
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.024927

Article

Deep Reinforcement Learning Based Unmanned Aerial Vehicle (UAV) Control
Using 3D Hand Gestures

Fawad Salam Khan1,4, Mohd Norzali Haji Mohd1,*, Saiful Azrin B. M. Zulkifli2,
Ghulam E Mustafa Abro2, Suhail Kazi3 and Dur Muhammad Soomro1

1Faculty of Electrical and Electronics (FKEE), Universiti Tun Hussein Onn Malaysia, Parit Raja, 81756, Malaysia
2Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Malaysia

3Faculty of Engineering Science and Technology, Isra University, Hyderabad, 71000, Pakistan
4Department of Innovation, CONVSYS (Pvt) Ltd., 44000, Islamabad, Pakistan

*Corresponding Author: Mohd Norzali Haji Mohd. Email: norzali@uthm.edu.my
Received: 04 November 2021; Accepted: 19 January 2022

Abstract: The evident change in the design of the autopilot system produced
massive help for the aviation industry and it required frequent upgrades. Rein-
forcement learning delivers appropriate outcomes when considering a con-
tinuous environment where the controlling Unmanned Aerial Vehicle (UAV)
required maximum accuracy. In this paper, we designed a hybrid framework,
which is based on Reinforcement Learning and Deep Learning where the
traditional electronic flight controller is replaced by using 3D hand gestures.
The algorithm is designed to take the input from 3D hand gestures and
integrate with the Deep Deterministic Policy Gradient (DDPG) to receive the
best reward and take actions according to 3D hand gestures input. The UAV
consist of a Jetson Nano embedded testbed, Global Positioning System (GPS)
sensor module, and Intel depth camera. The collision avoidance system based
on the polar mask segmentation technique detects the obstacles and decides
the best path according to the designed reward function. The analysis of the
results has been observed providing best accuracy and computational time
using novel design framework when compared with traditional Proportional
Integral Derivatives (PID) flight controller. There are six reward functions
estimated for 2500, 5000, 7500, and 10000 episodes of training, which have
been normalized between 0 to −4000. The best observation has been captured
on 2500 episodes where the rewards are calculated for maximum value. The
achieved training accuracy of polar mask segmentation for collision avoidance
is 86.36%.
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1 Introduction

The eminent establishment of 3D hand gestures recognition systems provides massive applications
with the advent of artificial intelligence. To control a UAV having its own decision to fly by taking
input from 3D hand gestures provides for the user with the operator less mechanism by replacing
electronic remote with 3D hand gestures. A state of art segmentation and classification method [1]
describes the input image segments and classifies them with the designed optimized algorithm. This
technique is utilized in designing the recognition of 3D hand gestures classification from six different
types (Upward, backward, downward, upward, left, and right), which is used as the input for the
designed framework.

The hardware of any UAV is the most important part due to its design to hover and control
during flight. Proportional Integral Derivates (PID) and fuzzy controllers help the aviation industry
to design these technologies but with certain limitation such as professional knowledge for control,
electronic noise from the remote controllers, sensor-based collision avoidance, etc. The hardware
design mentioned in [2] utilizes the Inertial Measurement Unit (IMU) with the sensors for yaw, pitch
and roll to provide the values to formulate the reward functions for the decision to mobilize the UAV.
The best reward is estimated where after each episode a reset function is defined to learn the best path
during training.

There are many approaches when considering reinforcement learning such as policy-based, model-
based and value-based. A model-free approach where a policy is designed for UAV controller is used
for path planning, navigation and control [3]. Different path smoothening methodologies using Grey
Wolf [4] are used to provide the best path planning during the flight. There are various simulators
available like GymFC [5] for the implementation of reinforcement learning, especially for UAV attitude
control. LSTM based hand gestures recognition system may be useful for UAV control system [6].
Generally, ResNet101 and Inception V3 are utilized as backbone network during the selection of best
features for segmentation of the images [7].

Sensor-free obstacle detection using only a camera for detection and recognition has overcome the
cost and maintenance of UAVs. The image instance segmentation technique [8], which is used in this
work for UAV obstacle detection during its flight provides a prediction mechanism, which utilizes the
contours of the object present for the UAV, a polar coordinates system where the rays are constructed
from the edge of the object to calculate the Intersection Over Union (IoU) between different bounding
boxes.

The study in the subject of UAV control is intriguing, not only because of several improved or
proposed new DRL algorithms, but a wide range of its applications and also resolving for control
issues that were previously virtually difficult to solve. The DRL algorithm’s process of learning was
built on knowledge collected from images in [9,10]. As a result, improvements in single and multi-
UAV control utilizing various communications and sensing techniques clear the doors to widespread
real-world application of these techniques in a variety of activities such as monitoring, first rescuers
in disasters, transportation and agricultural, etc. Each of these studies shows that selecting a reward
function is just as essential as selecting a DRL algorithm. Every study presents, a unique reward
function depending on the study’s scenario as well as the control algorithm’s goal. This necessitates a
comprehensive examination of reward functions, and testing alternative reward functions underneath
the similar control algorithm can be fruitful resulting in greater control efficacy.
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1.1 UAV Navigation with RL
A test is carried on a UAV utilizing various reinforcement learning algorithms with the goal

of classifying the algorithms into two groupings: discrete action space and continuous action space.
Reinforcement learning is predicated on the agents being educated via tests and mistakes to navigate
and avoid obstacles. This feature is advantageous since the agent will begin learning on its own as
quickly as the training environment is complete. The research began with RL, which was used to
derive equations for sequential decision making, wherein the agent engages with the surrounding visual
world by splitting it into discrete time steps. Some parameters are tuned in the state form to receive
the best action provided by the Actor-network where the resultant Temporal Difference (TD) errors
are normalized by Critic-network for the control of UAV.

The suggested agent in discrete action space selects to implement a strategy in the manner of
greedy learning by selecting the best action depending on the provided state value. A deep Q network
may be used to determine this value in high-dimensional data, such as photographs (DQN). To address
these concerns, a new approach is developed where the suggested algorithm, dubbed Double Dueling
(DQN), integrates the Double DQN with the Dueling DQN (D3QN). In tests, the algorithm shows
a strong capacity to remove correlation and enhance the standard of the states. The study utilizes
a simulation platform named AirSim, which creates images using the Unreal Engine, to assist in
constructing a realistic simulation environment through using discrete action space. The simulation,
while providing certain constraints in the environment, does not give intricate pathways for the UAV
because all of the obstacles are situated on plain terrain. To address this problem, the researchers
designed a new habitat that comprises a variety of impediments such as solid surfaces in cubes and
spheres, among other things. RGB and depth sensors, as well as CNN as inputs to the RL network,
are utilized to calculate the best route for the drone [3]. The system is compatible with SAC off policy
and all other RL algorithms. There are various datasets containing multiple types of 3D hand gestures
available but in our case study, only six types of hand gestures are required to control the UAV in six
different directions.

1.2 Research Contributions
1. The design of the framework based on hybrid modules consists of 3D hand gestures recognition

using deep learning and reinforcement learning to control the UAV.
2. Development of an algorithm for an embedded platform to recognize 3D hand gestures for

activation of reward functions for the control of UAVs.
3. Design of the collision avoidance system for the UAV using polar mask techniques, which

calculates the least distance from the center of the obstacle for collision avoidance.

1.3 Research Objective
The research objective of this study is to design a novel framework to control the UAVs with 3D

hand gestures and a state of art collision avoidance system without using sensors.

1.4 Structure of the Article
The article is divided into (2) Related Work, (3) Proposed Framework (4) Results (5) Analysis and

Discussion, and (6) Conclusions.
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2 Related Work

Deep Reinforcement learning has changed the traditional design of flight controllers. There are
two versatile adaptive controllers for unmanned aerial vehicles (UAVs). The first controller was a fuzzy
logic-based robust adaptive PID. The second was based on an intelligent flight controller built on
ANFIS. The results showed that the built-in controllers are robust. Similarly, the findings showed
that in presence of external wind disruptions and UAV parametric uncertainties, the intelligent flight
controller based on ANFIS outperformed the stable adaptive PID controller based on fuzzy inference
[11]. An exhaustive study of open-source flight controllers that are freely accessible and can be used for
research purposes. The drone’s central feature is the flight controller, which is an integrated electronic
component. Its aim is to carry out the main functions of the drone, such as autonomous control and
navigation. There are many categories of flight controllers, each with its own set of characteristics and
functions. The paper proposes the fundamentals of the UAV design and its elements. It investigates
and contrasts the processing capacities, sensor composition, interfaces, and other features of open-
source UAV platforms. It also illustrates the discontinued open-source UAV platforms [12]. Few flight
controllers where timing assurances are critical in embedded and cyber-physical systems that would
limit the time between sensing, encoding, and actuation. This research discusses a modular pipe model
for sensor data processing and actuation. The pipe model was used to investigate two end-to-end
semantics: freshness and response time. The paper provides a statistical method for calculating feasible
assignment cycles and budgets that met both schedulability and end-to-end timing criteria. It shows
the applicability of the design strategy by porting the CleanFlight flight controller firmware to Quest,
the in-house real-time operating system. Experiments demonstrated that CleanFlight on Quest can
attain end-to-end latencies even within time bounds expected by observation [13].

A new framework concept for 3D flight path tracking control of (UAVs) in windy conditions. The
new design paradigm simultaneously met the following three goals: (i) 3D path tracking error device
representation in wind environments using the Serret-Frenet frame, (ii) assured cost management,
and (iii) simultaneous stabilization via a single controller for various 3D paths with a similar interval
parameter configuration in the Serret-Frenet frame. In the Serret-Frenet frame, a path tracking error
scheme based on a 3D kinematic model of UAVs in wind conditions was built to realize the three points.
Inside the considered operation domains, the Takagi-Sugeno (T-S) fuzzy model accurately represented
the path tracking error system. It examined a guaranteed cost controller design that reduced the upper
bound of a provided output function as a benefit of the T-S fuzzy model construction. The problem
of the guaranteed cost controller model was expressed in terms of Linear Matrix Inequalities (LMIs).
As a result, the developed controller ensured not only path stability but also cost management and
path tracking control for a suitable value 3D flight path in wind environments. Also, a simultaneous
stabilization issue in terms of finding a common solution in a series of LMIs was considered. The
simulation findings demonstrated the effectiveness of the proposed 3D flight path tracking control in
windy conditions [14].

A monitoring flight control scheme for a quadrotor with external disturbances dependent on a
disturbance observer. It was believed to include certain harmonic disturbances to aid in the processing
of potential time-varying disturbances. Then, to quantify the uncertain disturbance, a disturbance
observer was proposed. A quadrotor flight controller was designed using the output of the disturbance
observer to monitor the provided signals produced by the reference model. Finally, a proposed control
system was used to control the flight of the quadrotor Quanser Qball 2. The experimental findings
were presented to illustrate the efficacy of the control technique produced [15]. The design and
development of a quadrotor utilizing low-cost components and a Proportional Integral Derivative
(PID) control system itself as controller. This paper also explained the PID control system similar



CMC, 2022, vol.72, no.3 5745

to a flight controller. To explain the expense of developing this quadrotor, a basic economic analysis
was provided. According to the results of the experimental trials, the quadrotor could fly stably with
a PID controller, but there was still an overshoot at attitude responses [16]. A new full-duplex (FD)
confidentiality communication system for UAVs was used, which explored its optimum configuration
to maximize the UAV’s Energy Efficiency (EE). Particularly, the UAV collected sensitive information
from a ground channel while also sending jamming signals to disrupt a possible ground eavesdropper.
This research intended to optimize the EE for their secrecy contacts by jointly optimizing the UAV
trajectory as well as the source/UAV transmits/jamming forces over a finite flight time, since the UAV
has minimal onboard energy in practice. Despite the fact that the formulated problem was difficult
to solve optimally due to its non-convexity, the study also proposed an effective iterative algorithm to
reach a good suboptimal solution. The simulation results demonstrated that major EE changes could
be obtained by joint optimization, and the EE benefits were strongly dependent on the capacity of the
UAV’s self-interference cancelation [17].

A novel Integral Sliding Mode Control (ISMC) technique for quadrotor waypoint tracking
control in the existence of model inconsistencies and external disturbances. The inner-outer loop
configuration was included in the proposed controller: The outer loop generated the reference signals
for the roll and pitch angles, whereas the inner loop was equipped for the quadrotor to monitor the
desired x, y positions, as well as the roll and pitch angles, using the ISMC technique. The Lyapunov
stability study was used to demonstrate how the detriments affected the bounded model uncertainty
and external disturbances could be greatly reduced. To solve the consensus challenge, the engineered
controller was applied to a heterogeneous Multi-Agent System (MAS) comprised of quadrotors and
two-wheeled mobile robots (2WMRs). The control algorithms for 2WMRs and quadrotors were
presented. If the switching graphs still had a spanning tree, the heterogeneous MAS would achieve
consensus. Finally, laboratory experiments were carried out to validate the efficacy of the proposed
control methods [18].

A collision avoidance problem involving multiple Unmanned Aerial Vehicles (UAVs) in high-speed
flight, allowing UAV cooperative formation flight and mission completion. The key contribution
was the development of a collision avoidance control algorithm for a multi-UAV system using a bi-
directional network connection structure. To efficiently prevent collisions between UAVs as well as
between the UAVs and obstacles, a consensus-based algorithm ‘‘leader-follower” control technique
was used in tandem for UAV formation control to ensure formation convergence. In the horizontal
plane, each UAV had the same forward velocity and heading angle, and they held a constant relative
distance throughout the vertical direction. Centered on an enhanced artificial potential field method,
this paper proposed a consensus-based collision avoidance algorithm for multiple UAVs. To verify the
proposed control algorithm as well as provide a guide for engineering applications, simulation tests
including several UAVs were conducted [19].

Because of their long-range connectivity, fast maneuverability, versatile operation, and low
latency, unmanned aerial vehicle (UAV) communications play a significant role in developing the
space air-ground network and achieving seamless wide-area coverage. Unlike conventional ground-
only communications, control methods have a direct effect on UAV communications and may be
developed collaboratively to improve data transmission efficiency. In this paper, the benefits and
drawbacks of integrating communications and control in UAV systems were looked at. A new
frequency-dependent 3D channel model was presented for single-UAV scenarios. Channel monitoring
was then demonstrated with a flight control system, and also mechanical and electronic transmission
beam formulation. New strategies were proposed for multi-UAV scenarios such as cooperative inter-
actions, self-positioning, trajectory planning, resource distribution, and seamless coverage. Finally,
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connectivity protocols, confidentiality, 3D complex topology heterogeneous networks, and low-cost
model for realistic UAV applications were explored [20].

A hybrid vertical takeoff and landing (VTOL) unmanned aerial vehicle (UAV) of the kind known
as dual system or extra propulsion VTOL UAV in this paper [21]. This research covered the entire
system construction of such VTOL UAVs, covering aircraft model and implementation, onboard
computer- integration, ground station service, and long-distance communication. Aerodynamics,
mechanical design, and controller creation were also explored. Finally, a hybrid VTOL UAV was tested
to ensure that this had the necessary aerodynamic efficiency, flight stability, durability, and range.
Furthermore, with the built-in flight controller, the VTOL UAV could fly fully autonomously in a
real-world outdoor environment. It provided an excellent foundation for future research in areas such
as vision-based precise landing, motion planning, and fast 3-D imaging, as well as service applications
like medication delivery [22].

The design of using a motion controller to control the motion of a drone utilizing basic human
movements in this research. For this implementation, the Leap Motion Controller and the Parrot
AR DRONE 2.0 were used. The AR-DRONE communicated with the ground station through Wi-Fi,
while the Leap communicated with the ground station via a USB connection [23]. The hand signals
were recognized by the LEAP motion controller and relayed to the ground station. The ground station
operated ROS (Robot Operating System) in Linux that served as the implementation’s base. Python
was used to communicate with the AR DRONE and express basic hand signals. In execution, Python
codes were written to decode the LEAP-captured hand gestures and relay them in order to control the
motion of the AR-DRONE using these gestures [24].

The gesture-sensing system leap motion to control a drone in a simulated world created by the
game engine Unity. Four swiping movements and two static gestures were checked, like face up and
face down. According to the findings of the experiments, static movements were more identifiable than
dynamic gestures [25]. Between different users, the drone responded to gesture control with an average
accuracy of more than 90% [26]. Due to their basic mechanical structure and propulsion philosophy,
quadrotor UAVs are among the most common types of small unmanned aerial vehicles. Also, due to
the nonlinear dynamic behavior of these vehicles, specialized stabilizing control is needed. The use of a
learning algorithm that makes the training of appropriate control behavior is one potential approach
in easing the tough challenge of nonlinear control design [27].

Reinforcement learning was used as a form of unsupervised learning in this case study. A nonlinear
autopilot was first suggested for quadrotor UAVs based on feedback linearization. This controller
then was comparable to an autopilot learned by reinforcement learning with fitted value repetition
in terms of design commitment and efficiency. The effect of this comparison was highlighted by the
first simulation and experimental finding [28]. They compared the performance and accuracy of the
inner control loop that provides attitude control by using intelligent flight control systems trained with
cutting-edge RL algorithms such as Deep Deterministic Policy Gradient (DDPG), Trust Region Policy
Optimization, and Proximal Policy Optimization. To explore these unknown parameters, an open-
source high-fidelity simulation system was created first for training a quadrotor flight controller’s
attitude control using RL. The environment was therefore used to equate their output to a PID
controller in order to determine whether or not using RL is sufficient in high-precision, time-critical
flight control [5].
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3 Proposed Framework

The framework consists of a hybrid module based on deep learning and deep reinforcement
learning. The deep learning module is responsible for 3D hand gestures recognition, segmentation,
and classification. A private dataset contains 4200 images of 3D hand gestures of six types (up, down,
back, forward, left, and right) trained deep learning module is used as output, which fed into the
deep reinforcement learning module. The DRL agent (UAV) takes the state information from the
environment and calculated the reward function depending upon the gestures output and sensor data
from the environment. The hand gestures once segmented and classified with higher accuracy with
skeletal information converted into the required signals. In Fig. 1 shows the hybrid modules where
the Deep Reinforcement Learning (DRL) agent (UAV) activates the DRL algorithm after receiving
the state values from (pitch, yaw, roll) and best the reward functions to identify which action to be
performed.

Figure 1: A framework based on RL to control UAVs using 3D hand gestures

3.1 Reward Function
The framework based on deep reinforcement learning calculates the maximum reward during the

flight for its decision to move from left to right or right to left, down to up or up to down, backward
to forward, or forward to backward direction. The reward functions are the mathematical formation
from the different values of velocity, yaw, pitch and roll. The hand gestures input which is included
with these reward functions to be initialized for the UAV to take its decision according to the given
hand gesture. These reward functions can mathematically describe as:
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Rbackward = Vz′ − k
∑
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Vy describes the velocity of UAV in the Y direction, Vx demonstrates the velocity of the UAV in
the X direction and Vz is the velocity of the UAV in the Z direction. x is the initial position of UAV in
X-axis when forward gesture initiated, z is the initial position of UAV in Z-Axis when the downward
gesture initiated and y is the initial position of UAV in Y-Axis when right hand gesture is initiated. y’,
x’, z’ for the opposite direction. θr are angular values for Roll, ϕp for Pitch and δy for Yaw. k: Constant
value to minimize the motion of drone in x and z axis. k’: constant value to minimize the Euler angles
k’’: constant value to push the drone in y-direction.

The velocity (Vy, Vx, Vz) of brushless DC electric motors are adjusted near to minimize value
for hovering purposes. Initially, when the UAV started, it directly hovers to 6 feet from the ground
position. Fig. 2 demonstrate different positions of the UAV in the coordinate system for Pitch, Roll
and Yaw.

Figure 2: UAV attributes (Roll, Pitch, Yaw) with coordinate description

3.2 Algorithm for 3D Hand Gestures Recognition for UAV
The algorithm is designed for the embedded system platform to control the UAV and can be

scalable for any non-embedded system.

Initialize Hand = hand_Detection ()

Define class Hand = classify_Hand ()

while True

if Hand

Gesture = class_Hand.gesture (Hand)

if Gesture == ‘forward’

callfunction Vz − k
∑

[
(
y2 + x2

) − k′ (θr
2 + ϕ 2

p + δ 2
y

) + k′′]

if Gesture == ‘backward’

callfunction Vz′ − k
∑

[
(
y2 + x2

) − k′ (θr
2 + ϕ 2

p + δ 2
y

) + k′′]
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if Gesture == ‘left’

callfunction Vx − k
∑

[
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y2 + z2
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y

) + k′′]

if Gesture == ‘right’

callfunction Vx′ − k
∑

[
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) + k′′]

if Gesture == ‘upward’

callfunction Vy − k
∑
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2 + ϕ 2

p + δ 2
y

) + k′′]

if Gesture == ‘downward’

callfunction Vy′ − k
∑

[(x2 + z2) − k′ (θr
2 + ϕ 2

p + δ 2
y

) + k′′]

else

print (“No hand is detected”)

3.3 Collision Avoidance Using Polar Mask
The GPS sensor used for fencing the area which covers 10 meters from the center of the origin as

shown in Fig. 3. There can be various sizes and shapes of the objects (obstacles) in its path. The UAV
consists of a camera having a field of view of 3 meters. The test scenario consists of four obstacles
(A, B, C, D). We considered obstacle A as the “Tree”. The Image captured for the obstacle object
(tree) during the flight of the UAV fed on the backbone network where different convolution layers
with stride sizes are used to create the feature pyramid network (FPN), then the process for mask-
segmentation is used to rebuild the captured image into a polar-coordinate plane. For depicting an
obstacle center, each bounding box with annotated area for center, mass, and the upper bound of the
segmented mask is examined for efficiency.

A center-sample, if it fell within a specific level from the obstacle mass-center. A Distance-
Regression of Rays is drawn over the complete mask. A network was generated for confidence scores
for the center and ray length. After the mask construction, Non-Maximum Suppression (NMS) is
used to eliminate superfluous masks over the same image.

The minimal bounding boxes with masks are computed and then Non-Max Suppression (NMS)
relying upon on IoU of the resulting bounding boxes. The shortest distance was calculated from the
origin to the boundary of the mask, once the shortest distance computed, the reward function activated
and decided to move the UAV and avoid a collision from the obstacle.

A Feature-Pyramid-Network was created for the mask from the highest-scoring predictions to
build by combining the best forecasts of all levels using Non-Max Suppression (NMS). The mask
assembling and NMS techniques can be defined by using the center locations (wd, vd) as well as the
length of rays (b1, b2, . . . , bn), the spot of each equivalent contour point (wj, vj) can be calculated.

wj = cos θj × bj + wd (7)

vj = sin θj × bj + vd (8)
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Figure 3: Obstacle avoidance scenario

For obstacle detection, centerness was developed to reduce poor bounding boxes. Nevertheless,
merely implementing center-ness in a polar plane was insufficient as it was intended for conventional
bounding boxes though not mask. Polar Centerness can be defined by supposing the length of rays
(b1, b2, . . . , bn):

Polar Centerness =
√

min ({b1, b2, . . . , bn})
max ({b1, b2, . . . , bn}) (9)

Polar-Ray-Regression developed a convenient and straightforward approach for computing the
mask-IoU in a polar plane and the Polar-IoU loss function, in order to enhance the modeling and
attain competitive results. So, Polar IoU is calculated as:

Polar IoU =

n∑
j=1

bmin
j

n∑
j=1

bmax
j

(10)

To maximize the size of each ray, the Polar IoU loss function is described by the Polar-IoU’s Binary
Cross Entropy (BCE) loss. The minus log of the Polar-IoU is used to illustrate the polar-IoU loss
function. The Polar Mask architecture consist of backbone + FPN combined with the Head network
is shown in Fig. 4. The polar loss function is computed as:
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Figure 4: Architecture for collision avoidance using polar mask
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Polar IoU Loss = log

n∑
j=1

bmax
j

n∑
j=1

bmin
j

(11)

Integrating the differential Intersection Over Union (IoU) distribution in terms of differentially
angles yields for the mask-IoU in polar coordinates. Polar-IoU loss improves the mask regression
overall rather than improving every ray individually and resulting in higher efficiency. Mask IoU is
found by using polar integration.

IoU = ∫2π

0
1
2
min(b, b∗)

2dθ

∫2π

0
1
2

max (b, b∗)
2dθ

(12)

The architecture for the design of the collision avoidance system is shown in Fig. 3 consists of
backbone network and the feature pyramid network (FPN) having eight convolution layers with
different stride sizes. The designated polar rays are marked from the center using Eq. (9) and the least
distance calculated for each ray from all directions.

The major effect of using Polar mask segmentation is to provide a length of predicted rays which
must be similar to the target rays, once the rays are equal to IoU which calculates the minimized mask
in the polar space. Feature Pyramid Network (FPN) may also be refined used in the backbone network
by re-scaling into a different level of feature maps that have been achieved by contextual information.

Eqs. (9), (10) and (12) is used to provide the mechanism to calculate the least distance from the
center of the obstacle object to the end of the boundaries marked during the rays are regressed. Once
the least distance is calculated either from left to right or down to up or in inverse directions, the reward
function mentioned above activated for the avoidance of collision with the object (tree).

The velocities of the brushless DC electric motors will be minimized to take the hover position,
once the obstacle is detected inside the GPS coordinates circle is shown in Fig. 3.

4 Results

The results of the proposed framework are divided into three-part (i) The reward estimation for
six different hand gestures using Deep Deterministic Policy using Actor critic Network and (ii) PID
based controller results for the analysis between the RL based controller. (iii) Accuracy and loss results
for the Polar Mask segmentation.

4.1 Experimental Setup
The Nvidia Jetson nano with intel D435i depth camera is used for the experimentation. The UAV

consists of 4 x brushless DC electric motors, F450 UAV chassis, Electronic Speed Controller (ESC)
four quantity, 10-inch four quantity fiber propellers, Power distribution box (PDB) for connecting
different wires from motors, batteries, landing gears, and Inertial Measurement Unit (IMU). The 40
General Purpose Input/Output (GPIO) pins of Jetson Nano embedded board contains 4 × I2C pins,
4 × Universal Asynchronous Receiver-Transmitter (UART) Pins, 1 × 5 V pin, 2 × 3V3, and 3 Ground
Pins other 26 GPIO Pins. The pin # 3 (SDA) on jetson nano connected with pin # 27 Serial Data Pin
(SDA) on IMU and Pin # 5 Serial Clock Pin (SCL) on jetson nano with Pin # 28 (SCL) on IMU. We
send the Pulse Width Modulation (PWM) signal from pin # 33 to ESC which operates at 3.3v and
sends the 3-phase supply to brushless DC electric motors.
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In the environment created on Ubuntu 18.04, different libraries of deep learning installed
consisting of NumPy, Pandas, Tensor Flow, and Keras. For the DDPG agent, we used Actor-Critic
network followed by a reply buffer for the storage of reward functions during the training. The reset
function self. reset () has been created. This function is activated when it follows the wrong path
during the training. Multiple epochs are considered during the training for which maximum reward
achieved on 2500 epochs by hit and trial mechanism which resulted to stabilized for six different reward
functions is shown in Fig. 5.

Fig. 5 describes the reward estimation for the implementation of six different hand gestures. The
best reward estimation was observed during the training of 2500 episodes.

Figure 5: (Continued)
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Figure 5: Reward estimation with six different 3D hand gestures

The training cycle of 30 epochs with 1560 iterations configured 52 iterations per epochs with
the learning rate of 3.2e-08 for the calculation of Polar Mask for collision avoidance, below Fig. 6.
demonstrates the accuracy and loss where black dots show the validation cycle. The received accuracy
is 86.36%.

Figure 6: Estimations of accuracy and loss for polar mask segmentation
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5 Analysis and Discussion

A PID controller may also be used to adjust and train the Reinforcement Learning (RL)
algorithms. The controller updates the reward values and the next action based on the inputs and
observations of the UAV’s current state. The PID controller receives data from onboard sensors as
well as the value of the three gains used to assess the system’s durability. The analysis has been made
both for PID and RL-based controller, it is quite obvious that after the training for 2500 episodes, the
reward functions for six different hand gestures provide the best accuracy and control for UAVs using
the proposed framework. Figs. 7 and 8 below shows the values of pitch and roll from the PID-based
controller. PID controller utilized to train on fewer iterations where RL based controller trained on a
minimum of 2500 epochs.

Figure 7: PID controller initialized state without 3D hand gestures

Figure 8: PID controller initialized state without 3D hand gestures

It was also observed that the polar mask technique used for collision avoidance provided better
results without using any sensors to stop the UAVs, the system has calculated the center location and
marked the edges and construct the rays with different angles. The segmented image once marked
with IoU then calculate the least distance with the center locations, the distance then utilized for
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the activation of reward functions to move the UAV for collision avoidance. The initial threshold
for the distance between the UAV and the obstacle (tree) was set for 5 feet and marked before the
experimentation. Figs. 9 and 10 shows the attitude control obtained during collision avoidance while
the movement of UAV calculated through roll and pitch in back-and-forth direction, the IMU is
calibrated and the offset in the accelerometer and gyroscope removed from the initial values, so the
graph of the pitch only changes and the graph of roll smoothen near zero.

Figure 9: : Attitude control after calibration of IMU

Figure 10: : Attitude control before calibration of IMU

6 Conclusion

Deep reinforcement learning has revolutionized the area of UAV route planning, navigation, and
control. Luckily, advances in DRL controller design and UAV mechanical architecture are constantly
being created and evaluated. As a result, new difficult tasks and uses for various types of UAVs have
emerged.

The state of art reinforcement learning UAV control with 3D hand gestures provided evident
contribution in the field of robotics. There are some environmental factors including wind speed,
rainfall, and dirt which must be addressed while improving whole systems because they create
ambiguity in outcomes. As a result, it should be classified as a system disruption and dealt with
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properly. The limitation of detecting 3D hand gestures due to the FOV of the camera ranging to 3
meters can be removed by replacing a better range of FOV of the camera.

The reward function, which is defined by the UAV’s behaviors, is important to using RL in UAV
navigation. The designed reward functions imply the best stability during training with 2500, 5000,
7500, and 10000 episodes where it has observed the maximum reward received on 2500 episodes.
The computational time on NVidia jetson nano observed for each episode is 15 micro second during
training. The system works by continuous modification of the UAV state depending on data produced
by onboard sensors, and calculating the best course of action and associated reward values.

For future work, the collision avoidance system may be improved by replacing the GPS sensor
with the Camera Field of View (FOV) to avoid limitations with GPS and its accessories.
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