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Abstract: Real-time video surveillance system is commonly employed to
aid security professionals in preventing crimes. The use of deep learning
(DL) technologies has transformed real-time video surveillance into smart
video surveillance systems that automate human behavior classification. The
recognition of events in the surveillance videos is considered a hot research
topic in the field of computer science and it is gaining significant attention.
Human action recognition (HAR) is treated as a crucial issue in several
applications areas and smart video surveillance to improve the security level.
The advancements of the DL models help to accomplish improved recognition
performance. In this view, this paper presents a smart deep-based human
behavior classification (SDL-HBC) model for real-time video surveillance.
The proposed SDL-HBC model majorly aims to employ an adaptive median
filtering (AMF) based pre-processing to reduce the noise content. Also, the
capsule network (CapsNet) model is utilized for the extraction of feature
vectors and the hyperparameter tuning of the CapsNet model takes place
utilizing the Adam optimizer. Finally, the differential evolution (DE) with
stacked autoencoder (SAE) model is applied for the classification of human
activities in the intelligent video surveillance system. The performance vali-
dation of the SDL-HBC technique takes place using two benchmark datasets
such as the KTH dataset. The experimental outcomes reported the enhanced
recognition performance of the SDL-HBC technique over the recent state of
art approaches with maximum accuracy of 0.9922.
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1 Introduction

Human action recognition (HAR) and classification techniques have various applications that are
helpful in day-to-day lives. Video surveillance is employed in smart supervision systems in banks, smart
buildings, and parking lots [1]. Communication between machines and human is a major challenge,
i.e., performed by many different methods namely hand gesture classification and speech recognition
[2]. The process of video frames acquired from security camera with the help of recognizing and
controlling abnormal behavior creates an automated care monitoring scheme as a human action
detector [3]. Furthermore, the many elderly and sick people living alone and needing to be checked
by constant surveillance triggers the need for an intelligent system that is beneficial and essential to
monitor elder people. Various factors are essential in the efficacy of action detection systems like the
background of the location, any abnormality condition, and detection time. The consequence of all
the factors in the study of objects and the kind of behavior and actions identify the classification and
recognition of the behavior [4]. Especially, in partial behavior, just the topmost part of the body is
employed for recognizing hand gestures. Analysis of Human behavior from a captured video needs a
preprocessing phase involving foreground and background recognition, also tracking individuals in
successive frames.

Other important steps include feature extraction, appropriate model or classifier selection, and
lastly the procedure of authentication, classification, and detection-based feature extraction. The
initial phase for object behavior detection is recognizing the movement of the object in an image
and its classification. The more commonly known method for the detection of moving objects is
background subtraction [5]. The simplest method of background subtraction can be accomplished
by comparing all the frames of the video with a static background. As stated, afterward the pre-
processing phase, the automated recognition systems will include two major phases: feature extraction
and action classification [6]. The most significant phases in the behavior analysis method are creating
an appropriate feature vector and feature extraction. This process will create the primitive information
for the classification.

Accurate recognition of action is one of the difficult processes to alter in clutter backgrounds
and viewpoint variations. Hence, we can emphasize, that one of the most popular methods for HAR
employs engineered motion [7] and texture descriptor evaluated about Spatio-temporal interest point.
Additionally, many approaches follow the traditional method of pattern recognition [8]. This approach
is depending on two major phases: learning classifier based on the attained feature and calculating
difficult handcrafted features in the video frame. In real-time scenarios, it is uncommonly known
that feature is significant to the task at hand because the selection of features is extremely problem-
dependent [9].

This paper presents a smart deep learning-based human behavior classification (SDL-HBC)
model for real-time video surveillance. The proposed SDL-HBC model majorly aims to employ an
adaptive median filtering (AMF) based pre-processing to reduce the noise content. In addition, the
capsule network (CapsNet) model utilized for the extraction of feature vectors and the hyperparameter
tuning of the CapsNet technique takes place using the Adam optimizer. Finally, the differential
evolution (DE) with stacked autoencoder (SAE) model is applied for the classification of human
activities in the intelligent video surveillance system. The simulation result analysis of the SDL-HBC
technique is carried out against two benchmark datasets namely KTH datasets.
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2 Literature Review

Nikouei et al. [10] introduced a Single Shot Multi-Box Detector (SSD), lightweight Convolu-
tion Neural Networks (L-CNN), and depth-wise separable convolution. With narrowing down the
classifier’s search space for emphasizing human objects in surveillance video frames, the presented L-
CNN method is capable of detecting pedestrians with reasonable computational workloads to an edge
device. Nawaratne et al. [11] presented the incremental spatiotemporal learner (ISTL) for addressing
limitations and challenges of anomaly localization and detection for real-time video surveillance. ISTL
is an unsupervised DL method that employs active learning with fuzzy aggregation, to repetitively
distinguish and update amongst new normality and anomalies which evolve.

Bouachir et al. [12] designed a vision-based methodology for automatically identifying suicide by
hanging. These smart video surveillance systems operate by depth stream given by the RGB-D camera,
nevertheless of illumination condition. The presented approach is depending on the exploitation of
the body joint position for modeling suicidal behaviors. The static and dynamic pose features are
estimated for effectively modeling suicidal behaviors and capturing the body joint movement. Wan
et al. [13] developed a smartphone inertial accelerometer-based framework for HAR. The data are
pre-processed by denoising, segmentation, and normalization for extracting valuable feature vectors.
Furthermore, a real-time human activity classification-based CNN method has been presented that
employed a CNN to local feature extraction.

Han et al. [14] presented an approach of data set remodeling by transporting parameters of
ResNet-101 layers trained on the ImageNet data set for initializing learning models and adapting an
augmented data variation method for overcoming the over-fitting problem of sample deficiency. To
model structure improvements, a new deep 2-stream ConvNets was developed for action complexity
learning. Ullah et al. [15] projected an improved and effective CNN-based method for processing data
stream in real-time, attained from visual sensors of non-stationary surveillance environments. At first,
the frame-level deep feature is extracted by a pre-trained CNN method. Then, an enhanced DAE is
presented for learning temporal variations of the action from the surveillance stream.

3 The Proposed Model

In this study, a novel SDL-HBC technique has been derived for the recognition of human
behavior in intelligent video surveillance systems. The proposed SDL-HBC technique aims to properly
determine the occurrence of several activities in the surveillance videos. The SDL-HBC technique
encompasses several stages of operations such as AMF based pre-processing, CapsNet based feature
extraction, Adam optimizer-based hyperparameter tuning, SAE-based classification, and DE-based
parameter tuning.

3.1 AMF Based Pre-Processing
Primarily, the AMF technique is used to pre-process the input image to eradicate the noise that

exists in it [16]. The AMF technique makes use of the median value of the windows for replacing
the intermediate pixels treated by the window. If the intermediate pixels are (Pepper) or (salt), it gets
substituted using the intermittent value of the window. The AMF follows the replacement process
with the median value of the window [17]. It generally operates in the following ways: The window
gets arranged in ascending order. Then, the median value can be considered as the intermediate value
next to the sorting process. Thus, the pixels can be substituted by the median value.
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3.2 Feature Extraction Using Optimal CapsNet Model
At this stage, the preprocessed image is passed into the CapsNet model to derive the useful set of

feature vectors. The CNN model can be utilized as an effective method for performing the 2D object
recognition process. Because of the data routing process in the CNN model, the details, such as position
and pose in the objects, are not considered. For resolving the issues of the CNN model, a new network
model named CapsNet is derived. It is a deep network approach, which comprises a set of capsules. The
capsule consists of a collection of neurons. The activation neuron indicates the feature of the elements
that exist in the object. Every individual capsule is accountable to determine the individual element
in the object and every capsule can integrate the capsules and compute the complete structure of the
objects. The CapsNet comprises a multiple-layer network [18]. Fig. 1 showcases the framework of the
CapsNet model.

Figure 1: CapsNet structure

The length of the outcome uj denotes the possibility of the occurrence of the respective element,
and the direction of the vector ui encodes different characteristics of the respective element. The
prediction vector û signifies the belief that performs encoding of the relativity amongst the i−th capsule
in the low-level capsules and j−th capsule in the high-level capsule by the use of a linear transformation
matrix Wij, as given below.

ûj|i = Wij · ui (1)

The identified component occurrence and pose details can be used for predicting the entire
existence and pose details. At the time of the training procedure, the network gets progressively learned
in adjusting the transformation matrix of the capsule, paired via the respective relativity among the
elements and the entire one in the objects. At the high-level capsule, the sj and vj denotes input and
output of capsules j, correspondingly sj signifies the total of the predicted vectors ûj|i with equivalent
weight cij in low-level capsules i. In Eq. (2), cij indicates the coupling coefficient and can be computed
using an iterative dynamic routing approach, where

∑
j

cij = 1 and cij ≥ 0. If cij = 0, there is no data

transmission among the capsules i and j. When cij = 1, the details of capsule i can be sent to the high-
level capsule j. As the output length indicates a probability value, a non-linear squash function can be
utilized for ensuring that the short vector can be reduced nearer to the value of 0 and the long vector
can be compacted to the value of 1. The squash function can be defined using Eqs. (2)–(4):

sj =
∑

i

cij · ûj|i (2)
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vj = ||s2
j ||

1 + ||s2
j ||

sj

||sj|| (3)

cij = exp(bij)

Σk exp(bik)

′bij

← bij + ûj|i · vj (4)

If the low, as well as high-level capsules, are reliable with the prediction process, the value of cij is
high and it gets reduced if they are unreliable [19]. By modifying the routing coefficients, the dynamic
routing model gets ensured that the low-level capsule transmits the predictive vector to the high-level
capsule, which is dependable with the prediction, therefore the output of the sub-capsule is transmitted
to the precise parent capsule.

The Adam optimizer is used to optimally select the hyperparameter values of the CapsNet model.
The Adam method is one of the widely employed techniques that alter the learning rate adoptively
for all the parameters. This is an integration of distinct gradient optimization approaches. It is an
exponentially decaying average of past squared gradient, i.e., RMSprop and Adadelta, as well as it
takes the abovementioned gradients, i.e., analogous to Momentum.

Mt = β1Mt−1 + (1 − β1)gt (5)

Gt = β2Gt−1 + (1 − β2)gt � gt (6)

whereas β1 and β2 represent the decay rates that are presented for following the default value. Mt and Gt

is determined for estimating the mean of past gradient (initial moment) and the uncentered variation
of past gradient (next moment), correspondingly. Since the decaying rate causes some bias problems,
it is essential to perform the bias-correction task [20].

M̂ = Mt

1 − β t
1

Ĝt = Gt

1 − β t
2

.
(7)

Hence, the upgrade value of Adam can be determined by Eq. (8)

Δθt = − α√
Ĝ + ε

M̂t (8)

The gradient part of �θt is described by

g
′
t = 1√

Ĝt + ε

M̂t (9)

�θt = −α

⎛
⎝ 1√

Ĝt + ε

M̂t

⎞
⎠ (10)

= −αg
′
t.

Here, it is proven that each operation is depending on the past gradient of the present parameter
that has no relation to the learning rate. Therefore, Adam has an effective performance through the
learning rate method.
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3.3 Human Behavior Detection and Classification
During the detection and classification process, the SAE model receives the feature vectors as

input and allot proper class labels to it. In this work, the SAE was introduced by autoencoder (AE)
and Logistic Regression (LR) layers [21]. The AE is a building block of the SAE classification method.
It is composed of a reconstruction or decoder stage (Layer 2 to 3) and an encoder stage (Layer 1 to
2). While W and W T (transpose of W) represents weight matrix of b and b′ mode are two different
bias vectors of s can be defined by nonlinearity functions such as sigmoid function; y denotes a latent
parameter of input layer x, and z is assumed as a prediction of x given y has a similar shape as x.
Fig. 2 illustrates the architecture of the SAE technique.

y = s(Wx + b) (11)

z = s(W Ty + b′) (12)

Figure 2: Structure of SAE

Various AE layer is stacked jointly in the unsupervised pretraining phase (Layer 1 to 4). The next
representation ′y′ processed as AE is applied employed as input for upcoming AE layers. Such layers
undertake training as AE by minimizing reconstructed errors that are estimated simultaneously [22].
Then, reconstructed errors (loss function L(x, z)) are estimated in iteration. Here, it uses cross-entropy
for measuring reconstruction error, in which xk and zk represents krh component of x and z, respectively.

L(x, z) = −
d∑

k=1

[xklnzk + (1 − xk)ln(1 − zk)] (13)

The reconstruction error is constrained under the GD application. The weight in Eqs. (11) and
(12) must be upgraded as per the Eqs. (14)–(16), in which L represents a learning rate.

W = W − a
∂L(x, z)

∂W
(14)

b = b − a
∂L(x, z)

∂b
(15)
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b′ = b′ − a
∂L(x, z)

∂b′ (16)

Once the layer is pre-trained, a process is supervised under the fine-tuning stage.

3.4 Parameter Tuning Using DE Algorithm
In order to tune the weight and bias values of the SAE model, the DE algorithm is utilized and

thereby improves the recognition performance. It is regarded as a population-based search approach
that is initially developed by Price and Storn [23]. In the current work, a three-step adjusting method
is proposed by the DE approach for solving an optimization issue. Indeed, the target of the presented
technique is to enhance the model parameter of the PID-type FLC design. To perform this task, some
amount of solution vectors are initialized randomly and iteratively upgraded by selection operator and
genetic operator (crossover and mutation). Initially, the mutation operator is employed by a randomly
selected solution (r1, r2 and r3) vectors in DE population. Then, the variance among the two vectors
( r2 & r3) multiplied by a scaling factor (F) is appended to the initial vector (r1). Therefore, all the
targeted solution X G

i are transformed as to mutant solution vector yG+1
i .

V G+1
i = X G

r1
(t) + F∗(X G

r2
− X G

r3
), r1 �= r2 �= r3 �= i (17)

Next, the crossover operators are employed for calculating a trial vector uG+1
i . It can be performed

by integrating the target solution vectors with the mutated vectors as follows

uG+1
ij =

{
vG+1

ij , (rand(j) ≤ CR) or j = rand n(i)
χG

ij , (rand (j) > CR) and j �= rand n(i) (18)

Whereas j = 1, 2, . . . , D, rand (j) ∈ [0, 1] denotes the jth parameter of a randomly generated
value. CR indicates the crossover probabilities i.e., random vector ranges from zero to one. rand n(i) ∈
{1, 2, . . . , D} characterizes an arbitrary number that ensures uG+1

i get at one component from vG+1,
i or

else no new parent vector is produced, therefore the population remains the same. Lastly, in a selective
section if as well as only if the trial vector uG+1

i produces an effective fitness function value than xG
i ,

then uG+1
i is fixed to xG+1

i , or else, the older vector xG
i is maintained.

xG+1
i =

{
uG+1

i (f (uG+1
i ) < f (xG

i ))

xG
i (f (uG+1

i ) ≥ f (xG
i ))

(19)

The DE technique derives a fitness function to attain improved classification performance. It
determines a positive integer to represent the better performance of the candidate solutions. In this
study, the minimization of the classification error rate is considered as the fitness function, as given in
Eq. (20). The optimal solution has a minimal error rate and the worse solution attains an increased
error rate [24].

fitness(xi) = ClassifierErrorRate(xi)

= number of misclassified samples
Total number of samples

∗100 (20)

4 Performance Validation

The performance validation of the proposed model takes place using two benchmark datasets
namely the KTH dataset. The former KTH dataset (available at https://www.csc.kth.se/cvap/actions/)

https://www.csc.kth.se/cvap/actions/
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is an open-access dataset, comprising six kinds of video actions and a resolution of 160∗120. The
videos are transformed into a set of 100 frames for every video.

This section investigates the result analysis of the SDL-HBC model on the test KTH dataset.
Fig. 3 shows the confusion matrix of the SDL-HBC model on the applied KTH dataset. The figure
reported that the SDL-HBC model has identified 99 instances under ‘Boxing’ class, 99 instances under
‘Handclapping’ class, 97 instances under ‘Handwaving’ class, 96 instances under ‘Jogging’ class, 97
instances under ‘Running’ class, and 98 instances under ‘Walking’ class.

Figure 3: Confusion matrix analysis of SDL-HBC technique on KTH dataset

The performance validation of the SDL-HBC model on the test KTH dataset is offered in Tab. 1
and Figs. 4–6. The results demonstrate that the SDL-HBC model has attained effective recognition
performance. For instance, under ‘Boxing’ class, the SDL-HBC model has resulted to sensy, specy,
precn, accuy, and Fscore of 0.9900, 0.9940, 0.9706, 0.9933, and 0.9802. Moreover, under the ‘Handwaving’
class, the SDL-HBC model has accomplished sensy, specy, precn, accuy, and Fscore of 0.9700, 0.9940,
0.9700, 0.9900, and 0.9700. Furthermore, under the ‘Walking’ class, the SDL-HBC model has gained
sensy, specy, precn, accuy, and Fscore of 0.9800, 0.9980, 0.9899, 0.9950, and 0.9849. Moreover, the average
result analysis of the SDL-HBC model can attain an improved average sensy, specy, precn, accuy, and
Fscore of 0.9767, 0.9953, 0.9768, 0.9922, and 0.9767 respectively.

Table 1: Result analysis of SDL-HBC technique on KTH dataset

Methods Sensitivity Specificity Precision Accuracy F-Score

Boxing 0.9900 0.9940 0.9706 0.9933 0.9802
Handclapping 0.9900 0.9940 0.9706 0.9933 0.9802
Handwaving 0.9700 0.9940 0.9700 0.9900 0.9700
Jogging 0.9600 0.9980 0.9897 0.9917 0.9746
Running 0.9700 0.9940 0.9700 0.9900 0.9700
Walking 0.9800 0.9980 0.9899 0.9950 0.9849

Average 0.9767 0.9953 0.9768 0.9922 0.9767
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Figure 4: Sensy and Specy analysis of SDL-HBC technique on KTH dataset

Figure 5: Precn and Fscore analysis of SDL-HBC technique on KTH dataset

Figure 6: Accuy analysis of SDL-HBC technique on KTH dataset
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Fig. 7 portrays the accuracy analysis of the SDL-HBC technique on the KTH dataset. The results
demonstrate that the SDL-HBC approach has accomplished improved performance with increased
training and validation accuracy. It is noticed that the SDL-HBC technique has gained improved
validation accuracy over the training accuracy.

Figure 7: Accuracy graph analysis of SDL-HBC technique on KTH dataset

Fig. 8 depicts the loss analysis of the SDL-HBC technique on the KTH dataset. The results
establish that the SDL-HBC system has resulted in a proficient outcome with the reduced training
and validation loss. It can be revealed that the SDL-HBC technique has offered reduced validation
loss over the training loss.

Figure 8: Loss graph analysis of SDL-HBC technique on KTH dataset
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Finally, a comparative accuy analysis of the SDL-HBC model with recent approaches takes place
in Fig. 9 and Tab. 2. The results show that the GMM+KF and GRNN techniques have attained
lower accuy values of 0.7110 and 0.8600 respectively. In line with, the SVM-3DCNN, CNN-CAE,
DTR-DNN, and GMM+KF+GRNN techniques have resulted in moderately closer accuy values of
0.9034, 0.9249, 0.9500, 0.9560, and 0.9630 respectively. However, the presented SDL-HBC model has
accomplished maximum recognition performance with the accuy of 0.9922.

Figure 9: Comparative analysis of SDL-HBC technique on KTH dataset

Table 2: Comparative analysis of SDL-HBC technique in terms of accuracy on KTH dataset with
existing approaches

Methods Accuracy

SVM-3DCNN 0.9034
CNN-CAE 0.9249
GS-LOF 0.9500
DTR-DNN 0.9560
GMM + KF 0.7110
GRNN 0.8600
GMM + KF + GRNN 0.9630
SDL-HBC model 0.9922

5 Conclusion

In this study, a novel SDL-HBC technique has been derived for the recognition of human
behavior in intelligent video surveillance systems. The proposed SDL-HBC technique aims to properly
determine the occurrence of several activities in the surveillance videos. The SDL-HBC technique
encompasses several stages of operations such as AMF based pre-processing, CapsNet based feature
extraction, Adam optimizer-based hyperparameter tuning, SAE-based classification, and DE-based
parameter tuning. The utilization of the Adam optimizer and DE algorithm results in improved



5604 CMC, 2022, vol.72, no.3

classification performance. The simulation result analysis of the SDL-HBC technique is carried out
against two benchmark datasets namely KTH and UCF Sports datasets. The experimental results
reported the enhanced recognition performance of the SDL-HBC technique over the recent state of
art approaches. Therefore, the SDL-HBC technique can be considered an effective tool for intelligent
video surveillance systems. As a part of the future scope, the performance of the SDL-HBC technique
can be boosted by the design of hybrid DL models.
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