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Abstract: Malaria is a severe disease caused by Plasmodium parasites,
which can be detected through blood smear images. The early identification
of the disease can effectively reduce the severity rate. Deep learning (DL)
models can be widely employed to analyze biomedical images, thereby min-
imizing the misclassification rate. With this objective, this study developed
an intelligent deep-transfer-learning-based malaria parasite detection and
classification (IDTL-MPDC) model on blood smear images. The proposed
IDTL-MPDC technique aims to effectively determine the presence of malarial
parasites in blood smear images. In addition, the IDTL-MPDC technique
derives median filtering (MF) as a pre-processing step. In addition, a residual
neural network (Res2Net) model was employed for the extraction of feature
vectors, and its hyperparameters were optimally adjusted using the differential
evolution (DE) algorithm. The k-nearest neighbor (KNN) classifier was used
to assign appropriate classes to the blood smear images. The optimal selection
of Res2Net hyperparameters by the DE model helps achieve enhanced classi-
fication outcomes. A wide range of simulation analyses of the IDTL-MPDC
technique are carried out using a benchmark dataset, and its performance
seems to be highly accurate (95.86%), highly sensitive (95.82%), highly specific
(95.98%), with a high F1 score (95.69%), and high precision (95.86%), and it
has been proven to be better than the other existing methods.
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1 Introduction

Malaria is a life-threatening disease caused by the Plasmodium parasite, and is a serious health
concern worldwide. According to reports by the World Health Organization (WHO) in 2017, nearly
219 million cases of malaria occurred in 87 countries worldwide [1]. The WHO selected the Eastern
Mediterranean, Western Pacific, Americas, and Southeast Asia as high-risk regions. Malaria is curable
and can be prevented when appropriate measures and initiatives are effectively taken, which rely mainly
on earlier diagnoses of the malaria parasite [2]. Various methods have been reported to detect malarial
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parasites in the blood, such as microscopic diagnosis, medical diagnosis [3], polymerase chain reaction
(PCR), and rapid diagnostic test (RDT) [4].

Traditional diagnostic approaches such as PCR and other clinical diagnostic methods are depen-
dent on experimental settings; eventually, the accuracy and efficiency depend significantly on the
purely subjective knowledge of individuals. This limited knowledge is unable to reach remote locations
where malaria could be predominant. Microscopic diagnosis and the RDT are effective malaria
diagnostic technologies that make a large contribution to malaria control in the present scenario
[5]. The RDT is a powerful diagnostic method that does not require any microscope or trained
professionals and can offer diagnoses within 15 min. However, the RDT method has some limitations,
including the inability to quantify parasite density, low sensitivity, susceptibility to damage by heat and
humidity, high cost compared with light microscopy, and inability to differentiate between Plasmodium
malariae, P. vivax, and P. ovale. These drawbacks can be overcome by the microscopic system and
thus it is categorized as an efficient method to detect malarial parasites but requires the presence of a
professional microscopist [6].

Microscopic inspection is considered a primary and typical technique for malaria diagnosis [7] to
detect the occurrence of parasites from a blood drop in a thick blood smear. The investigation accuracy
is based on an efficient technician examining and classifying the parasitized and uninfected blood cells
found in the blood smear. Automated microscopic malaria parasite diagnosis could be a powerful
diagnostic method that includes segmentation of cells and classification of infected cells and the
acquisition of microscopic blood smear images [8]. It should be noted that the effective identification
of malarial parasites and segmentation of blood cells could be utilized to carry out counting.

Conventional methods for malaria diagnosis are time consuming, might create incorrect reports
because of human errors, and are not suitable for wide-ranging diagnosis. This motivated us to
present an automated diagnosis of malaria using deep-learning (DL) algorithms. Various concepts
exist towards the recognition of malaria parasites in microscopic images via a pre-trained variant of a
convolutional neural network (CNN) [9,10]. Chakradeo et al. [11] introduced a visual geometry group
(VGG)-based approach and compared it with previously presented methods for identifying diseased
cells. It exceeds the accuracy of most previously presented methods in a range of metrics. Hence, it
reduces the computational time and consumption of technical resources.

Fuhad et al. [12] presented an automatic CNN-based algorithm for malaria detection using
microscopic blood smears. This involves different methods, such as data augmentation, knowledge
distillation, and feature extraction. An autoencoder is categorized as a support vector machine (SVM)
or k-nearest neighbor (KNN). CNN models execute the training process at three levels, autoencoder
training, general training, and distillation training, to improve and optimize the inference performance
and model accuracy.

Researchers have designed a traditional CNN method to distinguish between infected and healthy
blood samples [13]. The proposed method contains fully connected (FC) layers and three convolutional
layers. The neural network system proposed a cascade of numerous convolution layers having different
filters existing in each layer that produces better accuracy according to the available resources. The
method was implemented on various blood sample images to investigate its accuracy.

Li et al. [14] presented a DL method to detect malaria parasites at different levels from blood
smears with deep transfer to a graph convolution network (DTGCN). This is the primary application
of the graph convolution network (GCN) model for multistage malaria parasite detection in an image.
Rahman et al. [15] converted a malaria parasite object recognition dataset to data classification, which
makes it the prime malaria classification dataset, and estimated the performance of many advanced
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deep neural network (DNN) frameworks pre-trained on medical and normal images on this novel
dataset. Researchers analyzed the effects of pre-processing and found that a custom architecture,
VGG-16, and a residual neural network (ResNet) formed in an earlier study have been employed [16].
The pre-processing method was investigated, which includes comprehensive normalization and gray-
world normalization.

In this study, we developed an intelligent deep transfer learning-based malaria parasite detection
and classification (IDTL-MPDC) model using blood-smear images. In addition, the IDTL-MPDC
technique derives median filtering (MF) as a pre-processing step. The Res2Net model was employed for
the extraction of feature vectors, and its hyperparameters were optimally adjusted using the differential
evolution (DE) algorithm. Furthermore, the KNN classifier was used to assign appropriate classes to
the blood smear images. The optimal selection of Res2Net hyperparameters by the DE model helps
achieve enhanced classification outcomes. A wide range of simulation analyses of the IDTL-MPDC
technique were performed using a benchmark dataset.

2 The Proposed Model

In this study, a new IDTL-MPDC technique was developed to effectively determine the presence
of malarial parasites using blood smear images. The IDTL-MPDC technique involves various sub-
processes, namely, MF-based pre-processing, Res2Net-based feature extraction, DE-based hyperpa-
rameter optimization, and KNN-based classification.

2.1 Pre-processing Using the MF Technique
The major drawback of the blood smear image is the poor quality of the image owing to spot

noise. Spot noise is a disadvantage because it affects single interpretation and recognition processes
and undermines the image quality. Consequently, point refining is a major phase in the recognition,
extraction, and analysis of healthcare images. In various effective approaches for removing noise
from healthcare images, the MF technique is used because of its specificity, which has applications
in healthcare image noise elimination [17]. The basic concept behind the median filter is to introduce
an m × n neighborhood to select the median value of the ordered number, replace the central pixel,
and assemble each neighborhood in ascending order. This can be expressed as

y(m,n) = median{x(i,j), (i, j) ∈ C}, (1)

where C signifies the neighborhood centered around the position (m, n) of an image. In this study,
median filtering was adopted to remove digital noise from the input image, and a filter mask with a
size of 3 × 3 was applied.

2.2 Feature Extraction Using the Res2Net Model
Next, the pre-processed blood smear image is passed to the Res2Net model to derive the feature

vectors. The Res2Net block [18] is different from ResNet, which utilizes many sets of convolution
functions and concepts of hierarchical influences in a single remaining block. It is distinct from
the multi-scale feature removal techniques that use a layer-wise approach, as the Res2Net block
removes multi-scale features at the granular level and improves the range of receptive domains of every
convolution layer.

As illustrated in Fig. 1, an input is primarily referred to as a group of 1 × 1 convolution kernels,
and the resultant feature maps are separated into four sets, followed by 1×1 convolution. The primary
set of feature maps x1 has no convolutional function. In the secondary set of feature maps x2, a group
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of 3 × 3 convolution kernels is utilized for extracting the feature in it, and the outcome is y2. Then, y2

and the tertiary set of feature maps x3 are aimed at the secondary group of 3 × 3 convolution kernels,
and the outcome is y3. Subsequently, y3 and the quarter set of feature maps x4 are aimed at the tertiary
set of 3 × 3 convolution kernels, and the outcome is y4. Eventually, the resultant feature map in every
set is concatenated and aimed at other groups of 11 convolution kernels to fuse the feature. Related
to the residual block under ResNet, Res2Net utilizes the remaining link to connect the input to the
outcome of the final set of convolutional functions. As the input feature is changed to the resultant
features with several paths, the receptive domains are improved if the group of convolution kernels is
passed.

Figure 1: (a) ResNet Model (b) Res2Net Model

2.3 Hyperparameter Tuning Using the DE Technique
The DE technique can be utilized to optimally adjust the hyperparameters of the Res2Net model.

The DE technique has primarily been established in [19]. The vital model after the DE technique
is a process to create a testing parameter vector and more weight variance between two population
vectors to the third one. As another evolutionary technique, the DE approach aims at developing a
population of NP, D dimension parameter vectors that are assumed as individuals that encode the
candidate solution, for instance,
−→xi,g = {x1,i,g, x2,i,g, . . . , xD,i,g}, (2)
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where i = 1, 2, 3 . . . , NP.

Step 1: Initialize every individual arbitrarily (in bounds −2 and +2) of NP population

�xi,g = {x1,i,g, x2,i,g, . . . , xD,i,g}; where i = 1, 2, 3, . . . , NP. (3)

Step 2: Mutation:

For i = 1 to NP, we create the mutation vector �vi,g = {v1,i,g, v2,i,g, . . . , vD,i,g} equivalent to the target
vector �xi,g using

“DE/rand − to − best/1 : �vi,g = �xi,g + F(�xbest,g − �xi,g) + F(�xr′1,g
− �xr′2,g

) (4)

The optimum value of F defined in this study was equivalent to 0.5.

Step 3: Crossover:

Generate testing vector �ui,g to all target vectors �xi,g, where

�uI,g = {u1,i,g, u2,i,g, . . . , uD,i,g} as follows:

for i = 1 to Np,jRand = [rand(0, 1) ∗ D]; for j = 1 to D.

uj,i,g =
{

vj,i,g if (randij(0, 1) ≤ Cr)

xi,j,g otherwise. (5)

end

Step 4: Selection:

for i = 1 to NP,

�xi,g+1 =
{�ui,g if f (�ui,g) ≤ f (�xi,g)

�xi,g otherwise. (6)

end

Step 5: Increase the generation number g = g + 1.

Because the generation cycle is repeated in Step 2, the maximum number of generation cycles
is attained. The great minimal error fitness and its equivalent better vectors containing (N/2 + 1)

amount of h(n) coefficient are defined. Eventually, an entire optimum filter coefficient equivalent
to (N + 1) is attained by copy and concatenation of beyond coefficients to obtain the last optimum
frequency spectrum of the finite impulse response (FIR) filter.

Algorithm 1: Pseudocode of DE
Create primary population P0 = {�x0

1, �x0
2, . . . , �x0

N}
Assume t = 0
repeat
for all individuals �xt

i from the population Pt do
Create 3 arbitrary integers r1, r2 and r3 ∈ {1, 2, . . . , N}\i, with r1 �= r2 �= r3

Create an arbitrary integer jrand ∈ {1, 2, . . . , D}
for all parameters j do

(Continued)
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Algorithm 1: Continued

ut+1
i,j =

{
xt

r3,j + F × (xt
r1,j − xt

r2,j), if (rand ≤ CR||j = rand[1, D])
xt

i,j, otherwise
end for
Change �xt

i with child �ut+1
i from the population Pt+1,

if �ut+1
i is optimum, otherwise �xt

i has maintained
end for
t = t + 1
until the end criteria were attained

2.4 Image Classification Using the KNN Technique
In the last stage, the KNN model receives the features as input and projects proper class labels.

KNN is a simple machine learning (ML) technique. To define the classification of the testing data,
KNN executes a test to check the amount of similarity among k trained data and documents to save a
specific number of classified information [20]. As KNN categorizes instances, in this work, it would be
benign and malicious code instances near the training space. The classification of unknown instances
can be implemented by evaluating the distance between the unknown instances and training instances.
As the instance is categorized according to the majority vote of neighbor, the most widespread
neighbor is evaluated by a distance function. When k=1, the instance is allocated to the class of its
adjacent neighbors. In n-dimensional space, distance between x and y can be attained by a distance
function defined as follows:√√√√ k∑

i=1

(xi − yi)
2. (7)

3 Experimental Validation

To examine the malaria detection performance of the IDTL-MPDC technique, an experimental
result analysis was performed on the open-access malaria dataset. It comprises 27558 cell images under
two categories, parasitized and uninfected cells, with identical numbers of samples, as shown in Fig. 2.

Tab. 1 lists the overall malaria classification results of the IDTL-MPDC technique under varying
epoch counts.

Fig. 3 presents a brief accuy analysis of the IDTL-MPDC technique in the presence of distinct
epochs. The figure shows that the IDTL-MPDC technique achieves better accuy values for every epoch.
For instance, the IDTL-MPDC technique achieved accuy of 95.85% and 95.41% under lower epoch
counts of 100 and 200, respectively. Similarly, the IDTL-MPDC technique achieved accuy of 95.59%
and 95.46% under maximum epoch counts of 900 and 1000, respectively.

A detailed sensy and specy analysis of the IDTL-MPDC technique with various epochs is shown
in Fig. 4. The results revealed that the IDTL-MPDC technique offered increased values of sensy and
specy. For instance, with 100 epochs, the IDTL-MPDC technique has obtained sensy and specy of
95.67% and 95.99%, respectively. Simultaneously, with 400 epochs, the IDTL-MPDC manner has
achieved sensy and specy of 95.86% and 95.81%, respectively. Moreover, after 700 epochs, the IDTL-
MPDC technique achieved sensy and specy of 95.19% and 95.46%, respectively. Eventually, after 1000
epochs, the IDTL-MPDC algorithm achieved sensy and specy of 95.46% and 95.09%, respectively.
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Figure 2: Sample images

Table 1: Malaria classification results analysis of IDTL-MPDC technique

No. of Epochs Precision Sensitivity Specificity Accuracy F1 score

100 95.85 95.67 95.99 95.85 95.00
200 95.01 95.45 95.14 95.41 95.93
300 95.53 95.47 95.17 95.51 95.17
400 95.48 95.86 95.81 95.67 95.52
500 95.08 95.77 95.70 95.73 95.29
600 95.86 95.82 95.98 95.86 95.69
700 95.04 95.19 95.46 95.06 95.13
800 95.50 95.17 95.68 95.42 95.71
900 95.65 95.57 95.35 95.59 95.40
1000 95.47 95.46 95.09 95.46 95.05

A comprehensive precn and F1score analysis of the IDTL-MPDC system with varying epochs is
shown in Fig. 5. The results show that the IDTL-MPDC methodology can improve the values of precn

and F1score. For example, with 100 epochs, the IDTL-MPDC methodology obtained precn and F1score of
95.85% and 95%, respectively. Simultaneously, with 400 epochs, the IDTL-MPDC technique achieved
precn and F1score of 95.48% and 95.52%, respectively. Moreover, after 700 epochs, the IDTL-MPDC
system achieved precn and F1score of 95.04% and 95.13%, respectively. Eventually, after 1000 epochs,
the IDTL-MPDC technique obtained precn and F1score of 95.47% and 95.05%, respectively.
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Figure 3: Result analysis of the IDTL-MPDC technique in terms of accuracy

Figure 4: Result analysis of the IDTL-MPDC technique in terms of seny and specy

Figure 5: Result analysis of the IDTL-MPDC technique in terms of precn and F1score
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Fig. 6 depicts the receiver operating characteristic (ROC) curve analysis of the use of the IDTL-
MPDC technique on the test dataset. The figure states that the IDTL-MPDC technique has attained
improved outcomes with the maximal ROC of 98.6290.

Figure 6: ROC analysis of IDTL-MPDC technique

Fig. 7 shows the ROC analysis of the IDTL-MPDC technique on the test dataset. The figure
exposed that the IDTL-MPDC technique has reached an enhanced outcome with the minimum ROC
of 97.9295.

Tab. 2 provides an extensive comparative analysis of the IDTL-MPDC technique with other recent
methods [21]. Fig. 8 depicts the accuy analysis of the IDTL-MPDC technique with other techniques.
The figure shows that the AIPM-CM and ML-ASM techniques have lower accuy values of 73% and
84%, respectively. This is followed by the Inception-v3, You only look once (YOLO)v3, YOLO-v4, and
Faster Region-Based Convolutional Neural Network (RCNN) models that exhibit moderate accuy

values of 93.06%, 93.15%, 94.75%, and 93.26%, respectively. However, the IDTL-MPDC technique
has outperformed the other techniques with a maximum accuy of 95.86%.

Fig. 9 illustrates the F1score analysis of the IDTL-MPDC method with other algorithms. The figure
clearly shows that the AIPM-CM and ML-ASM techniques have reduced F1score values of 79% and
81%, respectively. In addition, the Inception-v3, YOLO-v3, YOLO-v4, and Faster R-CNN models
displayed moderate F1score values of 93.06%, 92%, 91%, and 89.71%, respectively. The IDTL-MPDC
model outperformed the other approaches with a maximum F1score of 95.69%.
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Figure 7: ROC analysis of IDTL-MPDC technique

Table 2: Comparative analysis of the IDTL-MPDC technique with different measures

Method Accuracy Sensitivity Specificity F1 score Precision

AIPM-CM 73.00 85.00 72.00 79.00 76.00
ML-ASM 84.00 98.10 68.90 81.00 83.00
Inception-v3 model 93.06 92.97 93.13 93.06 93.06
YOLO-V3 93.15 92.00 93.25 92.00 91.00
YOLO-V4 94.75 92.00 95.23 92.00 92.00
Faster R-CNN 93.26 86.90 94.25 89.71 92.70
IDTL-MPDC 95.86 95.82 95.98 95.69 95.86

Fig. 10 depicts the precn analysis of the IDTL-MPDC technique with other techniques. The
figure stated that the AIPM-CM and ML-ASM techniques have portrayed lower precn values of
76% and 83%, respectively. The Inception-v3, YOLO-v3, YOLO-v4, and Faster RCNN models have
demonstrated moderate precn values of 93.06%, 91%, 92%, and 92.7%, respectively. The IDTL-MPDC
technique outperformed the other methods with a maximal precn of 95.86%.
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Figure 8: Accy analysis of the IDTL-MPDC technique with other existing approaches

Figure 9: F1score analysis of the IDTL-MPDC technique with other existing approaches

Figure 10: Precn analysis of the IDTL-MPDC technique with other existing approaches
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4 Conclusion

In this study, a new IDTL-MPDC technique has been proposed to effectively determine the
presence of malarial parasites in blood smear images. The IDTL-MPDC technique involves vari-
ous sub-processes, namely, MF-based pre-processing, Res2Net-based feature extraction, DE-based
hyperparameter optimization, and KNN-based classification. The optimal selection of Res2Net
hyperparameters by the DE model helps achieve enhanced classification outcomes. A wide range of
simulation analyses of the IDTL-MPDC technique have been carried out using a benchmark dataset,
and the simulation results reported better outcomes than other related techniques. Therefore, the
IDTL-MPDC technique can be utilized as a proficient tool for the detection and classification of
malarial parasites. In the future, deep instance segmentation techniques should be included to improve
the classification performance of the IDTL-MPDC technique.
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