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Abstract: Mobile broadband (MBB) networks are expanding rapidly to
deliver higher data speeds. The fifth-generation cellular network promises
enhanced-MBB with high-speed data rates, low power connectivity, and ultra-
low latency video streaming. However, existing cellular networks are unable
to perform well due to high latency and low bandwidth, which degrades the
performance of various applications. As a result, monitoring and evaluation
of the performance of these network-supported services is critical. Mobile net-
work providers optimize and monitor their network performance to ensure the
highest quality of service to their end-users. This paper proposes a Bayesian
model to estimate the minimum opinion score (MOS) of video streaming
services for any particular cellular network. The MOS is the most commonly
used metric to assess the quality of experience. The proposed Bayesian model
consists of several input data, namely, round-trip time, stalling load, and bite
rates. It was examined and evaluated using several test data sizes with various
performance metrics. Simulation results show the proposed Bayesian network
achieved higher accuracy overall test data sizes than a neural network. The
proposed Bayesian network obtained a remarkable overall accuracy of 90.36%
and outperformed the neural network.

Keywords: Quality of experience; quality of service; bayesian networks; mini-
mum opinion score; artificial intelligence; prediction; mobile broadband

1 Introduction

As support for high-speed internet access, mobile broadband (MBB) networks have grown very
quickly. Data demand has risen rapidly because of the large number of users using various mobile

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.



http://dx.doi.org/10.32604/cmc.2022.024642
mailto:abdulraqeb.alhammadi@utm.my

4572 CMC(, 2022, vol.72, no.3

technology and Internet services to access data. Hence, to enhance the quality of service, it is
highly necessary to monitor network performance. Performance and quality assessment are becoming
increasingly critical for mobile network operators with the rising demand on current networks. The
current fourth-generation (4G) networks are insufficient for bandwidth-hungry and low latency
applications. Enhanced MBB (eMBB) is the first of the three main categories in fifth-generation
(5G), extending to existing 4G networks. The 5G eMBB offers high-speed data, low latency video
streaming, and seamless mobility. Video streaming is the most used service by subscription users.
It plays the main role in evolving the quality of services (QoS) and user experience for the MBB
providers. Thus, monitoring network performance is very important to guarantee users satisfaction.
Different network infrastructures support various video services. For example, video over Internet
protocol (also known as AV-over-IP) is a technology that delivers video service over a conventional
cable network infrastructure. In contrast, video over LTE (VILTE) is an enhanced technology that
supports voice services with a high-quality video channel over LTE network infrastructure. These
services are improved continuously by mobile service providers to increase the number of satisfied
users in cellular networks.

International telecommunication union (ITU) introduced a new term called mean opinion score
(MOS), which assesses mobile network providers by evaluating the end-users’ satisfaction by obtaining
users opinions of a network’s performance [1]. The MOS metric is widely used for several services
and applications such as audio, audiovisual, and video. These services have various methods to assist
in scoring their service quality [2]. It also includes entertainment services such as conversational,
audiovisual, listening, talking, and video. Several MOS levels have been defined in ITU-T P.800.1,
which can be categorized into five levels based on the network quality [2]. Various methodologies
have also been used to examine network services, including audio, audiovisual, and video. While the
use of “reference quality indicator” and its general acceptance has an obvious advantage, MOS is
frequently used without enough assessment of its scope or limits. In [3], the common issues with various
types of MOS are highlighted and a variety of alternative methods for media quality measurement
are discussed. Numerous works have investigated and evaluated various types of service over wireless
networks. In [4], the authors evaluated the perceived quality of the VILTE service by performing an
experimental testbed realized at a mobile provider. Several network QoS parameters such as packet
loss and packet delay variation are utilized to predict differential MOS of the ViLTE services. In [5], the
authors proposed a prediction model based on data collected from 3G and 4G networks to estimate
the quality of experience (QoE) of web browsing and voice services. The model aimed to estimate
the MOS scale based on the user-perceived web and video qualities. In [6], a simplified E-model
based on a subjective MOS prediction model is proposed. This model aimed to enhance the objective
measurement tool for specific codecs. In [7], random neural networks are utilized to objectively predict
video quality, consisting of a three-layer feed-forward with a gradient descent training algorithm.
The predicted MOS achieved accuracy with approximately 50% compared to other models. However,
most proposed models deal with voice and web browsing services that are insufficient to evaluate the
network performance. Video streaming and data become very important in people’s daily life than
voice because of the increase in smartphone video applications that require more mobile video traffic.
Thus, more studies are required to evaluate video streaming performance over various MBB networks.
Several optimization techniques, such as artificial intelligence (AI) can be used to assist mobile services
providers to monitor and optimize their network performance. Currently, Al has become very popular
and involved in many different technologies. It is considered one of the most promising solutions in
the 5G networks that have been used to mimic human intelligence to support and improve a wide
variety of applications. Bayesian networks are a combination of Al and several theories, such as a
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graph, decision, and probability that uses Bayesian inference for probability computations. Bayesian
inference is used in many studies such as [8,9] that help to infer missing or unknown data.

In this paper, we propose a Bayesian graphical model to evaluate MBB network performance
by estimating the MOS from a dataset. The quality of video streaming service is considered, which
depends on several parameters such as stalling time, end-to-end latency, downlink bite rate. The
estimated MOS indicates service quality users’ satisfaction, which helps mobile network operators
maintain their network quality to satisfy users’ requirements. The remainder of this paper is organized
as follows. Section 2 provides a background on quality models used to determine services and
applications’ performance. Section 3 explains in detail the proposed Bayesian graphical model and
procedure and performance metrics. Section 4 analyses and evaluates the performance of the proposed
model. Section 5 concludes the paper.

2 Background

In this section, the background on the quality models and Bayesian networks are discussed. In the
quality models, we present various quality models to determine or estimate a network performance
based on the end-users preceptive. In the Bayesian networks, we introduce usage Bayesian networks
through an experimental perspective on probabilistic reasoning to predict an unknown particulate
variable.

2.1 Quality Models

Numerous services and applications, such as video streaming and real-time gaming suffer from
buffering, dropped frames, and additional delay because of end-to-end transmission and video
encoding and decoding. Moreover, some network constraints, such as limited bandwidth, network con-
gestion, and packet loss can negatively affect the end user’s QoE. Thus, several strategies for resource
and network management are required to optimize user satisfaction. Various system configurations
should consider the subjective user ratings to optimize the network performance.

ITU provides a recommendation of various quality models to determine or estimate network
performance based on the end-users’ preceptive. This recommendation specifies the terminologies to
be used in conjunction with quality expressions of audio, audiovisual, and video in terms of MOS.
Several identifiers are used to observe the MOS rate for quality of video (VMOS) service provided by
mobile operators, such as the subjective, objective, and estimated, which are referred to as S-VMOS,
O-VMOS, and E-VMOS, respectively [2]. In addition, various factors also influence the VMOS value
application, viewing device display size, and display resolution [ITU-T P.800.2]. The S-VMOS refers to
subjective video quality. It is based on the collected VMOS value laboratory test where it is determined
by the arithmetic mean value of subjective judgments. Subjective tests were carried out according
to obtain results in terms of MOS-VQS [10,11]. O-VMOS refers to the objective video quality that
depends on an algorithmic quality real-time evaluation model for determining the MOS score. The
real-time evaluation model utilizes various real-time objective metrics obtained from information
carried in the video streams and corresponding networks. ITU presented several models to investigate
bitstream assessment of video media streaming quality [12,13].

E-VMOS refers to the estimated video quality calculated by a network planning model. It aims
to predict video quality over a network in non-real-time parameters. The E-VMOS is used mostly
where the MOS values are not determined in real-time models. Some non-real-time models have been
defined in [14,15]. Fig. 1 shows the relationship between VMOS identifiers. For the subjective model,
the real-time parameters that come from the system feed the subjective test directly to determine the
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S-VMOS. In the objective model, the value of S-VMOS depends on several factors, such as real-time
video streams and system and calibration from the subjective test. However, in E-VMOS, video test
library and non-real-time parameters feed the network planning model to predict the value of E-
VMOS. However, these methods present a general concept of MOS models for various services. The
S-VMOS and O-VMOS are required for real-time parameters, which lead to complicated processes
and high costs, whereas E-VMOS requires only a sufficient database that can be collected at a specific
time in the desired area for testing the network performance.
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Figure 1: Relationship between VMOS identifiers [2]

2.2 Bayesian Networks

Bayesian networks are the method of choice for explainable reasoning in Al. This work aims
to introduce a prediction model based on Bayesian networks through an experimental perspective
on probabilistic reasoning. Bayesian networks are probabilistic graphical models that represent
joint probability distributions of a set of random variables. The networks measure the conditional
dependence structure of these variables according to Bayes theorem:
P = “EEED (n

(B)

where P( A|B) represents the posterior probability of an event A given prior knowledge of a condition
B. P(B|A) is a conditional probability of event B given prior knowledge of a condition A. P(A) and
P(B) are the unconditional probabilities of observing events A and B.

The graphical model of the Bayesian network consists of several nodes N (also known as vertices)
N = {x|, X, X3,...x,} and connected through a set A arcs where 4 = {a,,,, a,.,, a,.,,...4a,,} (also
known as an edge) as shown in Fig. 2.
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Figure 2: Basic concept of the bayesian graphical model

Priors P(Y) and conditionals P(Xi|Y) for Naive Bayes where it can be defined as a joint
distribution:

P(xi, X, Xs,...x,) = [ [ POul D). @)
i=1
Bayesian network is a type of network that contains data on the causal probability correlations
between variables and is frequently used to help in decision making. The Bayes theorem usually
updates the causal probability, where the Bayesian nodes indicate the inter-variable dependency
structure and the conditional relationships depict the directed arcs in the form of a directed acyclic
graph.

The conditional probabilities of p(z) represented by directed acyclic graph can be mathematically
expressed as follows:

P(Z)y= > P(X.Y.H,F), 3)
P(Z)= D P(Z|X,Y)P(X|H)P(H)P(Y|F)P(F). 4)

The conditional probability of p(z) represents the query stored in the graphical network in Fig. 3.
Eq. (5) can be written efficiently in terms of summation into four separate summations, one over each
variable. It requires enumerating all possible combinations of assignments to X, Y, H, and F, and then
multiplying the factors for each node.

P(Z)=>"> > > P(ZIX,Y)P(X|H)P(H)P(Y|F)P(F) (5)

Figure 3: Directed acyclic graph

The variable elimination on Fig. 3 and Eq. (5) uses elimination order X, Y, H, F. The variable F
can be eliminated by gathering the similar variable F (in this case P(Y|F)P(F) of the two terms. The
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product of this combination can be given in terms of factor f; of Y as follows:

P(Z)=)_>">" P(Z|IX,Y)P(X|H)P(H) > P(Y|F)P(F)

JS1»
= Z Z Z P(Z|X, Y)P(X|H)P(H)f,(y) (6)

Similarly, the next variable H also can be eliminated because it has a similar term that can be
computed in terms of factor f, of X as follows:

P(Z) =)D PZIX,Y)fi(y) D PXIH)PH) =Y > PZIX,V);()Ax) (7

Sr(x)
Finally, the probability of variable Z is simplified as presented in Eq. (7) over variables X and Y.

3 Proposed Model and Performance Metrics
3.1 Proposed Model

This section presents the proposed Bayesian graphical model, which consists of several nodes
and directed edges. This study is an extension of our previous work presented in [16]. The proposed
model aims to estimate the MOS of video services provided by MBB networks. The estimation process
of video quality requires non-real-time parameters which can be obtained from data measurements.
Fig. 4 illustrates the proposed model, which comprises seven primary nodes. Three input data nodes,
namely, stalling load, SL,, round trip time, RT; and bite rate, BR;, three MOS nodes stalling MOS
SM,, latency MOS, LM, and quality MOS, QM;, and the estimated video MOS node MOS;, where i
represents the number of test data. The proposed model then learns and trains several features of a
dataset obtained from the drive test in [17] to estimate the M OS; node.

[ fi SO |

Figure 4: Proposed bayesian network model for estimating MOS

Bayesian inference using the Gibbs Sampler (OpenBUGS) is a visual tool used to develop various
graphical models [18]. It is an open-source software that assists in designing and simulating different
Bayesian graphical models. The proposed model was built by utilizing the features of OpenBUGS,
which estimate the probability distribution of unknown node-based Gibbs sampler. First three nodes
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OM;, SM; , and LM, related to the inputs data that represent the MOS of each input data and are
defined as normal distributions with mean pg;, 14, and pu,; and variance 7,, 7, , and 7, respectively.

SM; ~ N(usi, T) (8a)
OM; ~ N(pg, To) (8b)
LM; ~ N(uw, ) (8¢)
where g, (o and p,; are computed as follows:

wsi = by 4+ b, SL;, (9a)
Moi = by + byuBR,, (9b)
i = by + by RT,, (9¢)

where SL;, RT; and BR, refer to stalling, round trip time, and load bite rates, respectively. They are
distributed uniformly in a defined range between minimum and maximum values as follows:

BR,,SL,, RT; ~ Uniforn(min, max) (10)

The initial values (b,,, b1, by, by, by, andbs,) were used to burn in for the first initial iterations
at the beginning of the unknown variable inference. All the initial values generated samples during the
burn-in period are discarded, except for the final state, which becomes the starting point for sampling.
They are defined as a normal distribution with by, carry any random values:

b ~ N(bu,7.), by ~ N(0.001), 7, ~ (0.001,0.001) for k=123;/=1,2. (11)

Then, the Bayesian model follows the Bayes’ theorem to infer unknown nodes, which generates
a posterior probability distribution based on the prior probability distribution and the likelihood
function of the data. Thus, the conditional probability of the posterior distribution is given by the
product of the prior and likelihood function.

posterior = prior X likelihood

The framework of the proposed prediction model treated in this work is illustrated in Fig. 5. The
framework consists of two main stages: real-time objective MOS and non-real-time estimated MOS.
The former refers to the raw database collected from different mobile operators where the MOS is
determined by an algorithmic quality real-time evaluation model. Meanwhile, the latter utilizes the
input video parameters to estimate the MOS over a non-real-time network. These input parameters
are considered necessary in QoE and QoS planning; thus, they feed the proposed Bayesian model to
predict the MOS values.

The sampling distribution is based on the Gibbs sampler, which is one of the Markov chain Monte
Carlo (MCMC) algorithms. The Gibbs sampling algorithm was employed to draw samples from the
high dimensional joint distribution [19]. It draws a large number of samples denoted with s'*" from
the given initial value s s and keep repeating the drawing samples k times. Eventually, these samples
approximate the joint distribution of all variables in the proposed model and infer the unknown
variable, MOS. Eqs. (12a)—(12¢) describe the steps of the Gibbs sampling algorithm for each drawn
sample. It proceeds as follows for the linear regression where all parameters initialize with starting
values.
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s; ~ P(Skl,5.4)

s_; 1s an assignment to all s, 55, 55 . . . 5, except s,
Next loop through the following steps:

ST~ P[50, 8950

S(2i+1) ~ P(S2|S§i+l)’sgi)’sy))

(i+1) (i+1)  G+1)
§570 ~ P(ss]s) L8 ose)

(i+1) (+1) GG+
s P(sels) ™, s

E-VMOS

(12a)

(12b)
(12¢)
(12d)

(12e)

These steps are repeated continuously with generated values to replace the initial values that burn
the sample at the first loop. The chain of values produced by these procedures refers to the Markov
chain (MC), which is a joint posterior distribution that converges to its equilibrium distribution.

3.2 Performance Metrics

In this section, the performance of the proposed model is evaluated based on an unknown
estimated MOS (EMOS) node. The OpenBUGS tool is the most widely used software packages for
fitting Bayesian models because it enables the user to specify a Bayesian model (prior and likelihood)
in the R language. In this sense, this software was utilized to evaluate and analyze the proposed model
based on MCMC simulations following Bayesian statistical theory. The specification of the proposed
model targets a posterior distribution to infer the unknown values. OpenBUGS provides and displays
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the numeric results of the estimation of the unknown MOS nodes and a summary of the posterior
inference.

The EMOS was examined using different testing methods. The testing data were divided into four
test groups: 20%, 40%, 60%, and 80%. Each testing data were examined separately to investigate the
effectiveness of the testing data size. All tested data sizes used the same parameters during the inference
phase. The proposed model was initialized, updated with 1000 iterations for burning-in samples, and
then updated with 10000 iterations for estimating the EMOS node. Burning-in samples were used
to discard the effect of initially generated samples on the posterior inference. The estimated EMOS
node is represented by a value within a range of 1 to 5. These values indicate network quality and
user satisfaction. Fig. 6 shows the different qualities and the lowest MOS Score limit for each one.
The limit values are from the ITU-T G.107 standards [20]. Each range in the MOS scale indicates
the network quality and user satisfaction. Several performance metrics were used to compare the
difference between the actual AMOS and the EMOS values. In this work, four performance metrics
were used: mean absolute error (MAE), mean squared error (MSE), mean percentage error (MPE),
and mean squared error (RMSE) which can be given as follows:

Estimated E = (AMOS; — EMOS),), i=1,2,...,n, (13)
1 n
MAE = =" |AMOS, - EMOS|, (14)
n i=1
1 < [AMOS, — EMOS,
MAPE = —Z| ’ '|x100, (15)
n & AMOS,
1 n
MSE = - > (AMOS, — EMOS))’, (16)
n i=1
1 n
RMSE = |- > (AMOS,— EMOS)’, (17)
n

i=l

where AMOS and EMOS are actual and estimated MOS, respectively. n represents the number of test
data. Eq. (15) was used to calculate the error rate and feasibility of the proposed model. Finally, the
proposed Bayesian model is compared with a neural network in terms of accuracy.

Network | |
2 ’M.J_r i Bad Poor Falr ; Good Excellent
Quality i
User Very Slightly Very
Satisfaction | Dissatisfled e Dissatisfied S~ Satisfled
MOS Score 0 1 ) - 2 5
Range

Minority of MBE networks Moderate range Majority of MBB networks
fall on this range fall onthis range

Figure 6: Relation between network quality and MOS value
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4 Results and Discussion

In this section, the simulation results of the proposed model are presented and discussed. The test
data are the same for the four cases to ensure a fair comparison. Fig. 7 shows an example of generated
samples of a single MOS value of 3.5 during the sampling process for different iteration numbers.
Most generated samples are bound between 3 and 4, considering the relative values to the actual MOS
for all iterations. Increasing the number of iterations may result in a slight increase in system accuracy
in such cases. Fig. 8 shows the dynamic tracing of generated values against iteration number for six
estimated EMOS values during the inference process. These tracing figures analyze the pattern of the
posterior distribution for obtaining estimated EMOS nodes. The results were obtained by running the
MC chain for 10000 iterations with another 1000 iterations for the burn-in samples. Tab. | shows a
statistical summary of the estimated EMOS nodes with present MC error. The MC represents the error
margin when the MCMC samples were used to estimate the posterior mean. The table shows that the
MC error achieved very low values for all EMOS nodes.
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Figure 8: Dynamic tracing of six EMOS nodes

Table 1: Statistics summary of estimated EMOS nodes

AMOS Mean Standard  MC_error val2.5pc Median val97.5pc
deviation

EMOS[1] 3.34 3.539 0.3795 0.003954  2.802 3.535 4.291
EMOS[2] 3.74 3.629 0.3786 0.003527  2.885 3.63 4.373
EMOS [3] 3.30 3.482 0.3781 0.003793  2.738 3.485 4.207
EMOS[4] 3.80 3.698 0.3783 0.003969  2.963 3.701 4.441
EMOS[5] 3.12 3.258 0.3809 0.004077  2.52 3.259 3.999
EMOS[6] 3.80 3.703 0.3809 0.003535  2.957 3.706 4.45

Note: [] indicates the node index in the dataset va/2.5pc and val97.5pc indicate the 2.5% and 97.5% quantiles, respectively.

Fig. 9 shows the smoothed kernel density of six estimated MOS values. This figure is similar to
a smoothed histogram where each iteration is distributed around the estimated node using a Kernel
function, such as normal distributions instead of counting the estimates into bins of particular widths.
The kernel density estimation is a means of estimating the posterior probability density function
of a random variable. The high density concentrates between 3 and 4, which are the most accurate
values of actual MOS. Bell-shaped posterior distributions indicate that the MC chain has reached the
convergence level.

Fig. 10 visualizes the various plotting types of estimated MOS values over several points of data.
Fig. 10a shows the boxplot of the posterior distributions of all estimated MOS values were summarized
side by side. The interquartile range and anticipated mean value of MOS are represented by the green
boxes and the center lines, respectively. The box arms extend to cover the center 95% of the distribution,
with their ends corresponding to the 2.5% and 97.5% quantiles. More informative statistics and
visualizations are provided in Fig. 10b, which depicts the full posterior distribution through shading,
with the strip blackness at each data point defined as proportionate to the estimated density. Similarly,
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Fig. 10c represents the “caterpillar” plot, which is conceptually very similar to Fig. 10a. The x-axis for
each distribution is summarized by a horizontal line representing the 95% interval, whereas the dots

indicate the mean location.
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Figure 9: Kernel density of six EMOS nodes

Fig. 11 shows a bar graph of AMOS, EMOS with absolute and squared error against random
testing points. The absolute error of estimating MOS with AMOS of greater than 3 is lower compared
to the MOS smaller than 3 because the data contain MOS greater than 3, and the majority of MBB
networks fall in this score with a good and satisfying network. Thus, the model trains well with these
MOS compared with the small data of MOS = 1. The maximum absolute average errors for MOS
greater and smaller than 3 are 0.20 and 0.45, respectively.

Fig. 12 illustrates the comparison between the proposed Bayesian and neural networks in terms of
MAE, MSE, and RMSE over test data sizes. In this comparison, these test data sizes are considered
(20%, 40%, and 60%) where a higher test data size cannot be implemented practically. The dataset
is divided into 20% test data and 80% training data in most common works. However, the proposed
model is examined for two more test data sizes. The figure shows that the MAE, MSE, and RMSE
increase when the size of test data increases. In the Bayesian network, the test data size of 20% achieved
the lowest MAE and MSE of 0.148 and 0.025, respectively, whereas the test data size of 60% achieved
the highest MAE and MSE of 0.259 and 0.110, respectively. Similarly, in the neural network, the test
data size of 20% achieved the lowest MAE and MSE of 0.21 and 0.10, respectively, whereas the test
data size of 60% achieved the highest MAE and MSE of 0.68 and 1.21, respectively. The results are
because when the test data size is large, the training data will be small, which is insufficient to train the
model. Thus, the estimated nodes have greater variance with less training data, while the performance
statistic will have greater variance with less testing data. The proposed Bayesian network outperforms
the neural network in all test data sizes. Tab. 2 summarizes different performance metrics over test
data sizes.
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Fig. 13 demonstrates the accuracy comparison between the Bayesian and neural networks. The
proposed Bayesian network achieved a high accuracy of 95.72%, 93.87%, and 81.49% for the test data
sizes of 20%, 40%, and 60%, respectively. The neural network achieved a low accuracy of 88.07%,
81.00%, and 35.42% for test data size of 20%, 40%, and 60%, respectively. Both networks obtained
the highest accuracies when using 20% of the test data size. However, the neural network had poor
accuracy of 35.42% when using 60% of the test data size compared with the Bayesian network. Overall,
the Bayesian and neural networks achieve 90.36% and 68.16%, respectively. Therefore, the proposed
Bayesian network achieved remarkable accuracy and outperformed the neural network.
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Figure 11: Graph bar of AMOS, EMOS with absolute and squared error against random test points
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Figure 12: Comparison between bayesian and neural networks over test data sizes

Table 2: Summary of different performance metrics over test data sizes

Test data size MAE MSE RMSE MAPE
Bayesian 20% 0.148 0.025 0.158 4.28%
network 40% 0.164 0.041 0.202 6.13%
60% 0.259 0.110 0.331 18.51%
Neural network 20% 0.21 0.10 0.317 11.93%
40% 0.28 0.16 0.397 19.00%
60% 0.68 1.21 1.102 64.58%
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Figure 13: Accuracy comparison between bayesian and neural networks

5 Conclusion

In the present work, a Bayesian network based on a probabilistic graphical model to estimate MOS
in MBB networks is proposed. Video streaming data have been utilized for training and testing the
proposed model to estimate accurate MOS. Several performance metrics have been used to evaluate the
proposed model with various implementing scenarios. The results showed that the proposed Bayesian
network achieved high accuracy overall test data size compared with the neural network. Overall,
the Bayesian network obtained an accuracy of 90.36% overall test data sizes. Therefore, the proposed
Bayesian network achieved remarkable accuracy and outperformed the neural network. An interesting
path for future investigation would be to explore the MOS of several services, such as video streaming
with multiple resolutions, gaming, and web browsing. Multiple databases of several mobile network
providers can be also be investigated further.
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