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Abstract: Due to the advanced development in the multimedia-on-demand
traffic in different forms of audio, video, and images, has extremely moved
on the vision of the Internet of Things (IoT) from scalar to Internet of
Multimedia Things (IoMT). Since Unmanned Aerial Vehicles (UAVs) gener-
ates a massive quantity of the multimedia data, it becomes a part of IoMT,
which are commonly employed in diverse application areas, especially for
capturing remote sensing (RS) images. At the same time, the interpretation
of the captured RS image also plays a crucial issue, which can be addressed
by the multi-label classification and Computational Linguistics based image
captioning techniques. To achieve this, this paper presents an efficient low
complexity encoding technique with multi-label classification and image cap-
tioning for UAV based RS images. The presented model primarily involves the
low complexity encoder using the Neighborhood Correlation Sequence (NCS)
with a burrows wheeler transform (BWT) technique called LCE-BWT for
encoding the RS images captured by the UAV. The application of NCS greatly
reduces the computation complexity and requires fewer resources for image
transmission. Secondly, deep learning (DL) based shallow convolutional neu-
ral network for RS image classification (SCNN-RSIC) technique is presented
to determine the multiple class labels of the RS image, shows the novelty of
the work. Finally, the Computational Linguistics based Bidirectional Encoder
Representations from Transformers (BERT) technique is applied for image
captioning, to provide a proficient textual description of the RS image. The
performance of the presented technique is tested using the UCM dataset. The
simulation outcome implied that the presented model has obtained effective
compression performance, reconstructed image quality, classification results,
and image captioning outcome.

Keywords: Image captioning; unmanned aerial vehicle; low complexity
encoder; remote sensing images; image classification

http://dx.doi.org/10.32604/cmc.2022.026602
mailto:mragab@kau.edu.sa


4324 CMC, 2022, vol.72, no.3

1 Introduction

The Internet of Multimedia Things (IoMT) is an integration of protocols, interfaces, and
multimedia-related data, allows to utilize advanced services and applications depending upon the
human-to-device and device-to-device interaction in physical and virtual settings. The faster produc-
tion in the multimedia-on-demand traffic has moved the vision of the Internet of Things (IoT) from
scalar to IoMT. It finds useful in several applications like real time content delivery, online gaming,
and video conferencing on the global Internet. On the other hand, Computational Linguistics is a
multidisciplinary research field linked to the computation of languages by computers. At present
times, the involvement of IoMT and computational linguistics has gained rising attention. Unmanned
Aerial Vehicles (UAV) or also named drones generates massive amount of multimedia data, and
becomes a part of IoMT. It can be applied under various applications that result in enhanced efficiency
in the consumer market. Massive studies have been are extremely concentrated on dealing with
communication issues related to UAV and the way to recover the crisis. A drone reaches the complex
region and collects data as it lacks external infrastructure. As a result, drones are prominently applied
for tedious processes like disaster rescue, observation, transportation in diverse types of applications
like agriculture, forestry, climatic prediction, security, and so on. Firstly, drones have been applied
autonomously; and in recent times, various synchronized drones are used in operating a complicated
process jointly. At this point, drone communication is one of the significant objectives to be computed.
Hence, it is essential to learn about different aspects of UAV communication. Besides, various classes
of wireless channels as well as network protocols have been applied in drone transmission. Thus, the
transmission module is utilized for the UAV system is relied on these applications. For instance, in case
of external transmission, it is monitored that sight point-to-point communication connection among
drones and a tool could be employed with no breakage.

Traditionally, found different communication as well as mission control methods, for multi-drone
schemes, and the classifying networks namely, Decentralized and Centralized. In case of time-sensitive
missions, centralized schemes are facilitated in a better way. However, combinations of these methods
provide optimal outcomes in which drones are centrally computed and understand from one another.
Bluetooth, WiFi, acoustic, ZigBee, and cellular methodologies have been examining for UAV com-
munication module. As a result, the decision of the communication method is operated by regarding
the parameter includes efficiency, bandwidth, range, energy demands, cost, compatibility, and payload
weight. Diverse models for a drone system with various performances [1] like sensing, coordination,
communication, and networking are available. The helpful recommendations are provided such that
drones are placed within newly developing huge networks like upcoming cellular systems. Recent
wireless networking methods [2] are not applicable to higher mobility of UAVs and enhanced signal
frequencies. The Doppler Effect in relative speeds as well as antenna direction related to UAVs results
in maximum packet losses. Selection of proper communication models considers antenna device,
accuracy, sum rate, and resource managing platforms is recommended. Data transmission is one of
the eminent factors a system, and proper routing protocol has to be applied. In case of single UAV,
networking is a significant attribute. Fig. 1 shows the structure of UAV.

Drones were combined within the Wireless Sensor Network (WSN), vehicular transmission
network, and mobile transmission system for extending the applications of IoT. Artificial intelligence
(AI), navigation principles, and cryptography were combined within UAV communication modules
by many developers for retaining effective, scalable, and lower latency communications among nodes
of UAV system. Therefore, it is essential for considering power efficiency and robustness of drones
for consistent for secure communication. Also, it experiences problems like insufficient power and
processing resources. Developers have provided insights for optimizing solutions for the applied issues.
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Alternatively, the communication failure happens because of aerial network jamming. This interfer-
ence is considered a severe problem. Networks of UAVs are applied for immediate communication
structure as well as surveillance, as presented in [3]. In order to develop an appropriate better UAV
communication system, communication and protocols are extremely significant. Diverse technologies
are recommended by researchers where crucial aspects like antenna development, network structure,
and resource management environments, have been assumed.

Figure 1: The structure of UAVs

Based on the UAV ecosystem, Deep Learning (DL) is defined as a mainstream tool for massive
domains like automated navigation of UAV, object or vehicle observation, and object prediction
under real-world limitations. Few works integrate object prediction and monitoring or execute
automated aerial reconnaissance operations. Therefore, minimum works consider the advantages from
Regions of Interest (ROI), at time in real-world scenarios that is a primary step towards the visual
concentration. It is trusted that saliency and dictionary of biases would activate the improvement
of present solutions, even under real-world applications. On the other hand, image captioning is
a challenging operation for generating a descriptive sentence inside an image automatically, has
accomplished a better concentration as eminent interdisciplinary research in Computer Vision (CV)
and Natural Language Processing (NLP). Essential applications like guiding visually-impaired users
for learning image content or enhancing Image Retrieval (IR) supremacy by identifying salient
content. For humans, it is highly simple to attain and it is complex for system as it does not examine
certain objects and correlation among images, however, it requires a combination of previous units in
appropriate sentences.
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This paper introduces a novel low complexity encoding technique with multi-label classification
and computational linguistics based image captioning for UAV-based remote sensing (RS) images.
The presented model comprises three main processes such as low complexity image encoder, image
classification, and image captioning. Initially, the low complexity encoder using Neighborhood
Correlation Sequence (NCS) with burrows wheeler transform (BWT) technique called LCE-BWT
is employed for encoding the RS images captured by the UAV. Next, the deep learning (DL) based
shallow CNN for RS image classification (SCNN-RSIC) approach is developed for determining the
distinct class labels of the RS image. Besides, the computational linguistics based Bidirectional Encoder
Representations from Transformers (BERT) technique is applied for image captioning, to provide a
proficient textual description of the RS image. An extensive experimental analysis is carried out to
ensure the effectual outcome of the presented technique is tested using the UCM dataset.

The rest of the paper is organized as follows. Section 2 offers the related works, Section 3 provides
the proposed model, Section 4 elaborates the result analysis, and Section 5 draws conclusion.

2 Related Works

Ullah et al. [4] presented a unified structure of UAV as well as Body Area Networks (BANs).
Here, it performs the data collection and computes the health data in actual connection with UAV and
BAN. In [5], developers have been involved in classification of myocardial infarction as well as atrial
fibrillation for examining a signal pattern for various Heart Diseases (HD) by using DL methods.
In [6], researchers presented a zero-watermarking technology for securing patients’ identity while
transmission of clinical data through IoT. In this application, the encrypted key is incorporated within
patient’s identity image. Additionally, defines the facility of optimal clinical services and requirements
for future-generation of telemedicine and telehealth networks. It offers superfast broadband, ultralow
delay over different telemedicine to withstand remote healthcare data as well as clinical diagnostics.
Hence, it is not real-time for patient home care facilities.

A researcher in [7] defines the requirements of multiple user video streaming along with quality
of service (QoS) over wireless systems. Hence, it offers a better solution for video streaming across
multi-hop, multi-channel, multi-radio wireless systems. A distribution scheduling model for mini-
mizing video distortion for accomplishing required fairness intensity. Hence, it avoids video quality
decomposition because of inherent transmission failures. Moreover, in [8] various QoS technologies
and evaluate various integrations for enhancing the supremacy of video stream communicated through
unstable system. Therefore, re-encoding or transcoding is essential for decoding various tools.

Cui et al. [9] presented a fast-mode decision mechanism for expediting scalable video coding (SVC)
and make use of the correlation among rate-distortion (RD) as well as statistical mode decision of
enhancement layer. Paluri et al. [10] proposed a minimum difficulty and delay generalized method to
predict the loss of coded video parts for prioritization. It has used this method for the purpose of
loss prediction for cumulative mean squared error which is because of drop in coded slices. It employs
unequal safety for a slice. The major limitation of this approach is that it is not applicable to use
local video content features. Buhari et al. [11] introduced a human visual system-related watermarking
scheme with limited complication for acquiring the advantages of texture features.

Koziri et al. [12] found the challenges for reducing load inequalities between diverse threads
in slice-based parallelization for proper slice sizing. It uses the collection of pictures as it can be
significant for minimum delay situations; however, the drawback is that it enhances the processing
difficulty. Santos et al. [13] applied bidirectional prediction support for enhancing the effectiveness of
rate predictor’s lossless encoding device. Ali et al. [14] developed a sub-partition for extant portions
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in the H.264/AVC codec for coding prioritized data. One of the drawbacks is that the computational
complexity is enhanced. Grois and Hadar [15] projected coding for ROI, which is decided from pre-
encoded scalable video bitstream and adaptive settings activate the extraction of required ROI by
position, size, and resolution. It offers an effective approach for meeting satisfy the demand for
dissimilar end-user devices. An important limitation of this scheme is the maximized intricacy under
various inherent to erroneous platforms.

3 The Proposed Model

The workflow involved in the presented model is illustrated in Fig. 2. As depicted in figure, the
UAVs initially capture the images and they are converted into a set of frames. Next, the preprocessing
occurs to enhance the quality of the image. Next, the LCE-BWT technique performs encoding of the
frames using NCS and BWT by exploiting the relationship among the adjacent pixels. Followed by, the
encoded frames are transmitted to the decoder side where the classification and captioning processes
were carried out. At the decoder, the LCE-BWT technique is again employed in a reversible way for
obtaining the decoded images with no loss of quality. Consequently, the SCNN-RSIC technique is
employed for describing the multiple class labels of the RS images. Finally, the BERT technique is
utilized to derive the description for the classified RS image.

Figure 2: The overall process of proposed method

3.1 Image Encoding Process Using LCE-BWT Model
At this stage, the captured RS images are encoded by the use of NIS technique and then

the codewords are compressed using BWT. The LCE-BWT is a scalable and minimal complex
image compression model, especially for resource-constrained UAVs. It carried out the compression
operation on-the-fly and dynamically extends with modifying source. It is operated in 2 phases namely,
Bit reduction with the help of NCS method and encoded by using BWT.

The NCS method produces an optimum codeword for all pixels measure relied on “bit traversal
operation under the application of 0’s and 1’s” [16]. By applying 0’s and 1’s based traversal, NCS
method releases 2 code-words for single pixel value, and codeword with low value of bits are decided
as best codeword. Once the code-word generation is completed, codewords undergo encoding by the
application of BWT for the compression of image. Consider G as an input image with pixels φm,n which
is denoted by 2D array as presented in Eq. (1).
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G =

⎡
⎢⎢⎣

φ0,0 φ0,1 . . . φ0,n−1

φ1,0 φ1,1 . . . φ1,n−1

...
...

. . .
...

φm−1,0 φm−1,1 . . . φm−1,n−1

⎤
⎥⎥⎦ (1)

Here m and n denotes the height and width of an input image G. A measure of m × n = N
offers overall resolution of an image G, φm,n implies the pixel suited in mth row as well as nth column of
grayscale image G. Finally, count of bits required for saving the best code-words Optsize of input image
is processed as

Optsize =
N∑

i=1

NCSopt (i) + control bits (2)

where NCSopt refers to the No. of bits in a codeword. Furthermore, NCS models require excess control
bits for the best bit count in compressed information. Especially, the bit count needed for saving a
pixel from an image is computed as,

NCSch_av = Optsize

N
, 0 ≤ NCSchav ≤ 5 (3)

As the RGB measures of grayscale image have to be similar, it is sufficient for encoding the RGB
values for all individual pixels. In particular, it is pointed that a pixel value ranged from [0, 255] and
8 bits are essential for representing a pixel measure. Therefore, the NCS model is operated from 0 bit
and 5 bits for implying feasible pixel scores. Furthermore, the compression task is operated using best
code-words and encoded under the application of BWT and produces a compressed file.

3.1.1 Optimal Codeword Generation Using NCS Algorithm

The entire workflow of NCS method is depicted here [16]. At the initial stage, the NCS approach
reads pixel measures from actual image and transforms a pixel value as corresponding binary format
[17]. Then, a bit traversal operation is processed on the basis of 0’s and 1’s. A bit traversal is initialized
with bit of binary sequence and finds a value of initial bit. If the initial bit is 0, then 0’s related traversal
is operated and saves control bit such as 00, else 01. Under the application of initial bit as reference bit,
traversal operation is initialized from upcoming bit seeks for application of 0’s in a binary sequence.
Based on the value of 0’s, equivalent positions (p) are saved as part of best codeword (00 − p1).

The aforementioned model is repeated till 0’s in a series of found, and locations are maximized
respectively (00 − p1, p2, . . .). Once 0’s relied traversal is finished, after that 1’s relied traversal is
implemented. Likewise, 0’s related traversal and 1’s based traversal seeks for the existence of bits and
saves the concerned location as a codeword. However, 1’s related traversal attains 1’s traversal while
0’s related traversal reaches the existence of 0’s in a binary series. For each pixel value, 2 codewords
are produced on the basis of 0’s and 1’s related traversal. Followed by, a codeword with lower count
of bits is selected as best codeword. Consequently, final codewords of pixel measures are combined
with control bits for generating a compressed file. Then, codewords produced for the pixel measures
ranged from 0 and 255 s.

3.1.2 Codeword Encoding Using BWT Approach

Once the codewords are produced by the NCS technique, they are again encoded using BWT
technique to further reduce the file size. BWT is defined as a reversible transform that clusters same
units by organizing the input data. The final outcome of BWT is comprised of similar elements of
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data which are followed in various iterations. It makes simple data compression significantly [18]. The
final data from this phase is composed similar components of data repeated in multiple iterations. It
enables the simple compression of data in which runs of elements are projected. Therefore, run-length
encoding (RLE) and move-to-front (MTF) transform could be used for encoding such runs and data
compression is carried out.

bwt (s) = ∪w∈Akπw (ws) (4)

Whereas A = {a1, . . . , an} denotes an alphabet and w indicates a word of length k. πw (ws) represents
the permutation of the string ws. Zeroth-order entropy is not applicable in changing the simulation of
permuting a string and the root cause of BWT in data compression is for all substring w of s, where it
follows w in s are connected within bwt(s).

3.2 SCNN-RSIC Model for Multi-Label Image Classification
Deep convolution neural network (DCNN) includes MobilenetV1 and MobilenetV2 are com-

posed of massive layers and necessities maximum time duration. With the aim of eliminating the
above problem, a shallow CNN approach is developed with some layers and tiny convolution kernels
size. Then, SCNN with batch normalization method is comprised of a fully connected (FC) layer, 2-
layer conv. layers, softmax layer, as well as 2-layer max -pooling layers. The structure of the SCNN
is illustrated in Fig. 3. Primarily, the shallow data attributes are extracted using 3 × 3 convolutions
along with filters. For CNN model, batch normalization (BN) is used for normalizing a feature map
attained after a convolution and thus an input values of activation function comes under the range
sensitive for input for mitigating the possibility of diminishing. For enhancing the accuracy as well
as nonlinear expression of model, a convolutional layer applied by BN and Rectified linear unit
(ReLu). Afterward, 2 × 2 max-pooling has been employed for reducing the data dimension as well as
processing complexity.

Figure 3: The layers in SCNN

Afterward, 3 × 3 convolutions along with sixty-four filters for extracting deep data parameters.
Next, second convolution layers are composed of Relu and BN which enhanced accuracy and
nonlinearity of SCNN technology. The strategies applied in 2 × 2 max−pooling layers again limit the
data dimension as well as computation difficulty [19]. Besides, FC layers with 1280 neurons are applied
for combining the features of a topmost layer. Therefore, in FC layer, Relu is applied for enhancing the
nonlinear expression capability of technology. Hence, dropout is established for limiting over-fitting
and to maximize the generalization potential of technology. Lastly, softmax output layer is applied
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for accomplishing multi-classification. It needs tiny processing, storage space, and some iterations,
securing valid time resources.

The SCNN scheme has various modalities with the max-pooling layer, input layer, conv. layer,
Relu activation function FC layer, softmax output layer, as well dropout principles, as.

• Input layer: Size of an input image is 28 × 28 for a channel image.
• Convolutional layer: it is an essential layer from CNN, which efficiently extracts the data fea-

tures. Various convolution kernels obtain distinct data characteristics. Some of the convolution
kernels have better potential for extracting optimal features. Hence, SCNN has 2 3 × 3 conv.
layers with filters, correspondingly.

• FC layer: A neuron node of FC layer is linked for a neural node of upper layer, and a neuron
node of similar layer is disconnected. Here, SCNN method combines the features of front layer
by FC layer with numerous neurons. The FC layer is l ×1 × 3136 convolution task, where
convolution kernels size is homogeneous with final characteristic size of a former layer.

• Max Z-pooling layer: Once the features are extracted from convolution, a pooling layer has been
employed for reducing data redundancy by using down-sampling on obtained features. There-
fore, SCNN applies 2 max-pooling layers for reducing data dimension as well as processing
complexity whereas the applicable feature extracted remains the same. Therefore, pooling layers
does not limit the data repetition and crisis of over-fitting; however, it enhances the training
efficiency.

• Relu: it is selected as non-linear activation function of SCNN method. Relu learns from data
and map the complex function of input to output and resolve the non-linear issues, and makes
further effective which is demonstrated as:

f (x) = max (0, x) (5)

• Relu is composed of the feature of sparse activation, which reduces over-fitting to a greater
amount and enhances the generalization capability of a method.

• Dropout: In DL, when the training parameters are maximum and minimum input data, it
results in higher training accuracy and minimum testing accuracy like overfitting. SCNN applies
dropout mechanism to randomly remove the neurons of special possibility on FC layer to
mitigate over-fitting and stimulates the network training.

For classification purposes, Softmax output layer is used. The frequently applied SCNN applies
softmax output layer for accomplishing multi-classification which is illustrated as:

softmax (y)i = eyi∑n

j=i eyi
(6)

where n means a count of output layer nodes, which corresponds to count of classes of certain classifier,
and yi implies a result of ith node of resultant layer. Therefore, simulation outcome of this method is
transformed as probability distribution using softmax function.

3.3 BERT Based Image Captioning Process
Image captioning is described as a tedious process on intersecting CV and NLP that involves

producing small that refers to an image encoder-decoder structures. The tasks of producing captures
are sequential. Higher images are organized as “visual language” in which image captioning task
is considered as machine translates an operation from a “visual language” to human language.
Followed by, massive technologies have showcased as machine translation problems for solving the
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image captioning problems of BERT from developers [20]. The strategy behind BERT learning is to
learn a model to predict imputed words in sentences. Hence, some parts of words are interchanged
with a special token (MASK) and it is applied for predicting words from this context. Afterward,
it is to improve the model quality and to gain NN for learning the association among sentences
simultaneously whether a single phrase is a logical continuation. Also, BERT is fine-tuned and used
for special tasks from NLP. Such features have activated almost part of up-to-date NLP methods
for today.

4 Experimental Validation

The performance of the presented system is evaluated by utilizing the benchmark UCM dataset
[21,22]. It comprises a set of 100 images under 21 class labels with an image size of 256∗256. The
different class labels exist in the dataset are Airplane, Agricultural, Beach, Chaparral, Buildings,
Baseball Diamond, Golf Course, Harbor, Intersection, Dense Residential Forest, Freeway, Mobile
HomePark, Medium Residential, Parking Lot, Overpass, Runway, Sparse Residential, River, Tennis
Court, and Storage Tanks. The image is extracted manually from the USGS National Map Urban Area
Imagery gathered to several urban regions over the country. A pixel resolution of the public domain
images is around 1 foot. Fig. 4 depicts the sample image from the UCM data set.

Figure 4: The sample images from UCM dataset

Tab. 1 offers detailed results analysis of the presented LCE-BWT system interms of CR and
PSNR [23–26]. Fig. 5 illustrates the CR analysis of the presented LCE-BWT model with the existing
models under various images. The figure depicted that the LCE-BWT model has resulted in superior
compression performance by obtaining a better CR. At the same time, the Deflate technique has
shown inferior compression efficiency over all the other methods. For instance, on the applied image
007, the presented LCE-BWT technique has achieved an effective CR of 0.214 whereas the JPEG,
LZE, and Deflate models have demonstrated its inefficiency with the CR of 0.342, 0.413, and 0.470
respectively.

Similarly, on the applied image 203, the presented LCE-BWT technique has achieved an effective
CR of 0.364 while the JPEG, LZE, and Deflate models have demonstrated its inefficiency with the
CR of 0.398, 0.429, and 0.466 respectively. At the same time, on the applied image 457, the presented
LCE-BWT method has achieved an effective CR of 0.173 whereas the JPEG, LZE, and Deflate models
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have demonstrated its inefficiency with the CR of 0.372, 0.295, and 0.429 respectively. Likewise, on
the applied image 692, the presented LCE-BWT technique has achieved an effective CR of 0.238
whereas the JPEG, LZE, and Deflate models have demonstrated its poor CR of 0.297, 0.376, and
0.431 correspondingly. Eventually, on the applied image 831, the presented LCE-BWT technique has
achieved an effective CR of 0.219 whereas the JPEG, LZE, and Deflate methods have demonstrated
its inefficiency with the CR of 0.318, 0.392, and 0.465 respectively.

Table 1: Comparison of existing methods with the proposed NCS method in terms of CR and PSNR

Images Compression Ratio (CR) PSNR (dB)

LCE-BWT JPEG LZW Deflate LCE-BWT JPEG LZW Deflate

Image 007 0.214 0.342 0.413 0.470 56.78 42.18 44.50 43.22
Image 203 0.364 0.398 0.429 0.466 54.69 40.59 45.67 43.80
Image 457 0.173 0.372 0.395 0.429 59.86 39.87 43.85 41.21
Image 692 0.238 0.297 0.376 0.431 53.54 40.11 43.52 42.08
Image 831 0.219 0.318 0.392 0.465 54.19 42.49 43.95 42.51

Figure 5: The CR analysis of LCE-BWT model

Fig. 6 depicted the PSNR analysis of the presented LCE-BWT system with the existing methods
under various images. The figure depicted that the LCE-BWT model has resulted to superior
compression function by obtaining a better PSNR. At the same time, the LZW technique has shown
inferior compression efficiency over all the other methods. For instance, on the applied image 007, the
presented LCE-BWT technique has achieved an effective PSNR of 56.78 dB whereas the JPEG, LZE,
and Deflate models have demonstrated its inefficiency with the PSNR of 42.18, 44.5, and 43.22 dB
respectively. Likewise, on the applied image 203, the presented LCE-BWT technique has achieved
an effective PSNR of 54.69 dB whereas the JPEG, LZE, and Deflate models have demonstrated its
inefficiency with the PSNR of 40.59, 45.67, and 43.8 dB correspondingly. At the same time, on the
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applied image 457, the presented LCE-BWT technique has achieved an effective PSNR of 54.86 dB
whereas the JPEG, LZE, and Deflate models have demonstrated its inefficiency with the PSNR of
39.87, 43.85, and 41.21 dB respectively. In line with, on the applied image 692, the presented LCE-
BWT technique has accomplished an effective PSNR of 53.54 dB whereas the JPEG, LZE, and Deflate
models have demonstrated its inefficiency with the PSNR of 40.11, 43.52, and 42.08 dB respectively.
Followed by, on the applied image 831, the presented LCE-BWT technique has achieved an effective
PSNR of 54.19 whereas the JPEG, LZE, and Deflate models have demonstrated its inefficiency with
the PSNR of 42.49, 43.95, and 42.51 dB correspondingly.

Figure 6: The PSNR analysis of LCE-BWT model

Fig. 7 exhibits the accuracy analysis of the presented SCNN-RSIC model over the other existing
methods in the classification of RS images. The table value showcased that the PlacesNet system has
accomplished worse RS classification with the least accuracy of 0.914. At the same time, the VFF-
VD19 model shows a certainly better RS classification with an accuracy of 0.941. Simultaneously, the
AlexNet, CaffeNet, and VGG-F approches have demonstrated same and moderate accuracy of 0.944.
Besides, the VGG-M method has tried to portray manageable RS classification outcomes with an
accuracy of 0.945 whereas the VGG-S system has reached to even better accuracy of 0.946. However,
the presented SCNN-RSIC model has obtained an effective outcome with a maximum accuracy of
0.968.

Figure 7: The accuracy analysis of proposed SCNN-RSIC methods with various CNN models
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Fig. 8 depicts the result analysis of the presented SCNN-RSIC model over the other existing
methods in the classification of RS images interms of F-score. The table values showcased that the
VGGNet system has attained worse RS classification with minimal F-score of 0.785. At the same
time, the VGG-RBFNN and CA-VGG-LSTM models have offered a certainly better RS classification
with the F-score of 0.788 and 0.796. Simultaneously, the ResNet-50, CA-VGG-BiLSTM, and ResNet-
RBFNN models have demonstrated moderate and closer F-score of 0.797, 0.798, and 0.806. Besides,
the GoogLeNet and CA-ResNet-LSTM methods have tried to portray manageable RS classification
outcome with the F-score of 0.807 and 0.814. In line with, the GoogLeNet-RBFNN and CA-ResNet-
BiLSTM models have outperformed slightly better and similar results with F-score of 0.815 whereas
the CA-GoogLeNet-LSTM and CA-GoogLeNet-BiLSTM models have reached a moderate and
identical F-score of 0.818. However, the presented SCNN-RSIC model has obtained an effective
outcome with a maximum F-score of 0.891.

Figure 8: The result analysis of SCNN-RSIC model with different measures

The result analysis of the presented SCNN-RSIC model over the other existing methods in the
classification of RS images interms of precision showcased that the CA-ResNet-BiLSTM module
has accomplished worse RS classification with the least precision of 0.779. In line with, the CA-
GoogLeNet-LSTM method exhibits a moderate outcome with precision of 0.785. At the same time,
the CA-GoogLeNet-LSTM, VGGNet, and CA-VGG-BiLSTM models have offered a certainly better
RS classification with the precision of 0.785, 0.791, and 0.793. Simultaneously, the CA-GoogLeNet-
BiLSTM, CA-ResNet-LSTM, and ResNet-RBFNN models have demonstrated moderate and similar
precision of 0.799. Besides, the GoogLeNet-RBFNN and GoogLeNet models have tried to portray
manageable RS classification outcome with the precision of 0.800 and 0.805 while the ResNet-50
model has reached to an even better precison of 0.809. However, the presented SCNN-RSIC model
has obtained an effective outcome with the maximum precision of 0.969.

The result analysis of the presented SCNN-RSIC model over the other existing methods in
the categorization of RS images interms of recall depicted that the ResNet-50 model has accom-
plished worse RS classification with the least recall of 0.82. At the same time, the VGGNet and
CA-VGG-LSTM models have offered a certainly better RS classification with the recall of 0.823
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and 0.825. Simultaneously, the VGG-RBFNN, CA-VGG-BiLSTM, and GoogLeNet methods have
demonstrated moderate and closer recall of 0.839, 0.84, and 0.843. Besides, the ResNet-RBFNN and
CA-ResNet-LSTM models have tried to portray manageable RS classification outcome with the recall
of 0.846 and 0.861. In line with, the GoogLeNet-RBFNN and CA-GoogLeNet-BiLSTM models have
outperformed slightly better results with recall of 0.868 and 0.871 whereas the CA-GoogLeNet-LSTM
and CA-ResNet-BiLSTM models have reached an even better recall of 0.886 and 0.89. However, the
projected SCNN-RSIC model has obtained an effective outcome with a maximum recall of 0.953.

Fig. 9 illustrates the visualization results analysis of the presented model. Fig. 9a depicts the actual
input image and Fig. 9b shows the classified image with distinct class labels ‘ship’ and ‘water’. The
presented model has effectually classified the images and the BERT model has generated the image
captioning as ‘Ships are around the water. By looking into the detailed simulation analysis, it is evident
that the presented model has resulted in effective outcomes in the transmission and analysis of the RS
images in UAVs.

Figure 9: The sample visualization results a) Original image, (b) Classified image

5 Conclusion

This paper has introduced a novel low complexity encoding technique with multi-label classifi-
cation and image captioning for UAV based RS images. Initially, UAV captures the images and it
is transformed into frames. Followed by, the pre-processing operation is computed for enhancing
the image quality. Then, the LCE-BWT model computes frame encoding with the help of NCS
and BWT by applying the correlation between neighboring pixels. Besides, the encoded frames are
then forwarded to a decoder side in which classification and captioning tasks are performed. For
a decoder, the LCE-BWT approach is applied in a reversible way to gain decoded images without
loss of supremacy. As a result, the SCNN-RSIC framework is used for computing the class labels
of RS images. Lastly, the BERT model has been applied for deriving description for categorized RS
image. The working principle of the projected method undergoes testing under the application of the
UCM dataset. The results showcased that the proposed method has attained significant compression
performance, reformed image quality, classification outcomes, as well as image captioning results. In
future, the proposed model can be validated using large scale real time datases.
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