t) I (t) + εβM (t) I (t) + ξβV (t) I (t) − (τ + k + μ) I (t) , (9)

with nonnegative conditions S (0) ≥ 0, M (0) ≥ 0, V(0) ≥ 0, I (0) ≥ 0.

And R =
{
(S, M, V , I) εR4

+ : E (t) ≤ �

μ
, S ≥ 0, M ≥ 0, V ≥ 0, I ≥ 0

}
, be the feasible region.

2.1 Properties
Theorem 1: The system results (6)–(9) with given initial conditions are positive for all t ≥ 0.

Proof: By letting the Eq. (6),
dS
dt

= (1 − σ − η)� + 	M + ωV − βSI − (μ + γ + Ψ) S

dS
dt

≥ −βSI − (μ + γ + Ψ) S

dS
dt

≥ − (βI + (μ + γ + Ψ)) S

dS
S

≥ − (βI + (μ + γ + Ψ)) dt∫
dS
S

≥
∫

− (βI + (μ + γ + Ψ)) dt

lnS ≥
∫

− (βI + (μ + γ + Ψ)) dt

S (t) ≥ S (0) e
∫ −(βI+μ+γ+Ψ)dt ≥ 0
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Similarly, for Eqs. (7)–(9), we have

M (t) ≥ M (0) e
∫ −(εβI+	+Φ+μ)dt ≥ 0

V (t) ≥ V (0) e
∫ −(ξβI+μ+ω)dt ≥ 0

I (t) ≥ I (0) e
∫ −(τ+k+μ)dt ≥ 0, as desired.

Theorem 2: The solutions (S, M, V , I)εR4
+ of the system (6)–(9) are bounded at any time and

limit→∞ SupE (t) ≤ �

μ
.

Proof: By considering the population function is as follows:

E = S(t) + M(t) + V(t) + I(t)

dE
dt

= dS
dt

+ dM
dt

+ dV
dt

+ dI
dt

, t ≥ 0

dE
dt

≤ Λ − μE

dE
dt

+ μE ≤ �

E (t) ≤ �

μ
+ e−μtE(0)

E (t) ≤ �

μ
+ E(0)e−μt

For large t→∞
limt→∞SupE(t) ≤ �

μ
, as desired.

2.2 Equilibria
The system (6)–(9) admits two types of equilibria as follows: rotavirus free equilibrium (RFE-

R1) = (S1, M1, V 1, I 1) = (S1, M1, V 1, 0),

M1 = Λ[(ω + γ + μ) σμ + (μ + ω − μη)Ψ

K1
S1 = Λ[(ϕ + 	 + μ) (μ + ω − μη) − (μ + ϕ + ω)μσ]

K1
,

V 1 = Λ[(ϕ + 	 + μ + Ψ) μη + (μσ + γ + Ψ) ϕ + (μ − μσ + 	) γ]
K1

,

K1 = μ[	 (ω + γ + μ) + (ϕ + μ) [ω + Ψ + μ + γ) + Ψω].

rotavirus endemic equilibrium (REE-R2) = (S∗, M∗, V ∗, I ∗)

S∗ = (1 − σ − η)� + 	M∗ + ωV ∗

(βI ∗ − (μ + γ + Ψ))
, M∗ = σ� + ΨS∗

(εβI ∗ + (	 + ϕ + μ))
, V ∗ = η� + ϕM∗ + γS∗

(ξβI ∗ + (μ − ω))
.

F1I ∗3 + F2I ∗2 + F3I ∗ + F4 = 0.

F1 = εξ (δ + κ + μ) , F2 = (δ + κ + μ) (μεξ + εξψ + εξγ + με + μξ + ϕξ + εω + ξ	) − �βεξ,

F3 = (δ + κ + μ) (ϕω + 	ω + μϕ + ξγ	 + μξγ + ϕξψ + μξψ + εψω + μ2ξ + μεγ +
μεω + μξ	 + μ	 + μω + μϕξ + μ2 + ϕξγ + μ2ε + μεψ − �β(μσεξ +
μηεξ − μσξ − μηε + εξψ + εξγ + με + μξ + ϕξ + εω + ξ	)),
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F4 = (δ + κ + μ) (μϕψ+μϕω+μ2(γ+	+ϕ+	ω+μ+ψ+ω)+μψω+μγ	+μϕγ)−�β(μ2(1+
σε + ηξ − (η + σ)) + μω + εψω + ϕω + 	ω + σεω − μηεψ − μϕη − μη	 + μξγ + ϕξγ + ξγ	 +
μηξψ + μηξ	 + μϕηξ + μσεγ + μϕσξ − μϕσ − μσξγ − μσω + μεψ + μϕ + μ	 + ϕξψ).

3 Threshold Number

By using the next-generation matrix method, we calculate two types of matrices one is transition
matrix, and the second is transmission matrix as follows:⎡
⎣M ′

V ′

I 1

⎤
⎦ =

⎡
⎣−εβI 0 −εβM

0 0 0
εβI ξβI β(S + εM + ξV)

⎤
⎦

⎡
⎣M

V
I

⎤
⎦ −

⎡
⎣(� + ϕ + μ) 0 0

−ϕ (μ + ω) 0
0 0 (μ + δ + κ)

⎤
⎦

⎡
⎣M

V
I

⎤
⎦.

After substituting the rotavirus free equilibrium, so we have

Where F =
⎡
⎣0 0 0

0 0 0
0 0 β(S1 + εM1 + ξV 1)

⎤
⎦,

G =
⎡
⎣(� + ϕ + μ) 0 0

−ϕ (μ + ω) 0
0 0 (μ + δ + κ)

⎤
⎦ are the transition and transmission matrices respec-

tively.

FG−1 =

⎡
⎢⎢⎣

0 0 0
0 0 0

0 0
β(S1 + εM1 + ξV 1)

(μ + δ + κ)

⎤
⎥⎥⎦

∣∣FG−1 − λ
∣∣ =

⎡
⎢⎢⎣

0 − λ 0 0
0 0 − λ 0

0 0
β(S1 + εM1 + ξV 1)

(μ + δ + κ)
− λ

⎤
⎥⎥⎦ = 0

The spectral radius of the FG−1is called the threshold number is as follows:

R0 = β(S1 + εM1 + ξV 1)

(μ + δ + κ)
.

4 Stability Results

Theorem 3: The rotavirus-free equilibrium = (S1, M1, V 1, 0) is locally asymptotically stable (LAS)
when R0 < 1.

Proof : The Jacobian matrix at the rotavirus-free equilibrium is as follows:

∣∣J (
S1, M1, V1, 0

) − λI
∣∣

=

∣∣∣∣∣∣∣∣

− (μ + γ + Ψ) − λ 	 ω βS1

Ψ − (	 + Φ + μ) − λ 0 −εβM1

γ Φ − (μ + ω) − λ 0
0 0 0 β

(
S1 + εM1 + ξV1

) − (δ + κ + μ) − λ

∣∣∣∣∣∣∣∣
= 0
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λ1 = β
(
S1 + M1 + ξV 1

) − (δ + k + μ) < 0, if R0 = β(S1+M1+ξV1)
(δ+k+μ)

< 1.∣∣∣∣∣∣
−(μ + γ + Ψ) − λ � ω

Ψ −(� + φ + μ) − λ 0
γ φ −(μ + Ψ) − λ

∣∣∣∣∣∣ = 0

λ3 + λ2 (3μ + 2Ψ + γ + � + φ) + λ((μ + γ + Ψ)(μ + Ψ) + (� + φ + μ)(μ + Ψ) + (μ + γ + Ψ)

(� +φ+μ)−�Ψ−ωγ)+((μ+γ+Ψ)(� +φ+μ)(μ+Ψ)−�Ψ(μ+Ψ)−ωΨφ−ωγ(� +φ+μ)) = 0.

By applying Routh-Hurwitz Criterion for 3rd order, (3μ + 2Ψ + γ + � + φ) > 0, ((μ+γ+Ψ)(�+
φ + μ)(μ + Ψ) − �Ψ(μ + Ψ) − ωΨφ − ωγ(� + φ + μ)) > 0, and,

(3μ + 2Ψ + γ + � + φ) ((μ+γ+Ψ)(μ+Ψ)+ (� +φ +μ)(μ+Ψ)+ (μ+γ+Ψ)(� +φ +μ)−
�Ψ−ωγ) > ((μ + γ + Ψ)(� + φ + μ)(μ + Ψ) − �Ψ(μ + Ψ) − ωΨφ − ωγ(� + φ + μ)), if R0 < 1.
So, the rotavirus free equilibria is locally asymptotically stable.

Theorem 4: The rotavirus endemic equilibrium = (S∗,M∗,V ∗,I ∗) is locally asymptotically stable
(LAS) when R0 > 1.

Proof: The Jacobian matrix at the rotavirus endemic equilibrium is as follows:

J =

⎡
⎢⎢⎣

− (μ + γ + Ψ) 	 ω βS∗

Ψ −εβI∗ − (	 + Φ + μ) 0 −εβM∗

γ Φ − (μ + ω) −ξβI ∗

βI ∗ εβI ∗ ξβI ∗ β (S∗ + εM∗ + ξV ∗) − (δ + κ + μ)

⎤
⎥⎥⎦

∣∣J (S∗, M∗, V∗, I∗) − λI
∣∣ =∣∣∣∣∣∣∣∣

− (μ + γ + Ψ) − λ 	 ω βS∗
Ψ −εβI∗ − (	 + Φ + μ) − λ 0 −εβM∗
γ Φ − (μ + ω) − λ −ξβI∗

βI∗ εβI∗ ξβI∗ β(S∗ + εM∗ + ξV∗) − (δ + κ + μ) − λ

∣∣∣∣∣∣∣∣
= 0

λ4 + (μ + γ + Ψ + (εβI∗ + (� + φ + μ)) + (β (S∗ + M∗ + ξV ∗) − (δ + k + μ)) + μ)λ3 +
((μ + γ + Ψ) (εβI ∗ + (� + φ + μ)) + (μ + γ + Ψ)(μ + Ψ) + (εβI∗ + (� + φ + μ))(μ + Ψ) − (μ +
γ + Ψ)(β (S∗ + M∗ + ξV ∗) − (δ + k + μ)) − (μ + Ψ)(β (S∗ + M∗ + ξV ∗) − (δ + k + μ)) − (εβI ∗ +
(� + φ + μ))(β (S∗ + M∗ + ξV ∗) − (δ + k + μ)) − (−εβM∗)εβI ∗ − (−εβM∗)βI ∗ − ωγ − DβI∗)λ2 +
((μ + γ + Ψ)(εβI∗ + (� + φ + μ))(μ + Ψ) − (μ + γ + Ψ)(εβI∗ + (� + φ + μ))(β (S∗ + M∗ + ξV ∗) −
(δ + k + μ)) − (μ + γ + Ψ)(μ + Ψ)(β (S∗ + M∗ + ξV ∗) − (δ + k + μ)) − (μ + γ + Ψ)(−εβM∗)εβI ∗ −
(εβI ∗ + (� + φ + μ))(μ + Ψ)(β (S∗ + M∗ + ξV ∗) − (δ + k + μ)) + (−ξβI ∗)ξβI ∗ − (−εβM∗)φξβI ∗ −
(−εβM∗)εβI ∗(μ + Ψ) + �(μ + Ψ)Ψ(β (S∗ + M∗ + ξV ∗) − (δ + k + μ)) − �(μ + Ψ)Ψ +
�(β (S∗ + M∗ + ξV ∗) − (δ + k + μ)) Ψ + (−ξβI ∗)ξβI ∗Ψ − (−εβM∗)γξβI ∗ − (−εβM∗)L(μ +
Ψ) − ωΨT + ω(εβI∗ + (� + φ + μ))γ − ωγ(β (S∗ + M∗ + ξV ∗) − (δ + k + μ)) + ω(−ξβI ∗)βI ∗ −
βS∗ΨεβI ∗ − βS∗(εβI ∗ + (� + φ + μ))βI ∗ − βS∗γξβI ∗ − βS∗βI ∗J)λ + ((μ + γ + Ψ)KξβI∗ + (μ + γ +
Ψ)(−εβM∗)φξβI∗ − (μ + γ + Ψ)(εβI∗ + (� + φ + μ))(μ + Ψ)(β (S∗ + M∗ + ξV ∗) − (δ + k + μ)) −
(μ + γ + Ψ)(−εβM∗)εβI ∗(μ + Ψ) + �JΨ(β (S∗ + M∗ + ξV ∗) − (δ + k + μ)) + ωΨI(β(S∗ + M∗ +
ξV ∗) − (δ + k + μ)) + ω(εβI∗ + (� + φ + μ))γ(β(S∗ + M∗ + ξV ∗) − (δ + k + μ)) + ω(εβI∗ + (� +
φ +μ))(−ξβI∗)βI ∗ −ωGγεβI∗ −βS∗ΨIξβI ∗ −βS∗ΨεβI ∗(μ+Ψ)−βS∗(εβI ∗ + (� + φ + μ))γξβI ∗ −
βS∗(εβI ∗ + (� + φ + μ))βI ∗(μ + Ψ)) = 0.

By applying Routh-Hurwitz Criterion for 4th order, if R0 > 1. So, the rotavirus existing equilibria
are locally asymptotically stable.
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5 Evolutionary Approaches

To analyze the behavior of the continuous model (6)–(9), we use the evolutionary approaches such
as Euler, Runge Kutta, and the nonstandard finite difference is as follows:

5.1 Euler Approach
The system (6)–(9) is selected under Euler computation, as follows:

Sn+1 = Sn + h[(1 − σ − η) � + �Mn + ωV n − (βIn + � + γ + μ)Sn] (10)

V n+1 = V n + h [�η + γSn + ϕMn − (ξβIn + ω + μ) V n] (11)

In+1 = In + h [(βSn + εβMn + ξβV n − (τ + k + μ)) In] (12)

Mn+1 = Mn + h [�σ + �Sn − (ϕ + εβIn + � + μ) Mn] (13)

where, the difference of two consective values of time by h.

5.2 Runge-Kutta Approach
The system (6)–(9) is defined under Runge Kutta computation, as follows:

Stage 1

A1 = h[(1 − σ − η) � + �Mn + ωV n − (βIn + � + γ + μ)Sn]

B1 = h [�η + γSn + ϕMn − (ξβIn + ω + μ) V n]

C1 = h [(βSn + εβMn + ξβV n − (τ + k + μ)) In]

D1 = h [�σ + �Sn − (ϕ + εβIn + � + μ) Mn]

Stage 2

A2 = h[(1 − σ − η) � + �(Mn + D1

2
) + ω(V n + B1

2
) − (β(In + C1

2
) + � + γ + μ)(Sn + A1

2
)]

B2 = h
[
�η + γ

(
Sn + A1

2

)
+ ϕ(Mn + D1

2
) −

(
ξβ(In + C1

2
) + ω + μ

)
(V n + B1

2
)

]

C2 = h
[(

β

(
Sn + A1

2

)
+ εβ(Mn + D1

2
) + ξβ(V n + B1

2
) − (τ + k + μ)

)
(In + C1

2
)

]

D2 = h
[
�σ + �

(
Sn + A1

2

)
−

(
ϕ + εβ(In + C1

2
) + � + μ

)
(Mn + D1

2
)

]

Stage 3

A3 = h[(1 − σ − η) � + �(Mn + D2

2
) + ω(V n + B2

2
) − (β(In + C2

2
) + � + γ + μ)(Sn + A2

2
)]

B3 = h
[
�η + γ

(
Sn + A2

2

)
+ ϕ(Mn + D2

2
) −

(
ξβ(In + C2

2
) + ω + μ

)
(V n + B2

2
)

]
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C3 = h
[(

β(Sn + A2

2
) + εβ(Mn + D2

2
) + ξβ(V n + B2

2
) − (τ + k + μ)

)
(In + C2

2
)

]

D3 = h
[
�σ + �

(
Sn + A2

2

)
−

(
ϕ + εβ(In + C2

2
) + � + μ

)
(Mn + D2

2
)

]

Stage 4

A4 = h[(1 − σ − η)� + �(Mn + D3) + ω(V n + B3) − (β(In + C3) + � + γ + μ)(Sn + A3)]

B4 = h [�η + γ (Sn + A3) + ϕ(Mn + D3) − (ξβ(In + C3) + ω + μ) (V n + B3)]

C4 = h [(β(Sn + A3) + εβ(Mn + D3) + ξβ(V n + B3) − (τ + k + μ)) (In + C3)]

D4 = h [�σ + � (Sn + A3) − (ϕ + εβ(In + C3) + � + μ) (Mn + D3)]

Final stage

Sn+1 = Sn + 1
6

[A1 + 2A2 + 2A3 + A4] (14)

Mn+1 = Dn + 1
6

[D1 + 2D2 + 2D3 + D4] (15)

V n+1 = Bn + 1
6

[B1 + 2B2 + 2B3 + B4] (16)

In+1 = In + 1
6

[C1 + 2C2 + 2C3 + C4] (17)

where, the difference of two consective values of time by h and n ≥ 0.

5.3 Nonstandard Finite Difference Approach
The system (6)–(9) is defined under NSFD computation, as follows:

Sn+1 = Sn + h[(1 − σ − η) � + �Mn + ωV n]
1 + h(βIn+1 + � + γ + μ)

(18)

Mn+1 = Mn + h [�σ + �Sn]
1 + h (ϕ + εβIn+1 + � + μ)

(19)

V n+1 = V n + h [�η + γSn + ϕMn]
[1 + h[(ξβIn+1 + ω + μ)]

(20)

In+1 = In + h
[
βSn + εβMn + ξβV n]In

]
(1 + h (τ + k + μ))

(21)

where, the difference of two consective values of time by h.

5.4 Computational Outcomes
By using the parameters’values presented in Tab. 1, we approximate the continuous model through

the evolutionary approaches as follows:
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Table 1: Values of parameters

Parameters Values (per day)

� 0.5
σ 0.5
η 0.3
� 0.00049
γ 0.0015
φ 0.00042
β DFE(0.5),

EE(1.5)
� 0.0013
ω 0.0054
ε 0.62
ξ 0.71
τ 0–1.5
μ 0.01–0.5
k 0.083

(a) (b)

Figure 2: The graphical behavior of the continuous model at both equilibria of the rotavirus disease
(a) Subpopulations for rota VFE at any time t (b) Subpopulations for rota VEE at any time t
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(a) (b)

(c) (d)

Figure 3: Euler computation for the behavior of the continuous model at both equilibria of the rotavirus
disease (a) convergent behavior for VFE at h = 0.01 (b) divergent behavior for VFE at h = 3 (c)
concurrent behavior for VEE at h = 0.01 (d) divergent behavior for VEE at h = 3
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(a) (b)

(c) (d)

Figure 4: Runge Kutta computation for the behavior of the continuous model at both equilibria of the
rotavirus disease (a) At h = 0.01 for VFE (b) At h = 4 for VFE (c) At h = 0.01 for VEE (d) At h = 4
for VEE
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(a) (b)

Figure 5: NSFD computation for the behavior of the continuous model at both equilibria of the
rotavirus disease (a) Sub-populations at VEE when h = 100 (b) Sub-populations at VEE when h = 100

5.5 Comparison Unit

(a) (b)

Figure 6: (Continued)
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(c) (d)

Figure 6: Combined graphical behaviors of NSFD with Euler and Runge Kutta computations at
different time-step sizes (a) Infected children for VFE at h = 0.01 (b) Infected children for VFE at
h = 3 (c) Infected children for VEE at h = 0.01 (d) Infected children for VEE at h = 4

6 Concluding Remarks

We analyze the dynamics of rotavirus disease via evolutionary approaches. Fig. 2 predicts the
behavior of the continuous model by using the command build algorithm ODE-45 to solve the system
of differential equations. Figs. 3a–3d indicates the solution of the model through the Euler approach at
both equilibria, such as virus-free and virus existing. Unfortunately, when we try to predict the long-
term behavior of the disease in the population, they show negative and unboundedness (exceeding
the result from the total population). In the field of epidemiology, these results have no physical
relevance. Figs. 4a–4d, the well-known approach like Runge Kutta of order four implemented on the
continuous model. No doubt, Runge Kutta has the best convergence compared to the Euler approach.
But, Runge Kutta has the same issues when predicting long-term behavior, such as negativity,
inconsistency, and many more. We construct the nonstandard finite difference approach on the model
to overcome these issues. Our proposed construction always gives a positive solution, bounded, and
dynamically consistent at any step size. This method predicts the long-term disease behavior and
restores the fundamental properties of epidemiological modeling, as shown in Figs. 5a–5b. To analyze
the efficiency of the approaches, we draw a comparison of existing methods with the proposed system,
as shown in Figs. 6a–6d. In the end, our proposed policy, nonstandard finite difference, could be more
effective in all other types of modeling. Furthermore, flexible tool on behalf of dynamical properties
like stability, positivity, and boundedness displays the particular behavior of the continuous model.
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