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Abstract: As Internet of Things (IoT) devices with security issues are con-
nected to 5G mobile networks, the importance of IoT Botnet detection
research in mobile network environments is increasing. However, the existing
research focused on AI-based IoT Botnet detection research in wired network
environments. In addition, the existing research related to IoT Botnet detec-
tion in ML-based mobile network environments have been conducted up to
4G. Therefore, this paper conducts a study on ML-based IoT Botnet traffic
detection in the 5G core network. The binary and multiclass classification was
performed to compare simple normal/malicious detection and normal/three-
type IoT Botnet malware detection. In both classification methods, the IoT
Botnet detection performance using only 5GC’s GTP-U packets decreased
by at least 22.99% of accuracy compared to detection in wired network
environment. In addition, by conducting a feature importance experiment,
the importance of feature study for IoT Botnet detection considering 5GC
network characteristics was confirmed. Since this paper analyzed IoT botnet
traffic passing through the 5GC network using ML and presented detection
results, think it will be meaningful as a reference for research to link AI-based
security to the 5GC network.
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1 Introduction

With the rapidly evolving network environment, the connection of IoT devices is rapidly changing
from the individual wired internet (wi-fi) and 4G network connections to 5G networks. As the number
of IoT devices connected to 5G mobile networks is increased, the importance of the security of
IoT devices is also increasing. However, due to various security issues in IoT devices, IoT devices
are exposed to security threats such as falsification, improper access, and information leakage [1,2].
Attackers exploit these IoT security vulnerabilities to create “IoT Botnet” of various malware types
[3]. IoT Botnet infected with malware causes massive distributed denial-of-service (DDoS) attacks on
networks connected to IoT [4,5]. Therefore, when the IoT device with weak security is connected to the
5G network, new security problem may occur in the 5G core network devices [6]. This leads to major
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security concerns due to infringement of corporate or individual availability [7–9]. Therefore, studies
on the IoT Botnet traffic analysis and detection in the field of mobile network are required [10,11].

5G has a service-based architecture (SBA) structure that segmented and virtualized into network
function (NF) units. 5G end-to-end security framework of ITU-T SG17 includes SBA security in 5G
core network security [12], and 3GPP is conducting research for the security of 5G SBA NFs [13].
With the development of AI technology, various studies are being conducted to native-AI in NFs. In
particular, 5G has started to provide network designs suitable for AI services by introducing Network
Data Analytics Function (NWDAF) to 5GC network to implement AI-based network automation and
optimize related network functions [14,15]. Therefore, prior research that can be used to implement
security functions using AI in core architecture of 5G and 6G networks is required.

Existing studies on the IoT Botnet detection have primarily focused on detecting IP packets of
wired network occurred by IoT devices using machine learning (ML). However, the research on ML-
based IoT Botnet detection methods and features in the 5G mobile network environment according to
the evolution of the hyperconnected network environment is insufficient. Herein, a method to detect
the IoT Botnet traffic based on ML in a 5G mobile network environment is studied, experimented
results are explained, and future research is presented.

In this paper, the IoT Botnet detection was performed using packets collected from IoT devices
and UPF in the 5G mobile network environment. The MedBIoT dataset [16] was used for the IP
packet collected from the IoT devices. After replayed MedBIoT packets in the 5G mobile network
simulated environment, the GTP-U packets collected by dumping directly from the UPF were
used as the 5G mobile network packet. After this, the binary (benign/malicious) and multiclass
(benign/bashlite/mirai/torii) were classified using the following ML algorithms: k-nearest neighbor
(KNN), Support Vector Machine (SVM), Random Forest (RF) and Stacking ensemble and the results
were compared. The purpose of this study was as follows:

© Comparison of the detection performance in wired and 5G mobile network environments
© Realization of a model with the highest detection performance
© Establishing the necessity of study on the features of the IoT Botnet detection in 5GC
© Comparison of binary and multiclass classification results

The main contribution of this study can be summarized as follows: First, we conducted ML-
based IoT botnet traffic detection study in the 5G core network paths. Second, binary and multiclass
classification was performed to compare simple normal/malicious detection and normal/three type
IoT Botnet malware detection. Previous studies focused on AI-based IoT botnet detection research
in wired network environments, but this paper is meaningful as a reference for 5G security research
by analyzing IoT Botnet traffic passing through the 5G core network and presenting detection results.
Third, by comparing detection performance and feature importance in wired and 5G core network
environments, the importance of feature research for IoT Botnet detection considering 5GC network
characteristics was presented.

The subsequent sections of this paper are arranged as follows. Section 2 describes the 5G Network,
GTP-U protocol, and previous works on IoT Botnet detection. Section 3 describes the Botnet
detection methodology. Section 4 describes and compares the experimental results of the binary and
multiclass classification for three experimental methods. Section 5 summarizes the study and presents
future research directions.
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2 Related Work
2.1 Overview of 5G Core Network and GTP Protocol

The structure of the 5G network consists of the 5G Radio Access Network (5G RAN) and 5GC, as
shown in Fig. 1. The 5G RAN is composed of User Equipment (UE) and gNodeB (gNB) and provides
a radio interface to the UE. The gNB provides the UE with the protocols for the Control and User
Planes, General Packet Radio Service Tunneling Protocol (GTP). GTP is a tunneling protocol defined
to deliver General Packet Radio Service (GPRS) within a mobile network. Mobile subscribers can
access the Internet using UE while on the go by maintaining a connection to a Packet Data Network
(PDN). GTP comprises consists of control plane (GTP-C), user plane (GTP-U), and charging (GTP’
derived from GTP-C) traffic [17].

Figure 1: 5G network

5GC is composed of the Control and User Planes in charge of the control and data packet
transmission, respectively. In the control plane, most mobility management is performed through
Access and Mobility Management (AMF) and Session Management Function (SMF) in 5GC. AMF
manages access and mobility in units of terminals through location service messages, and SMF
allocates IP addresses to UEs and manages user plane services [18]. AMF and SMF provide services
through SBA’s single Service Based Interface (SBI). Each NF constituting SBA, network virtualization
and software based network architecture, plays a role in controlling data transmission [19]. NWDAF,
one of the 5G SBA configuration NFs, plays a key role as a functional entity that collects and
analyzes various information on various network domains and uses them to provide analysis-based
statistics and predictive insights to 5GC network functions such as Policy Control Function (PCF).
ML algorithms linked NWDAF can utilize multiple network information collected through NWDAF
to perform tasks such as mobility prediction and optimization, anomaly detection, prediction QoS,
and data correlation [20]. The UPF of 5GC user plane is connected to the Data Network (DN) and
handles the routing and forwarding of packets.

The uplink flow through user plane of the 5G network traffic is shown in Fig. 2. The IP packet
generated by the UE is forwarded to the gNB and transmitted to the DN. When gNB receives an IP
packet, it encapsulates the packet in the GTP-U header and is further encapsulated inside the IP and
UDP headers before being sent to the UPF. The encapsulated IP packet and GTP-U header are G-
PDU (Protocol Data Unit). GTP-U header is composed of Message type, Tunnel Endpoint Identifier
(TEID), Next Extension Header type, and QoS Flow Identifier (QFI). The Message type is fixed to
decimal 255 (0xff), indicating that G-PDU, and the Next Extension Header type are fixed to a binary
number “1000 0101” (0x85) that was the PDU session container. The QFI identifies the QoS flow that
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the transmitted packet belongs. The TEID is a unique identifier assigned to each GTP user connection
on each node.

Figure 2: 5G network flow–Uplink [21]

2.2 Previous Work

Recently, the increased use of IoT devices in various fields has been accompanied by increased
IoT device attacks. Accordingly, research on detecting abnormal behavior generated by IoT Botnets
using machine learning is being actively conducted–Tab. 1.

Table 1: Summary of previous studies related to IoT Botnet detection with ML

Work Techniques Mobile Network ML-based Detection

Stoian [22] - Perform multi-class detection of
IoT network anomalies with various
ML algorithms (Random Forest,
Naïve Bayes, ANN, SVM,
AdaBoost).

X O

Dutta et al.
[23]

Proposes Stacking Ensemble (DNN,
LSTM, Logistic Regression)
app-roach method for classification
performance improvement of
network traffic outliers including
IoT traffic.

X O

(Continued)
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Table 1: Continued
Work Techniques Mobile Network ML-based Detection

Alzahrani
et al. [24]

- Provides lightweight model
(FastGRNN) applicable to IoT
gateways able to multi-classify the
IoT network traffic.

X O

Soe et al.
[25]

Proposes IoT Botnet detection
framework with sequential
architecture based on machine
learning.

X O

Hussain et
al. [26]

- Proposes a universal feature set
that performs well for detecting
Botnet attacks regardless machine
learning training dataset.
- importance feature selection and
feature frequency analysis

X O

Saeedi [27] - Study of IoT threats and
vulnerabilities from a packet core
perspective and proposes DDoS
detection and mitigation method
using ML (KNN, Decision Tree,
Naïve Bayes, Logistic Regression) in
the mobile core network

O (4G) O

Salva-
Garcia et
al. [28]

- Proposes 5G-aware traffic filtering
security framework to secure
virtualized and multitenant
5G-based IoT traffic.
- 5G IoT device packet analysis,
Filtering Detection

O (5G) X

Reference [22,23] proposed a model capable of improving IoT traffic detection performance in
wired network environments using ML algorithms. [24,25] studied and proposed an ML-based IoT
network anomaly detection model that can be applied to IoT gateways or IoT devices in wired
networks. [26] performed a feature study to show good performance in detecting IoT traffic in wired
networks regardless of the training dataset. As shown in [22–26], current studies related to IoT
malicious traffic detection using ML are focused on detecting anomaly behavior in wired networks.
In addition, since GTP data is not analyzed, there is a limit to applying it to the 5G core network.

As IoT devices connected to mobile networks increase, research to detect IoT abnormal behaviors
occurring in mobile networks is also being gradually progressed [27,28]. [27] performed AI-based IoT
traffic detection using GTP packets collected from Serving Gateway (SGW) of 4G mobile networks.
Therefore, functions of 5GC were not considered in this study. [28] analyzed IoT anomaly traffic in
the 5G mobile network environment and proposes a filtering-based IoT traffic security framework.
As such, research on IoT malicious traffic in the 5G mobile network environment analyzes IoT traffic
and even encapsulation-aware traffic filtering detection using it. Therefore, in this study, we determine
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the difference in anomaly packet detection in wired networks and 5G mobile network environment
using various machine learning algorithms.

3 Experimental Methods

This study consists largely of the Basic IoT Botnet Dataset and ML based IoT Botnet Detection
steps. Basic IoT Botnet Dataset is associated with selecting and collecting the datasets used in the
experiment. ML based IoT Botnet Detection is concerned with detecting IoT malicious packets using
Machine Learning (ML) and performs Pre-Processing, Training, Binary Classification, and Model
Evaluation. Each stage proceeds, as shown in Fig. 3, and is described in detail below.

Figure 3: Methodology for IoT Botnet attacks detection

3.1 Basic IoT Botnet Dataset
3.1.1 Dataset Selection

This study was conducted using MedBIoT [16] created by the Center for Digital Forensics and
Cyber Security at Tallinn University of Technology in 2020. [16] was performed to solve the lack
of datasets for IoT Botnet detection. The MedBIoT dataset was collected by deploying real malware
(bashlite, mirai, torii) to real and emulated IoT devices (ex. 83 devices) in a medium-sized network. [16]
provides the dataset CSV containing the written extracted features and raw PCAP files. The MedBIoT
dataset consists of about 4.3 and 12.54 million malicious and benign packets, respectively, as shown
in Tab. 2.

Table 2: The number of packets in MedBIoT

Number of packets Traffic type Number of devices

4,143,276 Bashlite 40
842,674 Mirai 25
319,139 Torii 12
12,540,478 Normal 83

Therefore, packets are captured using various IoT devices, and MedBIoT, containing twice as
much normal to malicious packets, is used as the dataset for this study. MedBIoT’s raw PCAP files are
used as IoT device IP packets, and GTP-U tunneled packets are collected by replaying the raw PCAP
file packets in the 5G simulation environment. Then, using ML, each classification of IoT device IP
and GTP-U tunneling packets is performed and then compared.
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3.1.2 Dataset Collection GTP-U Tunneling Packets

The Dataset Collection stage takes the GTP-U tunneled packets from the UPF in a 5G mobile
network environment. This process was performed in the Open5GCore Rel.6 environment–Fig. 4.
This experiment performed GTP tunneling using only UE and gNB simulations, and UPF among
the components of Open5GCore.

Figure 4: Open5GCore Rel.6–5G testbed [29]

First, the UE replayed the IP packets of the raw PCAP files of MedBIoT. The replayed packets
pass the gNB into the GTP-U tunnel and delivered to the UPF. Then, GTP-U packets were collected
by dumping packets using Wireshark in UPF. Only one fixed TEID appears because the packets are
replayed at a specific UE and are captured at a specific UPF. Therefore, we changed TEID values to
random TEID values according to the source and destination IPs/Ports of the IP packet of uplink or
downlink.

3.2 ML Based IoT Botnet Detection Methodology
3.2.1 Pre-Processing

The pre-Processing of selected and collected datasets is performed using Feature Extraction and
Selection, Feature Encoding, and Random Sampling. The data input for Pre-Processing are IP and
GTP-U tunneling packets from MedBIoT and UPF, respectively. The features that have undergone
Pre-Processing are converted into to CSV format and inputted into the ML algorithms.

Feature Extraction and Selection. MedBIoT dataset consist of original network packet as packet
capture files (PCAPs). Therefore, we extracted header information from the IP and GTP-U tunneling
packets of IoT devices and UPF using Tshark. Among them, the features per packet selected for input
to the ML algorithm are shown in Tab. 3. And features per packet and “label features” for binary and
multiclass classification are stored in CSV format.
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Table 3: Feature selected per packet

Packet Type of Feature Raw Feature

IP Packet
+GTP-U
Tunneling Packet:

IP Packet (IoT
Devices)

Packet Size frame.len
Ethernet Protocol eth.src, eth.dst
ARP Protocol arp.src.proto ipv4,

arp.dst.proto ipv4,
arp.src.hw mac, arp.dst.hw
mac, arp.opcode

IP Protocol ip.src, ip.dst, ipv6.src,
ipv6.dst

ICMP Protocol icmp.type, icmp.code
TCP Protocol tcp.srcport, tcp.dstport
UDP Protocol udp.srcport, udp.dstport

GTP-U
Tunneling Packet
(UPF)

Packet Size frame.len
IP Protocol ip.src, ip.dst
UDP Protocol udp.srcport, udp.dstport
GPRS Protocol gtp.flags, gtp.message,

gtp.length gtp.teid,
gtp.ext_hdr.next

Feature Encoding. Encoding was performed on object-type features among 29 features (excluding
the label feature) selected in Feature Selection. The IP address is converted to a decimal integer after
removing “.”. All object-type features (MAC address, GTP TEID, GTP extension next header) except
for IP addresses were converted from hexadecimal strings to decimal integers. And the missing values
were replaced with 0.

Random Sampling. We randomly sampled normal and malicious packets for experiments that
change the normal/malicious packets count ratio. To save the state of each stage according to the
count ratio, the state of the randomly sampled packets was stored, and the sampled packets were
continuously added.

3.2.2 Training and Classification

Malicious packet detection was performed using four ML classification algorithms (KNN, SVM,
RF, and Stacking Ensemble). The Regression Model of the Stacking Ensemble algorithm used KNN,
SVM, and RF, and the Meta-Regressor used Logistic Regression. Each ML classification algorithm
was implemented using python’s Scikit-learn library.

The classification was performed in two ways: binary and multiclass. The binary classification
classified packets into benign (0) and malicious (1). The multiclass classification classifies packets into
benign (0) or three malicious packets: bashlite (1), mirai (2), and torii (3).
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4 Experimental Results

This study performed the binary and multiclass classification using the IP packets of MedBIoT
and GTP-U packets collected via the GTP-U tunneling of MedBIoT’s IP packets. Then, the detection
rates of both classification methods were compared. Each classification performed experiments and
provided results under three experimental conditions in the following steps:

(1) Derived the optimal ratio of the number of benign packets to malicious packets for the
experiment after comparing the difference in the detection performance with respect to the
change in the ratio of the number of benign packets to malicious packets.

(2) Derived the optimal model and comparison of detection rates by each experimental method
after performed the cross-validation using the optimal ratio of malicious to benign packets that
derived in 1©.

(3) Calculated the feature importance and confirmation of influence for each of three experimental
methods (Fig. 5) in the experiment of 2©.

2© and 3© experiments were performed using three experimental methods as shown in Fig. 5 and
the difference between the detection performance in IoT device and 5G mobile network UPF was
presented. The three experimental methods presented in Fig. 5 are as follows:

a) Performed the classification using the IP packet of IoT device
b) Performed the classification using GTP-U packets collected from the UPF by replaying the IP

packets of IoT device in 5G mobile network environment
c) Performed the classification using the IP packet of IoT device and the GTP-U packet of UPF

together

Figure 5: Packet structure in 5GC network experimental environment

4.1 Performance Evaluation Setup

This study was conducted in the following experimental environment: Windows 10 Platform. Intel
Core i9-10980XE (3.0 GHz/24.75MB), DDR4 32GB PC4-25600 ∗ 4 (128GB), NVIDIA GeForce RTX
3090 24GB.

The IoT Botnet detection experiments proceeded with two classification methods (binary and
multiclass classifications). Binary classification classified IoT Botnets into benign and malicious.
Multiclass classification classified IoT Botnets into benign and three types of malware (bashlite, mirai,
torii). Tab. 4 shows the detailed settings for each classification method. The total number of packets
used in both classification methods is 40,000. In the experiments performed in Sections 4.2 and 4.3, a
certain packet is selected and used among 40,000 packets. In each experiment, detection performance
was evaluated using k-fold cross validation to prevent overfitting.
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Table 4: Experiment setup by two classification methods

Classification
type

Total input
packets

Input packets count Classification
results

Using ML
algorithm

Cross-
validation

Binary
classification

40,000 Benign 10,000 Benign (0)
Malicious (1)

KNN
SVM
RF
Stacking

cv = 7

Malicious Bashlite:10,000
Mirai:10,000
Torii: 10,000

Multiclass
classification

40,000 Benign 10,000 Benign (0)
Bashlite (1)
Mirai(2)
Torii(3)

KNN
SVM,
RF
Stacking

cv = 7

Bashlite 10,000
Mirai 10,000
Torii 10,000

The model evaluation for each experiment is evaluated by the ability to properly classify packets
The possible results can be understood using the confusion matrix. In this study, accuracy, precision,
recall, F1-score, receiver operating characteristic-area under the curve (ROC-AUC), and ROC-
Curve were used for evaluation. The confusion matrix of multiclass classification was calculated by
transforming the multiclass classification into the binary classification. Moreover, the ROC-AUC
and ROC-Curve were obtained by macro-averaging after One-hot encoding of predictive values for
each class in a One-vs.-One method. The detailed description of the evaluation index used for the
experimental evaluation is shown in Tab. 5.

Table 5: Evaluation metrics description and calculation

Evaluation metrics Description Calculation

Accuracy The percentage of what the
classification model correctly predicts
the actual True as True and the actual
False as False.

Accuracy=(TP+TN)/
(TP+FP+FN+TN)

Precision The percentage of what the actual true
among those classified by predicting
that the classification model is True.

Precision=TP/(TP+FP)

Recall The percentage of what the
classification model predicts as True
out of what is actually True

Recall=TP/(TP+FN)

F1-score Harmonic mean index of Recall and
Precision

F1-score = 2∗(precision∗recall)/
(precision+recall)

ROC-AUC The area under the ROC-Curve.
ROC-Curve: Plotting the True
Positive Rate (TPR) against the False
Positive Rate (FPR)

TPR=TP/(TP+FN)
FPR=FP/(TN+FP)
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4.2 Binary Classification

Here we classify the IP packet of IoT device and GTP-U packet of UPF into benign (0) and
malicious (1) and compare the difference in detection performance by each experimental method
in Fig. 5. First, the optimal ratio for the experiment was obtained by changing the ratio of the
number of benign packets to malicious packets. Then, the performance detection rates for three
experimental methods were compared using the optimal classification model score under the optimal
ratio environment. Finally, confirmed the features having the high influence through a comparison of
the feature importance in three experimental methods.

4.2.1 Experiments Related to Balanced Datasets (Benign vs. Malicious)

Experiment 4.2.1 was an experiment to find the optimal ratio of the number of benign to malicious
packets that could compare the difference in detection performance through the binary classification
of IP packets of IoT devices and GTP-U packets of the UPF. Thus, this experiment was performed by
changing the ratio of the number of benign packets to malicious in a total of 40,000 randomly selected
packets from 10% to 90%. The 3-malware benign and malicious packets provided by the experimented
dataset MedBIoT were used at the same rate, and the binary classification was performed using the
k-fold cross validation (cv = 7). The experimented results of the classification used the IP packet and
GTP-U packet were shown in Fig. 6 and Tab. 6. As experimented result, when the ratio of the number
of benign and malicious packets was 50%, it was confirmed that the score (ACC, F1 and AUC) had
a median value not biased toward one side compared to when the ratio of the number of packets was
10% or 90%. Thus, we considered it as the optimal environment to compare the detection performance
difference of binary classification less biasedly when the ratio of benign: malicious packets was 50%.
The experimented result in 4.2.1 was used as the ratio of the number of benign packets to malicious in
the subsequent 4.2.2 and 4.2.3 experiments.

Figure 6: (Continued)
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Figure 6: Benign classification experiment results changing benign packets count ratio–(a) Accuracy.
(b) F1-score. (c) ROC-Curve that benign ratio 10%. (d) ROC-Curve that benign ratio 50%. (e) ROC-
Curve that benign ratio 90%

Table 6: Binary classification score by benign packet count ratio–using IP and GTP-U packets

Experimental
method

Algorithm Score Benign ratio
10% 30% 50% 70% 90%

IP Packet:
(a)

KNN Accuracy 99.715% 99.692% 99.822% 99.877% 99.937%
F1 99.841% 99.780% 99.822% 99.795% 99.685%

SVM Accuracy 90.985% 87.010% 86.637% 90.760% 93.842%
F1 94.980% 89.520% 84.218% 82.884% 51.073%

Random
forest

Accuracy 99.942% 99.955% 99.955% 99.945% 99.945%
F1 99.968% 99.959% 99.955% 99.908% 99.723%

Stacking
ensemble

Accuracy 99.958% 99.967% 99.958% 99.908% 99.723%
F1 99.977% 99.976% 99.958% 99.847% 99.54%

GTP-U
Tunneling
Packet: (b)

KNN Accuracy 89.760% 72.737% 61.650% 66.272% 89.005%
F1 94.512% 81.816% 62.829% 34.925% 6.6061%

SVM Accuracy 94.737% 82.353% 58.125% 0.0000% 0.0000%
F1 90.000% 70.000% 50.695% 70.000% 90.000%

Random
forest

Accuracy 88.560% 78.857% 74.637% 77.047% 87.887%
F1 93.512% 84.298% 73.236% 59.259% 35.924%

Stacking
ensemble

Accuracy 91.108% 81.775% 76.967% 78.708% 90.000%
F1 95.272% 86.922% 76.761% 63.327% 0.0000%

IP+GTP-U
Packets: (c)

KNN Accuracy 99.772% 99.83% 99.847% 99.875% 99.922%
F1 99.873% 99.878% 99.847% 99.791% 99.61%

SVM Accuracy 91.695% 86.137% 86.637% 90.76% 93.827%
F1 95.394% 88.944% 84.218% 82.884% 51.02%

Random
forest

Accuracy 99.922% 99.927% 99.922% 99.915% 99.922%
F1 99.957% 99.948% 99.922% 99.858% 99.609%

Stacking
ensemble

Accuracy 99.967% 99.9% 99.925% 99.942% 99.95%
F1 99.981% 99.929% 99.93% 99.903% 99.749%
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4.2.2 Experiments Related to Optional ML Algorithm

Experiment 4.2.2, confirmed the difference in detection performance for each algorithm in a
low bias environment that the benign to malicious packets ratio was set as 50% derived experiment
4.2.1. Then, confirmed the optimal model for the binary classification, and compared the detection
rates for each of the three experimental methods. These experiments were collected the benign and
malware packets of three types of malware (bashlite, mirai, torii) at the same rate and performed
by the k-fold cross-validation (cv = 7). The experimented results in 4.2.2 used the three experimental
methods in Fig. 5 were shown in Fig. 7 and Tab. 7. In the experimental methods (a) and (b), the
Stacking algorithm showed the highest accuracy (approximately 99.958% and 99.924% respectively),
the F1-score (approximately 99.958% and 99.925% respectively), and the ROC-AUC (approximately
99.958% and 99.925% respectively). In the experimental method (c), Stacking showed the highest
accuracy (approximately 76.967%) and the F1-score (approximately 76.761%), and showed the second
highest ROC-AUC (approximately 76.967%). In the detection case used only GTP-U packets collected
from the UPF of 5GC, it was reduced by approximately 22.99% compared to the detection used IP
packets of the wired network. However, the IoT Botnet detection using both GTP-U packet and IP
packet features showed similar performance with a difference of approximately 0.03% compared to
the detection using IP packets. Through this, when performed the IoT Botnet detection by the binary
classification in 5GC environment, it was confirmed that the same performance as that in a wired
network can be obtained when the GTP-U packet feature and IP packet feature are used together.

Figure 7: IoT botnet detection algorithm performance comparison by 3 experimental methods for
binary classification–(a) Accurac. (b) F1-score. (c) ROC-Curve that using IP packets. (d) ROC-Curve
that using GTP-U packets. (e) ROC-Curve of IP and GTP-U packets
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Table 7: Binary classification Score by algorithm - benign to malicious packets count ratio is 50%

Experimental
method

Score Algorithm

KNN SVM RF Stacking

IP Packet:
Experimental
method (a)

Accuracy 99.822% 86.637% 99.955% 99.958%
F1 99.822% 84.218% 99.955% 99.958%
ROC-AUC 99.388% 90.161% 99.495% 99.958%

GTP-U Packet:
Experimental
method (b)

Accuracy 61.650% 50.695% 74.637% 76.967%
F1 62.829% 58.125% 73.236% 76.761%
ROC-AUC 66.788% 51.120% 83.280% 76.967%

IP + GTP-U
Packets:
Experimental
method (c)

Accuracy 99.847% 86.637% 99.922% 99.924%
F1 99.847% 84.218% 99.922% 99.925%
ROC-AUC 99.420% 90.166% 99.495% 99.925%

4.2.3 Experiments Related to Feature Importance in 5GC

In this section, the feature importance was calculated for the binary classification for the three
experimental methods in Fig. 5 used the Stacking Ensemble and the optimal algorithm derived in
4.2.2, and the impact of IP packet features was confirmed–Tab. 8. Results showed that 3 of the 10
features used in experimental method (b) used only GTP-U packets had importance values. Among
them, the TEID feature showed the highest importance at approximately 0.590397, it was related to
the IPs and ports of the source and destination of the IP packet. Experimental methods (a) and (c)
using IP packets of a wired network were used 18 and 28 features, respectively, and the features related
to the source and destination addresses showed the high importance. This showed that the IP packet
features had a large influence in the IoT Botnet detection through binary classification.

Table 8: Top 10 feature importance by 3 experimental methods for binary classification

Feature
importance
rank

IP Packet: (a) GTP-U Packet: (b) IP Packet + GTP-U Packet:
(c)

Number of
features used

18 10 28

Rank 1 eth.src 0.306732 gtp.teid 0.590397 eth.src 0.305114
Rank 2 ip.dst 0.203758 frame.len 0.299844 ip.dst 0.203945
Rank 3 eth.dst 0.197681 gtp.length 0.109760 eth.dst 0.194969
Rank 4 ip.src 0.163671 ip.src 0 ip.src 0.164341
Rank 5 frmae.len 0.068601 ip.dst 0 frame.len 0.063545
Rank 6 tcp.srcport 0.026958 udp.srcport 0 tcp.srcport 0.026928
Rank 7 tcp.dstport 0.012855 udp.dstport 0 tcp.dstport 0.014897
Rank 8 udp.srcport 0.012562 gtp.flags 0 udp.srcport 0.012045

(Continued)
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Table 8: Continued
Feature
importance
rank

IP Packet: (a) GTP-U Packet: (b) IP Packet + GTP-U Packet:
(c)

Rank 9 arp.dst.proto_
ipv4

0.003589 gtp.message 0 gtp.length 0.005374

Rank 10 udp.dstport 0.002011 gtp.ext_hdr.
next

0 arp.dst.proto_
ipv4

0.002834

4.3 Multiclass Classification

Section 4.3 is an experiment to multi-classify benign (0) and three types of malicious into bashlite
(1), mirai (2) and torii (3) by using the IP packet of IoT device and the GTP-U packet of UPF, and to
compare the difference in detection performance by each experimental method mentioned in Fig. 5.
The same as experiment process with Section 4.2, the optimal ratio of the number of packets for the
experiment was found, the detection rates for each of the three experimental methods through the
optimal model were compared, and then the features with high influence were confirmed through the
feature importance comparison.

4.3.1 Experiments Related to Balanced Datasets (Benign vs. Malicious)

Experiment 4.3.1 is an experiment to find the optimal ratio of the number of benign to malicious
packets which could compare the difference in detection performance through the multiclass classifi-
cation of the IP packet of IoT device and the GTP-U packet of UPF. As same with experiment 4.2.1,
this experiment was performed by changing the ratio of the number of benign packets to malicious
for a total of 40,000 randomly selected packets from 10% to 90%. The benign and malicious packets
of the 3-malware provided by the experimental dataset MedBIoT were used at the same rate, and the
multiclass classification was performed using the k-fold cross validation (cv = 7). The experimented
results of the classification used the IP packet and GTP-U packet were as shown in Fig. 8 and Tab. 9.
As experimented results, it was confirmed that, as same in the binary classification, the score (ACC,
F1, AUC) had an unbiased intermediate value when the ratio of the number of benign and malicious
packets was 50%. Thus, we considered the ratio of benign: malicious packets as 50% as the optimal
environment for less biased comparison of the detection performance difference of the multiclass
classification. The experimented result in 4.3.1 was used as the ratio of the number of benign packets
to malicious in the followed experiments in 4.3.2 and 4.3.3

Figure 8: (Continued)
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Figure 8: Multiclass classification experiment results changing benign packets count ratio–(a) Accu-
racy. (b) F1-score. (c) ROC-Curve that benign ratio 10%. (d) ROC-Curve that benign ratio 50%. (e)
ROC-Curve that benign ratio 90%

Table 9: Multiclass classification score by benign packet count ratio–using IP and GTP-U packets

Experimental
method

Algorithm Score Benign ratio

10% 30% 50% 70% 90%

IP Packet:
(a)

KNN Accuracy 93.900% 94.532% 95.020% 96.382% 98.072%
F1 94.211% 94.280% 93.231% 92.232% 88.234%

SVM Accuracy 62.510% 55.440% 65.995% 78.210% 90.392%
F1 49.899% 44.803% 45.095% 46.927% 37.414%

Random
Forest

Accuracy 98.487% 98.617% 98.630% 98.930% 99.332%
F1 98.528% 98.564% 98.131% 97.643% 95.488%

Stacking
ensemble

Accuracy 98.258% 98.316% 98.716% 98.691% 99.325%
F1 98.247% 98.248% 98.231% 97.044% 95.388%

GTP-U
Tunneling
Packet: (b)

KNN Accuracy 31.684% 29.534% 44.722% 68.422% 90.254%
F1 27.780% 27.691% 26.556% 26.872% 28.123%

SVM Accuracy 32.754% 31.332% 50.000% 70.000% 90.000%
F1 24.758% 17.738% 16.666% 20.588% 23.684%

Random
forest

Accuracy 71.880% 63.955% 62.477% 68.847% 85.527%
F1 67.293% 64.176% 58.864% 51.960% 40.897%

Stacking
ensemble

Accuracy 68.533% 44.758% 52.650% 70.000% 89.975%
F1 54.329% 41.290% 29.832% 20.588% 23.685%

IP+GTP-U
Packets: (c)

KNN Accuracy 70.518% 64.758% 71.61% 82.285% 93.64%
F1 63.141% 64.27% 64.431% 63.658% 58.695%

SVM Accuracy 61.487% 53.755% 62.830% 77.398% 90%
F1 51.682% 42.529% 44.976% 43.918% 23.684%

Random
Forest

Accuracy 96.478% 96.858% 97.458% 98.11% 99.138%
F1 96.735% 96.692% 96.418% 95.686% 94.42%

Stacking
Ensemble

Accuracy 96.241% 96.6% 97.5% 97.925% 99.1%
F1 96.51% 96.426% 96.397% 95.22% 93.993%
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4.3.2 Experiments Related to Optimal ML Algorithm

In experiment 4.3.2, the benign: malicious packets count ratio was set as 50% and confirmed the
difference in detection performance for each algorithm in an environment with less bias. Through this,
the optimal model for multiclass classification was confirmed, and the detection rates were compared
for each of the three experimental methods mentioned in Fig. 5. As same in 4.2.2 experiments, these
experiments were collected the benign and malware packets of three malware (bashlite, mirai, and torii)
at the same rate and performed by the k-fold cross validation (cv = 7). The experimented results of
4.3.2 used the three experimental methods mentioned in Fig. 5 were as shown in Fig. 9 and Tab. 10. In
the experimental method (a), the Stacking showed the highest accuracy (approximately 98.716%), F1-
score (approximately 98.231%), and ROC-AUC (approximately 98.904%). In the experimental method
(b), the RF showed the highest accuracy (approximately 62.477%), F1-score (approximately 58.864%),
and ROC-AUC (approximately 72.265%). In the experimental method (c), Stacking showed the highest
accuracy (approximately 97.5%) and the ROC-AUC (approximately 97.785%), and showed the second
highest F1-score (approximately 96.396%). This shows that the multiclass classification using IP
packets has great performance when using the Stacking algorithm, and the multiclass classification
using only GTP packets has great performance when using the RF algorithm. When compared the
accuracy of the best algorithm for each experimental method, in the detection case used only GTP-
U packets collected from the UPF of 5GC, the accuracy was decreased by approximately 36.71%
compared to the detection used the IP packets of wired network. However, the IoT Botnet detection
used both GTP-U packet and IP packet features showed similar performance to the multiclass
classification used the IP packet with an accuracy reduction of approximately 1.231%. Through this,
when performed the multiclass classification on the benign and individual IoT Botnet malware in
5GC environment, it was confirmed that the performance similar to that in a wired network could
be obtained when the GTP-U packet and IP packet features were used together as in the binary
classification.

Figure 9: (Continued)
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Figure 9: IoT Botnet detection algorithm performance comparison by 3 experimental methods
for multiclass classification–(a) Accuracy. (b) F1-score. (c) ROC-Curve that using IP packets. (d)
ROC-Curve that using GTP-U Packets. (e) ROC-Curve that using IP and GTP-U packets

Table 10: Multiclass classification score by algorithm–benign to malicious packets count ratio is 50%

Experimental
method

Score Algorithm

KNN SVM RF Stacking

IP Packet:
Experimental
method (a)

Accuracy 95.020% 65.995% 98.630% 98.716%
F1 93.231% 45.095% 98.131% 98.231%
ROC-AUC 95.603% 67.828% 98.504% 98.904%

GTP-U Packet:
Experimental
method (b)

Accuracy 44.722% 50.000% 62.477% 52.650%
F1 26.556% 16.666% 58.864% 29.832%
ROC-AUC 51.959% 50.000% 72.265% 56.278%

IP Packet +
GTP-U Packet:
Experimental
method (c)

Accuracy 71.610% 65.830% 97.457% 97.500%
F1 64.430% 44.975% 96.418% 96.396%

ROC-AUC 75.389% 68.013% 97.496% 97.785%

4.3.3 Experiments Related to Feature Importance in 5GC

In Experiment 4.3.3, the feature importance was calculated for the multiclass classification by
using the optimal algorithm for each of the three experimental methods derived from 4.3.2 and
confirmed the influence of IP packet features–Tab. 11. As experimented results, in the experimental
method (b) of multiclass classification used only GTP-U packets, three features had importance values.
Among them, the TEID feature related to the IPs and ports of the source and destination of IP packet
showed the highest importance by 0.570975. Experimental methods (a) and (c) used the IP packets of
wired networks showed the high importance for features related to IP and port addresses. This shows
that IP packet features have a large influence on IoT Botnet detection of multiclass classification in
5GC as in binary classification.
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Table 11: Top 10 feature importance by 3 experimental methods for multiclass classification

Feature
importance
rank

IP Packet: (a) GTP-U Packet: (b) IP Packet + GTP-U
Packet: (c)

Number of
features used

18 10 28

Rank 1 ip.dst 0.227764 gtp.teid 0.570975 ip.dst 0.227183
Rank 2 tcp.srcport 0.218623 gtp.length 0.216603 tcp.srcport 0.213114
Rank 3 ip.src 0.205318 frame.len 0.212422 ip.src 0.204700
Rank 4 tcp.dstport 0.165589 ip.src 0 tcp.dstport 0.161656
Rank 5 udp.dstport 0.099744 ip.dst 0 udp.dstport 0.099483
Rank 6 frame.len 0.081292 udp.srcport 0 frame.len 0.060910
Rank 7 udp.srcport 0.001636 udp.dstport 0 frame.len

(gtp)
0.014244

Rank 8 icmp.type 0.000034 gtp.flags 0 gtp.teid 0.010706
Rank 9 eth.dst 0 gtp.message 0 gtp.length 0.006485
Rank 10 eth.src 0 gtp.ext_hdr.next 0 udp.srcport 0.001398

4.4 Comparison of Binary and Multiclass Classification Results

In this section, the results of the binary classification and multiclass classification performed under
the same conditions are compared. Both classification experiments were performed in an environment
where the ratio of benign and malicious packets was 50% by using approximately 40,000 packets.
Tab. 12 shows the scores and feature importance top five for the algorithms that showed the best
performance for each experimental method of each classification.

Table 12: Comparison of the best algorithm, score, and feature importance of classification

Classification type Binary classification Multi classification

Experimental method (a) (b) (c) (a) (b) (c)

Best algorithm Stacking Stacking Stacking Stacking RF Stacking
Top score ACC 99.958% 76.967% 99.924% 98.716% 62.477% 97.500%

F1-score 99.958% 76.761% 99.925% 98.231% 58.864% 96.396%
ROC-AUC 99.958% 76.967% 99.925% 98.904% 72.265% 97.785%

Feature
importance
Rank

Rank 1 eth.src gtp.teid eth.src ip.dst gtp.teid ip.dst
Rank 2 ip.dst frame.len ip.dst tcp.srcport gtp.length tcp.srcport
Rank 3 eth.dst gtp.length eth.dst ip.src frame.len ip.src
Rank 4 ip.src ip.src tcp.dstport tcp.dstport
Rank 5 frmae.len frame.len udp.dstport udp.dstport
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In binary classification, the Stacking ensemble algorithm showed the best performance. In
multiclass classification, in the experimental methods (a) and (c) using IP packets showed the best
performance in Stacking, and in the experimental methods (b) using GTP-U packets, RF showed the
best performance. And, in the multiclass classification that required more sophisticated classification
(normal/bashlite/mirai/torii), it could be confirmed that all scores were slightly reduced (maximum
approximately 23.315%, minimum approximately 0.054%) than the binary classification. In particular,
detection of IoT Botnet using only GTP-U packets decreased by up to 22.99% (binary classification)
and 36.71% (multiclass classification) compared to detection using IP packets together. Also, the
experimental method (b) used the GTP-U packet in both classifications (binary/multiclass) had the
feature importance value of high TEID, and the next, features related to the packet length had high
feature importance. Experimental methods (a) and (c) showed the high importance for features related
to the source and destination addresses in both classifications (binary/multiclass). As a result of the
experiment, it was confirmed that the GTP-U packet could not fully reflect the characteristics of the IP
packet in both binary and multiclass classification. Therefore, in order to perform IoT Botnet detection
in 5GC, feature research that can reflect the characteristics of both IP packet and GTP-U packet is
required.

5 Conclusion

In this study, the IoT Botnet packets were detected, results were compared and studied for
their detection efficiency through the ML-based binary and multiclass classification in the mobile
network environment. In order to build the dataset, after collecting the IP packets of IoT devices,
GTP-U Tunneling packets were collected by replaying them in the 5G simulation environment.
Experiments for both classification methods (binary/multiclass) were proceeded in three stages for
the three experimental methods (IoT device IP packet, UPF GTP-U packet, and IP packet + GTP-
U packet). In the first experiment, it was confirmed that the environment with the least bias was
when the ratio of the number of benign to malicious packets was 50%. In the second experiment, IoT
Botnet detection was performed using binary and multiclass classification. In the binary classification,
the stacking ensemble algorithm showed the best detection rates with accuracies of approximately
99.958%, approximately 76.967%, and approximately 99.924% for each experimental method. Fur-
ther, in the multiclass classification, when the experimental methods (a) and (c) were the Stacking
algorithm, showed the highest accuracy (approximately 98.716%, approximately 97.5%), and when
the experimental methods (b) was the RF, showed the highest accuracy (approximately 62.477%). In
both classification methods, when IoT Botnet detection is performed using only GTP-U packets in the
5GC environment, the accuracy decreased by about 22.99% (binary) and about 36.71% (multiclass)
compared to detection using IP packets. It showed that it was difficult to detect IoT Botnets in the 5GC
environment using only the GTP-U packets for both binary and multiclass classification. Then, it was
confirmed that the GTP-U packet and IP packet should be used together for the IoT Botnet detection
in 5GC environment to obtain performance detection similar to that in wired network environment. In
the third experiment, we confirmed that features related to IP packets show high importance for both
binary and multiclass classification through feature importance comparison. Through this experiment,
the importance of feature research for IoT Botnet detection considering 5GC network characteristics
was confirmed for IoT Botnet detection in 5GC network path.

There are various ways to utilize the ML-based security function experimented in this paper. In
fact, 6G has an AI-enabled architecture structure, and NWDAF is being discussed as a method. Before
linking the ML-based security function with NWDAF, this paper conducted ML-based experiments
using data collected from UPF and confirmed the possibility of NWDAF security function through
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AI-native. Therefore, we plan to study how to link ML-based security functions to NWDAF through
NWDAF structure and procedure analysis in the future. In addition, the experiment proposed in the
paper performed IoT Botnet detection using features extracted from individual IoT Botnet packets.
Therefore, we plan to conduct a feature research so that IoT Botnet traffic for sampled traffic can be
detected with good performance using IoT Botnet feature that reflects the characteristics of the 5GC
environment.
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