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Abstract: The deep learning advancements have greatly improved the perfor-
mance of speech recognition systems, and most recent systems are based on
the Recurrent Neural Network (RNN). Overall, the RNN works fine with
the small sequence data, but suffers from the gradient vanishing problem in
case of large sequence. The transformer networks have neutralized this issue
and have shown state-of-the-art results on sequential or speech-related data.
Generally, in speech recognition, the input audio is converted into an image
using Mel-spectrogram to illustrate frequencies and intensities. The image
is classified by the machine learning mechanism to generate a classification
transcript. However, the audio frequency in the image has low resolution
and causing inaccurate predictions. This paper presents a novel end-to-end
binary view transformer-based architecture for speech recognition to cope
with the frequency resolution problem. Firstly, the input audio signal is
transformed into a 2D image using Mel-spectrogram. Secondly, the modified
universal transformers utilize the multi-head attention to derive contextual
information and derive different speech-related features. Moreover, a feed-
forward neural network is also deployed for classification. The proposed
system has generated robust results on Google’s speech command dataset with
an accuracy of 95.16% and with minimal loss. The binary-view transformer
eradicates the eventuality of the over-fitting problem by deploying a multi-
view mechanism to diversify the input data, and multi-head attention captures
multiple contexts from the data’s feature map.
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1 Introduction

The recent surge of Artificial Intelligence (AI) in modern technology has resulted in the
widespread adoption of Human-Computer-Interaction (HCI) applications. Big corporations in
information technology like Google, Apple, Microsoft, and Amazon are relentlessly working to
improve the applicability and dynamics of HCI applications using speech recognition algorithms.
The importance of recognition systems underscores vast fields, including stakeholders from the
domain related to entertainment applications, utility applications and critical lifesaving appliances.
e.g., YouTube [1] and Facebook [2] use speech recognition systems for captioning. Various robust
voice commands applications are proposed for devices that work in areas without internet services and
critical mission’s robots [3,4]. Moreover, robust design of micro-controller-based devices which works
based on speech commands are also proposed in literature [5]. Apple Siri, Amazon Alexa, Microsoft
Cortana, YouTube captions, and Google Assistant [6] deploy speech recognition systems which works
based on these designs. Google and Microsoft [7], use deep neural networks-based algorithms that
convert sound to text through speech recognition, process the text, and respond accordingly. Typically,
deep learning algorithms processes the 1D data as audio is recorded and represented s a 1D waveform
[8]. The waveform of the 1D signal is represented in the sinusoidal time domain. In [9], the authors
studied the 2D representation of an audio signal called the spectrogram where the frequencies spectrum
is derived from the time-frequency domain through Fourier transform.

Speech signals contains rich prominent features such as emotions and dialect. Studies have been
conducted to compare the 1D audio waveform and 2D spectrogram, the spectrogram concluded
that the 1D signal does not contain frequency information vital for better speech recognition [10].
Studies shows that 2D spectrogram performs better to extract features for speech recognition. Since
a spectrogram focuses on all the frequencies, the recognition system cannot properly differentiate [11]
between relevant frequencies and noise. Fusion of mel-scale with spectrogram reduces noise which
shows performance improvement in speech recognition. The mel-scale discards noise and amplifies
the desired spectrum of frequencies in the 2D spectrogram. The 2D transformation (mel-spectrogram)
of audio signal deploy state-of-the-art image recognition algorithms in Neural Networks (N.N) for
speech recognition to improve the precision of the system by imitating the human speech perception
[12]. The N.N algorithms [I3] process raw input data by correlating hidden patterns to recognize
similar clusters in data and classify it by continuously learning and enhancing the recognition system.
Recurrent NNs (RNNs) [14-16], Convolutional NNs (CNNs) [17] and Attention are commonly used
to develop speech recognition systems. RNN captures sequential prediction of data using recurrence
units to predict pattern for next likely scenario. RNN algorithms and their variants, i.e., Long-Short-
Term-Memory (LSTM), and Gated-Recurrent-Unit (GRU) allow the machine to process sequential
data models, such as speech recognition. LSTM has become popular in recurrent networks due to its
success in solving the vanishing gradient problem by retaining the long-term dependencies of data.

However, the LSTM [18] fails to solve the vanishing gradient problem completely due to the
complexity of the additional evaluation of memory cells. The RNN models are prone to over-fitting
due to the difficulty of applying dropout algorithms with LSTM probabilistic units. The sequential
nature of models is inconsistent with the parallelization of processing [19]. RNN models require more
resources and time to train due to the linearized natures of layers and random weights initialization.
Many researchers have used CNN for audio classification to analyze visual imagery of audio by
convolving multiple filters on data to extract features for the neural network. Deep CNN convolves
multiple layers of filters on image to extract distinct features having depth depending on the number
of layers. Deep networks improve algorithm’s ability by capturing unique properties using multiple
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convolution layers to retrieve a higher level of features. The feature-map produced from this process
enhances the recognition system accuracy.

However, these studies observe that the deeper layers of convolution tends to assimilate gener-
al/abstract level information from the input data [20]. The deep CNN model tends to over-fit when
the labeled data for training is less. The deep networks of the convolution model are prone to gradient
vanishing/exploding problems as the network deepens, causing less precision of the recognition model.
Therefore, the researchers deploy attention mechanisms with an RNN model to obtain long-term
dependencies by contextualizing the feature-map. The attention model uses probabilistic learning
by giving weight to the important feature using the soft-max probabilistic function. Moreover, the
attention-based models reduce the vanishing gradient problem by decreasing the number of features
to process important and unique features for the recognition system [21]. In [22], the authors introduce
one of the attention mechanism variations, self-attention, to compute the representation of the same
sequence relating to different positioning. Self-attention allows input sequences to interact with all
neighboring values and find contextual and positional attention within the same sequence. In [23], the
authors observe the multi-view approach with a neural network algorithm to increase the efficiency
of the architecture. The main objective of the paper is to improve existing speech recognition systems
by building a precise method that can be implemented in any speech recognition application with a
lightweight footprint.

In [24], the authors use Fourier transform to convert the waveform signal to alternative represen-
tations characterized by a sinusoidal function. The paper uses Infrared spectroscopy through Fourier
transform for analysis of biological material. In [25], the Short-Time Fourier-Transform (STFT) is
used to extract features from the signal of audio by slicing the signal into windows and performing
Fourier transform on each window to obtain meaningful information. Actually, Deep Learning
(DL) [26] models extract intricate structures in data, and back-propagation algorithms show which
parameters are used for calculating each layer representation. In fact, DL allows the computation of
multiple processing for the learning of data representation having many levels of abstractions. In [27],
authors elaborate the feature extraction in speech categorizing speech recognition to three stages. At
first, the audio signal is divided into small chunks; secondly, the phoneme is extracted and processed,
and lastly, the speech is categorized on word level. Music detection is discussed in [28], where the
authors use CNN with mel kernel to separate music content from speech and noise. The mel-scale is
useful for focusing on a specific type of frequency and minimizing the effect of noisy and unrelated
parts.

In [29], an attention model is used for audio tagging of Google Audio Set [30]. The authors
investigate Multi Instance-Learning (MIL) problem for weakly labeled audio set classification by
introducing the attention model for probabilistic learning, where attention is used with a fully
connected neural network for multi-label classification on audio. Multi-head attention is used in [31],
where authors elaborate the implication to extract information from multiple representation sub-
spaces at various positions by the ability of multi-head to attend to different interpretations within the
data jointly. The multi-head attention is useful for obtaining different contexts within the information
which improve the efficiency of the model.

In this paper, we present a novel end-to-end binary view transformer-based architecture for
speech recognition to cope with the frequency resolution problem. Firstly, the input audio signal is
transformed into a 2D image using Mel-spectrogram. Secondly, the multi-view mechanism is used
to enhance the frequency resolution in the image. In addition, the Modified universal transformers
utilized the multi-head attention to derive contextual information and derive different speech-related
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features. A feed-forward neural network is also deployed for classification. The proposed system is
discussed in details in the Section 5. Moreover, the proposed system has generated robust results on
Google’s speech command dataset with an accuracy of 95.16% and with minimal loss. The binary-
view transformer eradicates the eventuality of the over-fitting problem by deploying a multi-view
mechanism to diversify the input data, and multi-head attention captures multiple contexts from the
data’s feature map.

The rest of the paper is organized as follows: The Section 2 contains the speech perception and
recognition by using Al, and the proposed system is discussed in the Section 3. The Section 4 includes
the experiment steps and testing. Furthermore, the Section 5 includes the experiment results and
discussions. Finally, the Section 6 concludes the research work.

2 Speech Perception and Recognition Using Al

Perception is the ability to systematically receive information, identify essential data features and
then interpret that information, while recognition is the system’s ability to identify the classification of
data. To build a system using Al for the speech recognition, we need to have input data that is in the
form of an audio signal. After pre-processing, the audio signal progresses to the speech recognition
system, and the systems output will be a classification transcript of the audio. A microphone records
the audio signal with a bit depth of 16 (recorded signal in time domain having values of 2 % 16).
Audio is recorded at 16 kilohertz having a nitrous frequency of 8 kilohertz; the nitrous is a range of
distinguished lower frequency, which is interpretable and differentiable by the brain for speech because
most frequency changes happen at lower frequencies. The signal in the time domain is complicated to
interpret, as the human ear can sense the intensity of frequency. Moreover, we use a pre-processing
step to convert the signal into the frequency domain using Fourier transform, where the time-domain
representation of the signal is transformed into a time-frequency domain.

The power spectral density of the audio signal for different bands of frequencies are shown in
the Fig. 1, where the nitrous frequency range has most frequencies changes. We create a spectrogram
by stacking periodogram adjacent to one another over time. The spectrogram is a colored 2D image
representation of the audio.
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Figure 1: Periodogram of audio frequencies and the 2D representation of audio signal using
spectrogram

For speech recognition, the human brain amplifies some frequencies, while nullifying or reducing
the background noise by giving more importance to the lower band of frequencies. For example,
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humans can tell the difference between 40 and 100 hertz, but are unable to differentiate between 10,000
and 12,000 hertz. This objective in computing is achieved through mel-scale; by applying mel-filter-
bank on the frequencies, we can retrieve the lower frequencies efficiently, as shown in the Fig. 2.
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Figure 2: Mel filter-banks and the frequencies from linear to logarithmic

2.1 Convolutional Neural Network

In the field of machine learning, CNN is one of the most efficient algorithms for image
recognition. Since the inception of CNN, the field of machine learning is revolutionized, and state-
of-the-art results are produced. In CNN, different filters are convolved over the image to compute
essential features by using the Eqs. (1) and (2), where filter B convolves over image A having k number
of rows and columns. Convolution gives us a large pool of features in data that is passed to a N.N.,
which helps to classify them into different classes. Many variants of CNN are produced over the years
that improve the performance of these models, e.g., Inception net [32], Resnet [33], and mobile net [34].
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2.2 Recurrent Neural Network

RNN algorithms allow the machine to process temporal sequences of variable lengths [14]. This
type of algorithm is useful in processing sequential data through sequential modelling, e.g., signal
processing, NLP, and speech recognition. The RNN models produce hidden-vector as a function of the
former states and the next input as shown in Eq. (3), where input vectors 4 are sequentially processed
by recurrence Function having w parameters on each time-stamp to produce a new state for the model.

State,.,, = Function,[State ., A] 3)
Recurrence models generate a sequential pattern of data that prevents parallelization for training data.

The sequential nature increases the computation time of the model and limits longer sequences from
processing, which causes the gradient vanishing/exploding problem.
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2.3 Attention Mechanism

Attention is a deep learning mechanism that is mainly inspired by the natural perception ability of
humans as humans receive information in raw form from the senses and transmit it to the brain [29].
The brain opts for the relevant and useful information by ignoring background noises; this process
polishes the data, making it easier to perceive. Moreover, the attention is a weighted probabilistic
vector with the soft-max function used in a neural network, which was introduced to improve the
sequential models (LSTMs, RNNs) to capture essential features in context vectors as shown in Eq. (4),
and Attention_weightis elaborated in the Eq. (5).
Context_vector = Z Attention_weight, «+ Hidden_state, 4)

B
exp(Hidden,y,,.,)

Attention_weight, = —; :
>, Hidden_state,

©)

The attention mechanism extracts model dependencies while the effect of distance between input
and output sequences is negated, which improves the model performance. Self-attention [35] is a
variation of the attention mechanism that allows the vectors to interact with each other to discover
the important features, so that more attention can be given. Applying attention to sequential models
improves the accuracy, and state of the art results are achieved.

2.4 Transformer

In transformer architecture, instead of sequential representation, the positional information
(input data) is embedded in positional vector with input vectors that permit parallelization. Trans-
former architecture consists of two parts, i.e., encoder layers and decoder layers. In a transformer,
attention mechanism is used for content-based memory retrieval, where decoder attends to content
that is encoded and decides which information needs to be extracted based on affinity or its position.
The input data is processed by the transformer in the form of pixel blocks [36] i.e., each row of image
are embedded, and the positional information of data are encoded by using positional encoder into
the input embedding, which is subsequently passed to transformer for processing.

The positional information is extracted from the data by using positional encoder E, which is
added to the input embedding. The input embedding and positional encoder have same dimension d,
so that both can be summed. The positional encoding is extracted using sine function by using the
Eq. (6), and cosine function in Eq. (7) alternatively. The Eq. (6) is used for odd values, and Eq. (7) is
used for even value as shown in the Eq. (8) for n length input sequence. The sine and cosine functions
are used to create a unique pattern of values for each position.

E, = sine (177) (6)
E, = cosine G) (7
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where p is the position to encode, and f; are the frequencies of i numbers up to d/2 as shown in equation

Eq. 9).
()
sine | =
1
()
cosine | =
1
()
sine | =
2
cosine 4
E, = R (3)

1 ;
fi=> = 10000 ©)

i

In Transformer encoder layer, the embedded input X = {x,, x,, X3, ...x,} is fed into three fully
connected layers to create three embeddings, namely keys, query and value; these embeddings are
commonly used in the search retrieval system. During the search retrieval, the query is mapped against
some keys that are associated with search candidates; this presents best match searches (values). To
compute the attention value of input embedding x, against x, as shown in the Fig. 3, transformer
self-attention; Firstly, the Q, K, and V are randomly initialized having same dimension as the input
embedding. The input x, is matrix-multiplied with Q to produce Query embedding Q,, and embedding
X, is matrix-multiplied with K to produce Key embedding K., then the resultant matrixes dot product
(weighted score matrix Z) is calculated. The scores Z are then scaled-down as shown in Eq. (10) for a
stable gradient, where dK, is the dimension of keys embedding.

Z
Z' = Jik (10)

The softmax function in Eq. (11) is applied to Z* = {z,, z,, zs, . .. z,} to calculate attention weights,

giving probability values between zero and one. The Fig. 3 input embedding is a matrix which is
multiplied with the V, to produce value embedding.

exp(z,)
> exp(z)

Softmax(z;) = (11)

K’
Attention (K, Q, V) = Softmax (3;1_]{1) v, (12)
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The Z* multiplies with the V,. This process is repeated for all the inputs neighborhood, and V,
are then concatenated. The functionality is elaborated in Eq. (12), where K.’ is the transpose of keys
embedding. The self-attention produces weighted embeddings for each input.

3 Proposed System and Architecture

The architecture proposed in this paper is a novel binary-view transformer architecture, an end-
to-end model for a speech recognition system, which is inspired by the human perception of speech
and is articulated by carefully studying human physiology. The architecture consists of two primary
modules i.e., (i) Pre-processing and feature extraction module and (ii) Classification module.

Three convolution layers are applied for the feature extraction on both inputs. The filter size is
3 x 3, and numbers of filters are 32, 64, and 1, respectively. After each layer of convolution, batch
normalization is implemented with an activation function. Both of the inputs are then concatenated
to add the extracted features in multi-view i.e., binary view model.

Our system incorporates a modified universal transformer [19,22], where multi-head self-attention
is used with four heads capturing four different contexts at the same time. The depth of the transformer
is six, i.e., six encoding and six decoding transformer layers are implemented. The transformer is
tuned to 25 percent dropout after each layer, and a high-performance gaussian-error linear unit [37]
activation function of the neural network is used. The adaptive computations time algorithm is then
used with the aim of allowing the neural network to determine computation steps for getting inputs
and computing outputs. The resultant vectors then proceed to global average pooling [38], where mean
value for every feature map is computed, and soft-max then determines its probabilities. Lastly, the
feature map is passed to a dense layer, i.e., fully-connected layer; of 128 nodes and subsequently another
dense layer of nodes equal to desire classes where the input is classified to its respective class. It is
important to noted that the classification is vital by considering the fact that the internet data traffic
is increasing with every passing day [39-42]. The working of system is shown in Algorithm 1.
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4 Training and Experimentation

For training the proposed model, we use Google’s data-set of speech command [43,44] created
by Google Brain, which has speech audio files in WAV format, having a total of 105,829 command
utterance files. The data-set audio files have a length of 1 s, divided into 35 classes of words. The audio
was recorded in a 16-bits mono channel, and the command files are collected from 2618 different
speakers having a range of dialects.

The tool used for training the architecture is Google cloud service for machine learning, namely
Google-colab, which uses a jupyter-notebook environment, and Tesla Graphics Processing Unit
(GPU) K80 is provided by Google having 12 GB of GPU.

We trained different architecture for speech recognition of 35 classes, which includes our binary-
view transformer model and the models introduced by paper [3], i.e., LSTM and attention-based recur-
rent convolutional architectures. We also experimented with well-known convolutions architectures
of resnet and inception net, where we modify our model by replacing the Transformer with Resnet
(Fig. 4), proposed architecture (Fig. 5) and Inception net (Fig. 6). We then compute and Recurrent
compare their results. We then compute and Recurrent compare their results.
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5 Results and Discussion

Initially, the experiments of paper [3] were replicated, including the LSTM model and attention
with a recurrent convolutional network. The purpose of the experimentation results is to compare
and demonstrate the efficiency and shortcomings of different neural network models for the speech
recognition. In terms of accuracy, we improved the validation accuracy by gradually decreasing the
learning rate over epochs and increasing filters in convolutions and introducing batch normalization.
The LSTM model [3] accuracy is recorded up to 93.9, and the attention based recurrent convolutional
network [3] accuracy is 94.2. The transformer architecture without multiple inputs gives 94.24%
accuracy. The binary-view resnet model, binary view inception net model, binary-view convolutional
model, and binary-view transformer model were executed on the dataset, where validation accuracy
was 94.91,94.74, 95.05, and 95.16, respectively as shown in Fig. 7. Moreover, the proposed transformer
model produced state-of-the-art as well as a minimalistic number of parameters, i.e., 375,787. The
Fig. 8 shows the comparison of training and validation accuracies.

Algorithm 1: Speech C d Classification Using Binary-View Transformer
Tnput: audio_mumpyldgeoon., N olasses:
Output: Classi ficationIntoNclasses
Binary_View_Transformer =
Speech_Classi fication{ Binary_View(audio_numpyld eon ) -Nelasses );
Binary_View (audio_numpyldggoon) *
Aqy o0y = Reshape(l, —1){audio_numpyldgson) )
By eo00) = Additive Noise()(Aq,1e000) )
ConcatenateAB({ Ay 1o000) . Biasooo) )2
View_A:
Agsoazs1y= Mel_Spectrogram(mels = 80, windows = 125)(Aq.10000)):
Apyas soyy = Norm2D(permute(2, 1. 3)( Ao 125 1))
Ao 35,69 = Cone2D(64, (3, 3))(Apzs 50.1));
Agyas so,32) = Conv2D(32. (3.3))(A(y2s s0.64) )2
Afr2s,80,1) = Conv2D(1, (3, 3))(A(125,50.32) )
Agyan g0y = squeez_last_dimension(){Agzs s0,1)):
return Agizs s0):
View_B:

s1y= Mel_Spectrogram(mels = 80, windows = 125)(By, 1e000)):
o1y = Norm2D(permute(2, 1, 3)(Bag 12s.1))i
Bixo,125,64) = Conv2D(64. (3, 3))(B(yas s0,1)):
By25 80,37y = Conv2D(32, (3, 3))(Bzs sosn )i
Biyas so,1y) = Conv2D(L. (3. 3))(B(yas so,3m ):
1280y = Squecs_last_dimension () Bazson)
return Sz so)
r Ii{:::..(w: = concatenate(View_A. View_B)

retumn AB(125, 160)3
Speech_Classification (ABas 160), Velasses):
Transformer; 12z 160) = Transformer(Input_AB)
Transformer:

| Transformer(depth = 6, multi_head = 4)(Input_AB);
return Trans formerizs woo):

GAP_AB(1 160) = Global Average Pooling2D()(Trans formerzs 160 ):

NN_ABa = Dense(128)(GAP_AB 10

AB_Nclasses = Dense(Nclasses)(NN_AB(12e)):

return AB_Nelasses;

In terms of loss, the binary-view transformer model validation loss is comparatively less, which is
0.191. Single input transformer model produces 0.227 loss. The binary-view resnet model, binary-
view inception net model, binary-view convolutional model losses, and attention based recurrent
convolutional network were 0.194, 0.192, 0.21, and 0.237, respectively as can be seen in Fig. 9. The
decline of loss exhibits a better performance of the architecture and lower chance of the model being
over-fitting with the aim of eradicating the gradient vanishing/exploding problem.

Table 1: Results comparison of the proposed approach with existing studies

Model Validation Validation Training Validation Validation Validation Training Training Training
loss accuracy accuracy precision recall Fl-score precision recall Fl-score

LSTM model [3] 0.242 82.11 98.84 - - - - - -

Attention based 0.237 84.35 98.68 - - - - - -

recurrent

convolution

network [3]

(Continued)
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Table 1: Continued
Model Validation Validation Training Validation Validation Validation Training Training Training
loss accuracy accuracy precision recall Fl-score precision recall F1-score

Transformer 0.227 93.91 94.51 87.2 88.89 87.10 92.10 91.89 92.33
Binary-view 0.192 94.2 99.48 90.93 89.10 91.10 97.45 96.20 97
inception
Net model
(Ours)
Binary-view 0.194 94.24 99.55 91.10 90.23 91.93 96.7 95.8 97.12
ResNet
Model (Ours)
Binary-view 0.21 94.74 99.48 92.14 92 92.5 98.4 98 98.2
inception
Net model
(Ours)
Binary-view 0.191 95.05 99.05 93.34 92 93.4 97.6 96.8 97.2
Transformer
model (Ours)
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Figure 7: Validation accuracies of speech recognition models
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6 Conclusions

This research aimed to improve the speech recognition system. We analyzed human physiology
for speech perception. This research aimed to improve the speech recognition system. In addition,
Binary-view transformer architecture produced state of the art results on Google’s speech command
dataset [43,44]. Three aspects of recognition models, i.e., validation accuracy, precision, and loss,
were considered to determine the efficiency of binary-view transformer architecture. By introducing
a binary-view mechanism, similar data from different sources were processed, and the attention
mechanism within the transformer increases efficiency, where the best validation accuracy of 95.16
was achieved. The proposed model decreased the eventuality of gradient vanishing/exploding problem
by processing long-term dependencies. Whereas the confusion matrix showed better precision of the
binary-view transformer architecture compared to other models since the transformer used a multi-
head attention mechanism, which catches more contexts of the same data, which helped in improving
model precision and the probability of model over-fitting diminish. Better precision on Google’s speech
command dataset showed that our model performed better on different dialects because over 2000
speaker’s speech was precisely recognized. As shown in Tab. 1, our model exhibited less loss of 0.191
compared to 0.237, 0.194, 0.192, and 0.21 of the attention based recurrent convolutional networks
[3], binary-view resnet model, binary-view inception net model and binary-view convolutional model,
respectively. The binary-view transformer architecture has a lightweight footprint of 375,787 trainable
parameters, which can be run locally on small systems.
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