
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.024819

Article

Transforming Hand Drawn Wireframes into Front-End Code with Deep
Learning

Saman Riaz1, Ali Arshad2, Shahab S. Band3,* and Amir Mosavi4

1Department of Computer Science, National University of Technology, Islamabad, 44000, Pakistan
2Department of Computer Science, Institute of Space Technology, Islamabad, 44000, Pakistan

3Future Technology Research Center, National Yunlin University of Science and Technology, Douliu, 64002,
Yunlin, Taiwan

4Faculty of Civil Engineering, Technische Universitat Dresden, Dresden 01069, Germany
*Corresponding Author: Shahab S. Band. Email: shamshirbands@yuntech.edu.tw

Received: 01 November 2021; Accepted: 25 January 2022

Abstract: The way towards generating a website front end involves a designer
settling on an idea for what kind of layout they want the website to have, then
proceeding to plan and implement each aspect one by one until they have
converted what they initially laid out into its Html front end form, this process
can take a considerable time, especially considering the first draft of the design
is traditionally never the final one. This process can take up a large amount
of resource real estate, and as we have laid out in this paper, by using a Model
consisting of various Neural Networks trained on a custom dataset. It can be
automated into assisting designers, allowing them to focus on the other more
complicated parts of the system they are designing by quickly generating what
would rather be straightforward busywork. Over the past 20 years, the boom
in how much the internet is used and the sheer volume of pages on it demands a
high level of work and time to create them. For the efficiency of the process, we
proposed a multi-model-based architecture on image captioning, consisting of
Convolutional neural network (CNN) and Long short-term memory (LSTM)
models. Our proposed approach trained on our custom-made database can be
automated into assisting designers, allowing them to focus on the other more
complicated part of the system. We trained our model in several batches over
a custom-made dataset consisting of over 6300 files and were finally able to
achieve a Bilingual Evaluation Understudy (BLEU) score for a batch of 50
hand-drawn images at 87.86%

Keywords: Deep learning; wireframes; front-end; low fidelity; high fidelity;
design process; html; computer vision; dsl

1 Introduction

Nowadays, transforming hand-drawn wireframes into front-end code is created by a designer into
computer code is a typical customized software, websites, and mobile apps [1–3], which serves as a
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rough idea of how we want the final structure to be. A key issue with this is that because sites are built
of dozens if not thousands of different pages, having to create and design a sketch then converting that
into functioning code can be extremely costly and time-consuming, as designers need to go through
one by one and implement each required aspect of the final structure [1,4]. All this time adds up and
takes up a significant amount of development time for the projects, time that could be better used
elsewhere, such as the more technical aspects of the work.

In our proposed work, the process of converting the wireframes to code involves passing the design
to a developer/UI designer, having them implement the boilerplate graphical user interface (GUI)
[1,5,6], and then reiterate this product until they reach a stage that they or the client are satisfied with.

Deep learning changed front-end development by increasing prototypes speed and lowering the
barrier for building software. In this paper, we tackle the issue and aim to facilitate the needs of
designers by saving them a significant amount of time. Using deep learning techniques [2–3,7–9] would
enable the automation of the creation process by simply letting the designers take their sketches and
manipulate them using the model into HTML code. Using Neural Networks, we can employ them to
learn the underlying patterns and context of elements on a sketch and convert them into front-end
Html code [1,4], which they could then edit, customize or implement according to their needs. The
objectives of our system are such that:

• Saves time: Removing the need for a large amount of busy work frees the designers to work on
other more complicated or involved portions of their work as now the time to sketch to code
conversation does not need to be painstakingly done over and over.

• Focus: Designing front-ends can sometimes be tedious and repetitive work, preventing devel-
opers from focusing on actual core logic. This system will help them focus on actual problems.

• Flexibility: This will allow us to quickly transition between different designs to test out what
works best with the desired application, spending less time and resources with each iteration.

• Accuracy: With the implementation of our proposed technique, the system can produce an
accurate extrapolation of the given sketches into their proper code form with an average of
87.86% accuracy.

The contribution of our proposed system, we found the best approach is through the usage of
multi-Model deep learning [2–3,7–9] and computer vision [7–9] techniques to train a system to handle
the vast number of variations in a hand-drawn wireframe. We believe that through a rigorous training
process and implementation of these concepts, we can create a model capable of servicing various
users’ needs and generating a front end with a high amount of accuracy.

There were some major challenges in the creation of such a system:

• Dataset Disparity for a deep learning model.
• A large amount of time and resources are required in the creation of a new custom dataset.
• Hardware Limitations due to costly training times.
• Dividing the issue into sub problems, namely computer vision and language modeling problems.
• Getting each element to be recognized by the model, and correctly translated.

2 Backgrounds
2.1 Sketches

Sketching is a Hand-drawn mockup or User interface design shown in Fig. 1; it is the basis of a
user interface before prototyping [10,11], and coding. Sketching [12] comes after the idea of a website
or any application before building screen mockups in a website wireframe tool. Sketching refers to the
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act of working through all the possible ways you could make your idea into an interface reality [12]. At
the end of the UI sketching process, you should know that you have figured out the absolute best way
to bring your product to the screen. However, you choose to sketch your initial User Interface ideas;
keeping it simple and not spending too much time on it is essential.

Figure 1: Representation of a user interface designed for a website

2.2 Wireframes
A wireframe [13,14] is a simple representation of a products design. They represent a way to get

ideas down quickly. They help designers focus on the more functional aspect before moving on to
the finer details. They are generally two types of wireframes: Low-fidelity wireframes [15] and High-
fidelity wireframes [16]. A low-fidelity wireframe is a simple representation shown in Fig. 2a. It can
be a drawing on a whiteboard, a rough sketch drawn on pieces of paper, just as long as it can properly
communicate the purpose of what we want to create. High-fidelity wireframes are more complete
representations of the end product, which is shown in Fig. 2b. They help to communicate how aesthetic
features support essential functionalities.

Figure 2: Representation of low fidelity wireframes (a) and high fidelity wireframes (b)
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2.3 Frontend
Front-end design consists of user experience elements on the web page or application, including

menus, pages, buttons, icons, links, graphics, etc. The front-end is a combination of the following
technologies such as HTML [17], CSS [18], and Javascript [19].

3 Literature Review

In this section of the paper, we explore the current studies and research done in the field of sketch
to code conversion.

Beltramelli proposed pix2code [4], which managed to implement, which managed to convert
high-fidelity wireframes into code. They trained their model with stochastic gradient descent [20] to
simultaneously learn to model sequences and Spatio-temporal visual features [21] to generate variable-
length strings of tokens from a single GUI image as input. It was designed to process the input data; the
Author model learns from the pixel values of the input image alone. Pix2code converted screenshots
to code, but it cannot still convert hand-drawn wireframes into code. At the same time, our proposed
method converted hand-drawn sketches into code.

Alexander Robinson proposed Sketch2code [1] by which attempts to solve the problem of
translating wireframe sketches into code using deep learning [22] that showed considerable success
over classical techniques when applied to other domains, particularly in vision problems.

DeepCoder [23], a system created to generate computer programs by leveraging statistical pre-
dictions to augment traditional search techniques done by MatejBalog, Alexander L. Gaunt, Marc
Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. In another work by Gaunt et al., the gen-
eration of source code is enabled by learning the relationships between input-output examples via
differentiable interpreters. Program generation like this is a very active research field but program
generation from taking visual inputs is still an unexplored area that our research paper attempts to
explore.

Tuan Anh Nguyen and ChristophCsallner on Reverse Engineering Mobile Application User
Interfaces (REMAUI) [24]. REMAUI identifies user interface elements such as images, texts, contain-
ers, and lists, via computer vision [25] and optical character recognition (OCR) [26] techniques. This is
a good example of how these types applications take a wireframe or high-fidelity image and translate
them into code. These applications with structure also solve all the associated styles with it, but it faces
the problem of adding new examples, which is challenging and time-consuming. The problem is made
worse by the inclusion of style in the designs, leading to a significantly higher variation than the digital
drawings in the low fidelity designs [1].

SILK [27] by James A. Landay (Human-Computer Interaction Institute School of Computer
Science Carnegie Mellon University). SILK is an interactive tool that allows designers to sketch and
an electronic pad quickly. It then retains the “sketchy” look of the components. The system facilitates
quick prototyping of interface ideas through the use of gestures for sketch creation and storyboards.

It uses a combination of computer vision [7–9] techniques to classify shapes drawn on a digital
surface into predefined components such as corner detection and line detection, classify shapes and
application elements such as buttons, text, textfield, box, etc. The main advantage of SILK [27] over
paper sketches is that it allows the storyboards to come alive and permits the designer or test subjects
to exercise the interface in this early, sketchy state.

While the concept of turning wireframes into code is not new, as with the advancement of machine
learning, more work has been put into it, but it still runs into some complex challenges. Thus, our
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primary analysis focused on two key papers, Sketch2code [1] and Pix2code [4], each concerned with a
specific conversion aspect.

We have focused on two main research areas: the first one in turning high fidelity wireframes
such as digital mockups into code and secondly converting low fidelity drawings into code. Both
these studies have one thing in common: the translation of wireframes designs into a coded form.
The significant difference is the fidelity of the designs being translated.

From our examination of the current work done, we saw that there was a limited number of
elements considered in the research, which we believe could be improved upon, along with this the
primary dataset contained GUI images and their associated code, so we decided to make alterations
within the primary dataset to make it look more hand-drawn. To this end, we created a model with
various optimizations to ensure better accuracy and training times, along with an increased amount
of considered elements in its conversion from wireframes into code.

4 Techniques
4.1 Computer Vision Techniques

To build a system that could detect the various aspects of our sketches, such as the lines and
edges, we needed to use computer vision techniques [7–9]. Computer vision is how a computer can
understand images or videos; it relies on acquiring, processing, and analyzing digital images and using
information supplied to it, to create a context in which to break down said images.

4.1.1 Edge Detection

To make our system work, we need to consider how we go about detecting the various elements
in our wireframe [13] sketches. To this end, when we draw a wireframe symbol consisting of straight
or sometimes rounded edges, the CNN will detect these edges effectively given enough sample size.

There are various techniques commonly used to detect edges:

• The Sobel operator [28] computes the gradient map of an image and then yields edges by
thresholding the gradient map.

• The Canny operator [29] extends the Sobel operators, which adds Gaussian smoothing as a
preprocessing step and uses the bi-threshold to get the edges.

• Richer Convolutional Features [30] is a state-of-the-art deep learning approach using convolu-
tional networks.

4.1.2 Segmentation

The sketches that one would create many types of elements, for example, buttons, image boxes,
radio buttons, checkboxes, text boxes, etc. To make sure these various elements are detected adequately
to be converted into code, we need a system to segment [31] each part of the sketch and classify them
for our system to convert them to their correct forms.

The approach we researched consisted of using a U-Net Model [32] that is trained to segment a
hand-drawn image by color-based segmentation [33]. It derives its name from how its architecture,
when visualized, seems to lay out what it is. It derives its name from how its architecture, when
visualized, seems to lay out what it is can be said as the shape U.
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4.1.3 Data Augmentation

One of the key hurdles for our work was the lack of available data; to this end, we needed to
employ the concept of data augmentation [34]. Data augmentation is the technique of increasing the
amount of data available by slightly modifying different copies of the existing data and turning them
into new data.

Our methods of data augmentation involved manipulating our current hand-drawn images by
Altering the scale, Flipping and Rotating, Changing Brightness and Contrast and Adding Noise.
Through this augmentation, we were able to achieve a certain amount of variation within the dataset,
mainly used to counter overfitting problems that arise from the use of our synthesized dataset.

4.2 Scripting Techniques
To increase the sample size of the primary dataset, we finally decided to employ a custom script

that would directly alter the CSS elements present in the GUI images. We tried to introduce various
human elements and variations to the images like skewed lines, fonts that resemble human writing,
rounded off edges, clear white background with the elements drawn in black, etc. We were successfully
able to replicate a hand-drawn feeling to the primary dataset, though produced synthetically.

4.3 Deep Learning Techniques
Machine learning serves as the basis for our entire system to work. It is a greatly emerging and

powerful tool used to give computers the ability to learn and adapt to serve purposes without explicitly
programming each function. It achieves this by being fed a large amount of data and “teaching” it
how to analyze and use that data to then work on newer information for a specific task. We chose
machine learning as it is excellent for classification and detection tasks, along with helping to automate
busywork significantly. In this section, we talk about the essential techniques we explored and used in
our approach.

4.3.1 Convolutional Neural Networks

Convolutional Neural Networks [30,35] are deep learning [3] algorithms that take input images
and assign a level of weight and basis to them. Using those weights can better differentiate one image
from another.

CNN’s use raw pixel data as input when incorporated into image-based projects, and they consist
of input, output, and hidden layers shown in Fig. 3, and these hidden layers consist of Convolutional
layers, Pooling layers, and Fully connected layers. The way we have incorporated CNNs in our work
is an Encoder. This encoder used as means through which the model encodes, and understands the
elements present in the hand-drawn image. With this, we can classify various types of elements present
in a Wireframe [13] Image.

4.3.2 Recurrent Neural Networks

RNNs are a robust form of neural network that uses their internal state (memory) to process a
variable length of sequences of inputs; this makes them great for applications involving handwriting
recognition. There are two of the types of RNNs that are made use of are Long short-term memory
(LSTM) [36] and Gated recurrent units (GRUs) are a gated mechanism in RNNs; they lack an output
gate and thus have fewer overall parameters than an LSTM. They serve well as encoders and decoders
[37], as they provide context to the images in the form of a sequence of tokens. In our system we used
GRU as a decoder.
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Figure 3: The architecture of Convolutional Neural Network

4.3.3 Fine Tuning

All image tensors [38] were compressed into simple images and were converted into low-resolution
images to save memory. These low-resolution images were then converted again into image tensors for
further resource-saving. Although the model has been relatively optimized since it started working, it
is costly to Pre-Process, so to evaluate it, we had to reduce the sample size. In addition to this, to train
such a complicated Model with our Improvements on the total sample size, we used a Cloud Server
[32] (Google Cloud Services) to train it.

5 Methodology

To conduct an applied research study and develop methods that convert a Hand Drawn Wireframe
into a working HTML code with a Hand Drawn Wireframe into a working HTML code with a
Hand Drawn Wireframe into a working HTML code with Deep Learning. We used a primary dataset
acquired from the research conducted by Tony Beltramelli [39], which contained over 1750 Images with
relation to their appropriate code files. We used this primary dataset [39] as a basis for our dataset
that we later improved upon, and trained over a series of Neural Networks [40] based on an Image
Captioning Architecture. With the help of this approach, we were able to convert a given Hand Drawn
Image of a Wireframe [1,15,16] into its HTML [13] file.

5.1 Dataset
Our approach required a larger dataset consisting of hand-drawn wireframes and their associ-

ated code.

We used Tony Beltramelli’s research dataset [39] as our primary dataset, which contained over
1750 GUI Images and their associated Code Files. However, since we required Hand Drawn Images,
we had to take specific steps to achieve a modified Dataset that our approach used effectively. Our
modified dataset contains Images that are limited to look as close as possible to a hand-drawn image
shown in Fig. 4 and has a sample size of 6300. We also altered the images and the code files with the
addition of newer elements which is shown in Fig. 5.
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Figure 4: Wireframe image from our dataset

Figure 5: Elements key for our wireframe images
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5.2 Framework
Our expected input image was a white background with elements drawn in a darker color fed into

the Framework. The front end was intended to make it easier to feed the input from the User. The
image was then processed into the Model, where Model tries to learn elements present in the image
and the context that each element has, including its sequence and structure. Our proposed Framework
shows in Fig. 6 how a wireframe image is passed into our Deep Learning model and how it is eventually
processed into our required output. The output of the Model was a sequence of DSL [1,4] tokens shown
in Fig. 6, which is Twitter Bootstrap [41], the reason being the limit on the sequence of GRU [5,42]
tokens. These DSL [1,4] tokens were then fed into a custom-made compiler that was finally converted
into an HTML [13] file, the expected output from our Framework.

Figure 6: Flowchart of our proposed approach

5.3 Technical Approach
Our proposed image captioning architecture based model shown in Fig. 7. Every image is first

encoded with a CNN-based encoder [5] model, and every code part that is first converted into one-hot
encoding [43] is then encoded with a language model composed of stacks of GRU [44] layers. These
two encoders are then concatenated and are fed into another stack of GRU layers which behave as a
decoder [5]. It performs token-level modeling by using one-hot encoded vectors [45], eliminating any
need for word embedding techniques such as word2vec [20], resulting in costly computations. After
which, a softmax layer [43] is used to output tokens based on the DSL [1,4] vocabulary size. Those
tokens are then fed into the custom bootstrap HTML compiler, which outputs HTML code. It is
created with the help of TensorFlow and Keras [46].

A rough image along with its associated code is used to train the model. After the model is trained,
it gives us the output in the form of tokens that are then passed into the compiler, which generates its
pure HTML and CSS shown in Fig. 8.

6 Experiment
6.1 Experiment Setup

As stated before, we decided to use Tony Beltramelli’s research dataset [39], which consisted of over
1750 GUI images and their associated code files. However, since our input requirement was a hand-
drawn image, we required low-fidelity wireframes and associated code files. Since such a convenient
dataset was not available in quality and quantity, we decided to alter and make modifications within
the primary dataset, to give it a feel as close as possible to a hand-drawn image. We researched various
techniques for making this possible; however, we ended up relying on a script that directly alters the
CSS properties of the GUI image front ends. The images were altered in a way to produce a hand-
drawn image shown in Fig. 9.
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Figure 7: Architecture of our proposed approach

Figure 8: HTML/CSS

The very first step we did was to pre-process our image data. Load images from an npz file
extension by converting them to a png format, using the PIL library. After loading the images, we
resized them from their former size of 1380 × 2400 to 256 × 256. This preprocessing step aimed to
reduce the amount of processing power needed to process UINT8 image tensors. The image tensors
were converted to npz and fed into the model. The next step was to pre-process the language files of
the dataset. A Vocabulary is made, which consists of all the elements that are present within an image.
We updated this vocabulary by the addition of a newer element for classification.

A total of 18 classes were used to predict the labels that are mentioned in Tab. 1, using Keras we
have a detailed summary of the model.

Total parameters shown in Tab. 2 are 139,723,686; apart from this, all libraries used in building
and evaluating this project is as numpy, lorem_text, nltk, argparse, keras.models, keras.callbacks,
keras.layers, keras.optimizers, spacy.
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Figure 9: Our hand-drawn image

Table 1: Vocabulary

Ref no. Token Description

1 <START> starting tag for the token.
2 <END> ending tag for the tokens.
3 { opening braces
4 } closing braces
5 Btn button tag
6 btn-active active button tag
7 btn-inactive inactive button tag
8 btn-orange orange coloured button tag
9 btn-green green coloured button tag
10 btn-red red coloured button tag
11 Row tag donating row section
12 Single div container that covers the full row
13 Double div container that covers half the row
14 quadruple div container that covers quarter of the

row
15 Header header tag
16 Text text tag
17 small-title smaller font size title tag
18 Img image tag
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Table 2: Model parameters

Ref no. Layer Output shape Parameter

1 Embedding (None, 48, 50) 900
2 Input Layer (None, 256, 256, 3) 0
3 GRU (None, 48, 128) 68736
4 Sequential (None, 48, 1024) 135414288
5 GRU_2 (None, 48, 128) 98688
6 Concatenate (None, 48, 1152) 0
7 GRU_3 (None, 48, 512) 2557440
8 GRU_4 (None, 512) 1574400
9 Dense (None, 18) 9234

6.2 Performance Measure
To measure and evaluate the performance of our model, we used the following methods:

1. BLEU Score: To evaluate and analyze the performance of our proposed method we use to
evaluate it using a batch of images on the BLEU, or the Bilingual Evaluation Understudy
metric, it is a score for comparing a candidate translation of the text to one or more reference
translations, where 1.0 would represent a perfect score whilst a 0.0 would indicate a poor score.
It is mathematically expressed as:

Unigram precision (P) = m
wt

(1)

which is the N-gram precision bounded above by the highest count of n-grams in any reference
sentence.

Brevity penalty (p) =
⎧⎨
⎩

1 if c > r

e
(

1 − r
c

)
if c ≤ r

(2)

a penalty added for short translations.

BLEU = p.e
N∑

n=1

(
1
N

∗ log Pn
)

(3)

consists of the brevity penalty and the geometric mean of N-gram precisions.

2. Spacy’s document similarity: Spacy’s similarity refers to the semantic similarity between words,
phrases or even between two whole documents. The core logic behind this is to create two
representative vectors of two items; using either universal vector created from pre-trained
models like word2vec, glov, fasttext, bartetc, spacy similarity is a cosine similarity between
the internal vectors for the document spacy creates. We selected five random documents with
each predicted and actual translation, and by using spacy’s similarity, we obtained results in
Tab. 3.
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Table 3: Spacy’s document similarity

Ref no. Similarity

1 0.9198421346903709
2 0.9986393236624259
3 0.9981439951832412
4 0.9921174511226027
5 0.9940782151415509

6.3 Results and Analysis
As shown in Tabs. 2–5 and their associated graphs in Figs. 10–12, the training process for the

model on our altered dataset consisting of over 6300 files shows the gradual decrease in the loss
and validation loss values after each batch was trained. We trained our images over four batches to
accommodate the complex pre-processing required before our training process. We observed from the
results we collected that there were spikes amidst the validation loss values and have concluded that
it was caused mainly because the dataset was synthesized to produce a hand-drawn feel and was not
hand-drawn apart from the addition of the newer element.

Table 4: Loss and validation loss

Batch 1 Batch 2

Epoch Loss (B1) Validation loss (B1) Loss (B2) Validation loss (B2)

0 1.810527562 1.019041462 0.1393571585 0.1262309174

1 0.7119945834 0.523254671 0.1314871309 0.1204248799

2 0.4200088239 0.3024036242 0.1253236435 0.1284791624

3 0.2752406637 0.2435374795 0.1172689563 0.1129708358

4 0.2346654019 0.2117428654 0.1110115367 0.1218733783

5 0.1964809008 0.2054587587 0.1072947877 0.1095917118

6 0.1793122481 0.171840534 0.100063439 0.1405449001

7 0.1700920767 0.1855002354 0.09747299706 0.1391996284

8 0.1651249885 0.1623811646 0.09498966053 0.1033399156

9 0.1565822626 0.1825149895 0.08927372812 0.1195550857

Table 5: Third and fourth batch epoch, loss, validation loss

Batch 3 Batch 4

Epoch Loss (B3) Validation loss (B3) Loss (B4) Validation loss (B4)

0 0.2714013859 0.1409717719 0.1201789499 0.1167939797
1 0.1282625072 0.2286272529 0.1085395017 0.1304072287

(Continued)
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Table 5: Continued
Batch 3 Batch 4

Epoch Loss (B3) Validation loss (B3) Loss (B4) Validation loss (B4)

2 0.1155536701 0.1328662336 0.1000736975 0.1105456484
3 0.1003801154 0.1922926778 0.0921522197 0.1258771133
4 0.09802151081 0.1574381596 0.08878851081 0.1056628559
5 0.09681803485 0.1260038112 0.08384299183 0.1078268196
6 0.08836132215 0.1588779345 - -
7 0.0836164189 0.116681695 - -
8 0.08256914456 0.1166688687 - -
9 0.07968492299 0.1336399116 - -

Figure 10: Graph of loss and validation loss values for the batch (1st, 2nd) vs. epoch size

In Figs. 10a and 11a, we can see that our model’s loss score and validation score are moving side by
side, but as we progress further in Figs. 10b and 11b, the validation score becomes increasingly jagged.
By observing the graph and its lines, it is clear that the model is overfitted. Although the newer element
we introduced, i.e., hand-drawn images, into the dataset, all the other elements were synthesized to
produce the effect of a handmade drawing. This caused our model to learn the synthesized part of the
dataset to the extent that it caused negative impact on overall results.

However, some of the negative impacts were reduced using overfitting reduction techniques,
namely by adding Gaussian noise and increasing the dropout of nodes. The model incorporated with
these techniques was trained again. We can see in Fig. 13, and Tab. 6 do somewhat mitigate the negative
effects of a synthesized dataset, but ultimately it reduces accuracy.
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Figure 11: Graph of loss and validation loss values for the batch (3rd, 4th) vs. epoch size

Figure 12: Graph of loss and validation loss for all the batches vs. epoch size

Figure 13: Graph of final loss and validation loss values of each batch in M1 and M2
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Table 6: Comparison of loss values between original model (M1) and our modified model (M2)

M1 M2

Batch Loss Validation loss Loss Validation loss

1 0.1565822626 0.1825149895 0.1525533622 0.1924324221
2 0.08927372812 0.1195550857 0.0853459232 0.0901312341
3 0.07968492299 0.1336399116 0.0713423424 0.0881313123
4 0.08384299183 0.1078268196 0.0710324202 0.0813042943

In the end, we obtained an average BLEU score of 0.8785 and received a favorable outcome from
spacy’s document similarities. However, these results can be further refined by using a dataset of actual
hand-drawn images instead of synthesized images and increasing the quantity of the overall dataset
with more significant variation. The model parameters can then be readjusted to coincide with the
dataset to produce a better result.

7 Conclusions

Our proposed method of Transforming Hand Drawn Wireframes into Front-End Code based
on multi-model Deep Learning techniques can successfully translate hand-drawn images based on an
established vocabulary with high accuracy and less time if the user adheres to will result in a clean
output for an Html front-end page. We enhanced the previous studies on the subject by increasing the
sample size of the preliminary dataset and added a newer element for classification and an analysis of
its performance. Various optimizations were made in the model to process the complicated data with
more ease and greater accuracy than previous implementations.

Our study into the subject of image conversion and multi-model deep learning techniques also
made us aware of the limitations that a project like this has, namely that, to further increase the
accuracy of this or a model of similar nature, a far greater dataset of quality and quantity will be
required, along with training for much greater variations and elements by using data based on actual
drawings that contain noise as well, because as our results concluded there are bound to be limitations
to a synthetically produced image. With the work done in this paper multi-model approach, enough
groundwork has been established for further extension of this work as deep learning, and computer
vision are both emerging fields.
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