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Abstract: Cloud computing is currently dominated within the space of high-
performance distributed computing and it provides resource polling and on-
demand services through the web. So, task scheduling problem becomes a
very important analysis space within the field of a cloud computing envi-
ronment as a result of user’s services demand modification dynamically. The
main purpose of task scheduling is to assign tasks to available processors to
produce minimum schedule length without violating precedence restrictions.
In heterogeneous multiprocessor systems, task assignments and schedules
have a significant impact on system operation. Within the heuristic-based
task scheduling algorithm, the different processes will lead to a different task
execution time (makespan) on a heterogeneous computing system. Thus, a
good scheduling algorithm should be able to set precedence efficiently for
every subtask depending on the resources required to reduce (makespan).
In this paper, we propose a new efficient task scheduling algorithm in cloud
computing systems based on RAO algorithm to solve an important task and
schedule a heterogeneous multiple processing problem. The basic idea of this
process is to exploit the advantages of heuristic-based algorithms to reduce
space search and time to get the best solution. We evaluate our algorithm’s
performance by applying it to three examples with a different number of tasks
and processors. The experimental results show that the proposed approach
significantly succeeded in finding the optimal solutions than others in terms
of the time of task implementation.

Keywords: Heterogeneous processors; RAO algorithm; heuristic algorithms;
task scheduling; multiprocessing; cloud computing

1 Introduction

One of the main pre-performance measurements of any computing system is the execution time,
and to reduce execution time processors have been developed faster but have physical limitations, and
the multi-processing system has therefore been used. In the multiprocessor system, the program will
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be divided into tasks, so that each task is performed on a processor. The task assignment association
and processors are called task scheduling in the multi-processing system.

To access optimal task scheduling and processor used in a heterogeneous multiprocessor system
is a mathematically difficult goal. The optimal term may refer to many of the objectives combined.
The main goal is usually to reduce the length of the schedule (makespan). Finding optimal task
scheduling is NP-complete, [1,2]. Accordingly, heuristic algorithms are a good candidate for addressing
this problem. Meta-heuristics are problem-independent improvement techniques that give an optimum
resolution by exploring and exploiting the whole search area iteratively. These techniques have been
successfully engaged to resolve distinct real-life and multidisciplinary issues. An honest quantity of
literature has been already published on the design and role of assorted meta-heuristic algorithms and
their variants. The aim of this study [3] was to present a comprehensive analysis of nature-inspired
meta-heuristic utilized within the domain of feature choice. Chaotic Interior Search Algorithm
(CISA) was proposed in [4]. Interior Search Algorithm (ISA) is a recently proposed meta-heuristic
impressed by the change of state of objects and mirrors. However, the same as most of the meta-
heuristic algorithms, ISA, in addition, encounter two issues, i.e., entrapment in local optima and
slow convergence speed. Stress is that the most prevailing and international psychological condition
that inevitably disrupts the mood and behavior of individuals. Chronic stress might gravely affect
the physical, mental, and social behavior of victims and consequently, induce myriad crucial human
disorders. Herein, a review has been presented where supervised learning (SL) and soft computing (SC)
techniques used in stress diagnosis have been meticulously investigated to focus on the contributions,
strengths, and challenges faced in the implementation of those strategies in stress diagnostic models
[5]. Salp Swarm Algorithm (SSA) is a recently created bio-inspired improvement algorithm that relies
on the swarming mechanism of salps. Despite the high performance of SSA, slow convergence speed
and obtaining stuck in local optima are two disadvantages of SSA. This paper [6] introduces a novel
Chaotic Salp Swarm Algorithm (CSSA) to avoid these weaknesses. A Computer-Aided Diagnosis
(CAD) system that employs a brilliant learner to diagnose the presence or absence of a disease has been
developed. Each clinical dataset is preprocessed and split into a training set (60%) and a testing set
(40%). A wrapper approach that uses three bio-inspired algorithms, namely, Cat Swarm Optimization,
Krill Herd, and Bacterial Foraging Optimization with the classification accuracy of Support Vector
Machine because the fitness function has been used for feature choice. The chosen features of each
bio-inspired algorithm are stored in three separate databases. The features selected by each bio-
inspired algorithm are used to train three Back Propagation Neural Networks independently using
the Conjugate Gradient Algorithm [7]. A bio-inspired technique called Bat Algorithm hybridized with
a Naive Bayes classifier has been presented [8]. When the amount of data and information is said to
double in every 20 months approximately, feature selection has become extremely vital and helpful.
Any enhancements in feature selection will positively affect a wide array of applications in fields like
pattern recognition, machine learning, or signal process.

In this paper, a multi-processing system was studied. Heterogeneous multi-processing has different
processing capabilities. Task processing time can only be determined when the task is assigned to a
specific processor, i.e., the task processing time depends on the processor. A new efficient approach
based on RAO’s algorithm, [9,10], called Proposed RAO (PRAO) was developed to find an ideal task
scheduling set to a heterogeneous multi-processing system. We evaluate our algorithm’s performance
by applying it to three examples with a different number of tasks and processors. The results show that
the proposed approach succeeded in finding the optimal solutions than other algorithms in terms of
the time of task implementation.
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The paper is organized as follows. The notations are given in Section 2. Section 3 presents
some related work for task scheduling problems for different structures of multiprocessing systems.
Section 4 introduces the problem description. Section 5 shows the RAO optimization algorithm.
In Section 6 describes the PRAO approach. The results were obtained by applying the PRAO and
compared with other results presented in Section 7. Section 8 draws conclusions and future work.

2 Notations

G A task graph
DAG A Directed Acyclic Graph
ti Task i
pi Processor i
M Number of processors
N Number of tasks
ni Node i
c(ni) Cost of node i
ST(ni, p) Start time of node i on a processor p
FT(ni, p) Finish time of node i on a processor p
RT(pi) Ready time of the processor i
LT A list of tasks according to the topological order of DAG.
DAT(ti, pj) The Data Arrival Time of task i at processor j

3 Related Work

The goal of scheduling tasks in the multiprocessor system is to assign a processor task and reduce
the processing time. To reduce the processing time, a Genetic Algorithm (GA) may apply to the
processors for different solutions faster processing time.

Task scheduling is two aspects: Earliest Start Time (EST) and Number of Tasks dependencies
(NTD). This comparison was made using java simulation and the result obtained is the proposed
algorithm minimum EST solution achieves faster processing time than the EST maximum [1,2]. The
study addressed the problems of scheduling multi-processors referred to a Directed Acyclic Graph
(DAG) task targeted with communications costs. The authors suggested based on GA, priority/shorter
first processor schedule to provide better solutions than existing algorithms about the completion time
of the resulting schedules and reduce the time of effective execution of the task [1,2].

Task scheduling algorithms using an Effective Space Search Genetic Algorithm (ESSGA) use the
benefits of heuristic-based algorithms to reduce space search and time for effective solutions [11]. The
processor assignment was performed using an early, heuristic-based end-time policy, which reduces
the time for the time task is performed.

GA for scheduling tasks in multiprocessor systems has indicated that the priority of carrying
out the task depends on a higher mission graph to scheduling. This method is simulated and used to
compare with the basic genetic algorithm [12].

GA efficiency can be achieved through the improvement of different parameters such as mutation,
crossover, selection function, and crossover probability. These GA parameters on reducing bi-criteria
fitness functions and parameter development will be accomplished through a central composite
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design approach with design experiments. Experiments use these parameters and analyze contrast
that reduces the total completion time and makespan [13].

Modified Critical Path (MCP) algorithms are used to solve problems in task graph scheduling. The
algorithm relies entirely on the new approach to reducing the cost of communications from processors
and critical length of time. To solve the scheduling of the graph, the GA has been applied effectively.
The GA has proposed to schedule this graph of the task that can be obtained effectively with low time.
The results obtained from the study stated that the graph algorithm without the cost of communication
could work quickly compared with others [14].

GA chromosomes such as Task List (TL), Processor List (PL), and Integration of Both
Task List Processor List Combination (TLPLC). Experiments on the graph of real-world appli-
cation such as Gaussian elimination, Gauss Jordan, the equation for Laplace, and Lower-Upper
(LU) decomposition. Task List Processor List Combination Genetic Algorithm (TLPLCGA) is
associated with GA and heuristic algorithms regarding the time and efficiency of the processor
have been conducted. The result is an experienced hybrid approach performing better than other
algorithms [15].

The NP problem is solved using the integration of heuristic and search techniques. GAs offers a
robust and stochastic solution for many optimization problems. Design and implement the schedule
of the length of the task graph performed on the processors. To solve the scheduling problem, the GA
has been applied [16].

The fitness assessment approach is a time-consuming process of a genetic algorithm that affects
the performance of the GA synchronous master-slave algorithm performs better than a sequential
algorithm on a large and difficult number of generation problems. This GA search is used in a
scheduling program to solve the multiprocessor scheduling problem. A schedule is a simple tool for
scheduling the task and modeling on the multiprocessor system. The complex task graph can easily be
adjusted to a specific multiprocessor architecture. The result obtained from the study indicated that
changing the number of processors on the system by users and small changes in the program would
manage delays in communication between processors and overhead costs [17].

The Node Duplication Genetic Algorithm (NGA) approach is based on existing inevitable
scheduling techniques to reduce traffic connections between processors. The results you get from
the simulation indicate that the GA can use the scheduled task to meet deadlines and get high
processor use. Compare NGA performance analysis with GA, First Come First Serve (FCFS), and
list scheduling [18].

One such effective technique is known as Ant Colony Optimization (ACO). This improvement
technique is inspired by the capabilities of ant colonies to find the shortest route between food sources
and their nests. Consequently, an ACO-based algorithm was proposed, to solve the task scheduling
problem. The algorithm uses a priority-based heuristic and pheromone, known as the upward rank
value, as well as an insertion-based policy and a pheromone aging mechanism to guide the ants to
high-quality solutions [19].

The scheduling method based on the Open Computing Language (OpenCL) framework was
proposed [20]. It executes a matching degree scheduling algorithm based on a heterogeneous multipro-
cessor system. Before the actual scheduling, the static task feature value and therefore the processor
core configuration feature value is mapped into the same European space, and the “program-core-
distance” matching value is calculated by using the wed. Within the actual scheduling, the matching
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value and the size of the input byte are obtained, and the tasks are matched with the processor under
the influence of the two to determine the execution order of the tasks on every processor.

Energy-aware task allocation of embedded systems is one of the most important problems in recent
decades. A classical solution to solve the problem is Integer Linear Programming (ILP). However,
given the considerable time consumption, it’s effective solely to the extent that the scale of the matter
is small. A way to use ILP to solve large allocation issues on heterogeneous multiprocessor systems
to minimize energy consumption is still a challenge. The authors propose [21] two ILP formulations
to deal with it. One complete ILP(1) is used to derive a feasible allocation, and therefore different
simplified ILP(2) is for calculating the desired minimum energy.

Reference [22] an efficient technique based on genetic algorithms is developed to solve the problem
of task scheduling. To efficiently implement programs in parallel on multiprocessor scheduling
problems should be resolved to determine the assignment of tasks to the processors and the execution
order of the tasks so that the execution time is decreased.

Reference [23] suggested an ACO based on a task scheduling algorithm to reduce the makespan
of the application in cloud environments. Cloud computing is that the development of distributed
computing, parallel computing, and grid computing, or defined as the commercial implementation of
these computer science concepts. One of the fundamental problems in this environment is related to
task scheduling. Cloud task scheduling is an NP-hard improvement problem.

Reference [24] addresses the problem of scheduling tasks through the effective use of evolutionary
algorithms. Genetic algorithms are promising to provide near-perfect results even in a large problem
area but at the same time the complexity of the time of genetic algorithms are higher but the proposed
algorithm, the Performance Effective Genetic Algorithm (PEGA) not only provides near the optimal
schedule but also has low time complexity.

4 Problem Description

The task scheduling model numbers in this work, which can be described as distributed N tasks
to be performed on M processors, can be processors with different computing capabilities in general.
G can be set to descript the structure of the problem. It is a DAG consisting of n nodes n1, n2, n3, . . .

nn. Each node of the graph is described as a task. The task is supposed to be a set of instructions that
must be performed sequentially in a particular processor. The task (node) may have pre-required data
(inputs) before they are executed. When you receive all entries, the node can run to execute.

These entries are expected to be delivered after some other tasks have been completed, and these
tasks are evaluated for them. We have named reliance on task reliance. If the task (t) depends on other
task data, we consider that tasks are tasks that serve as important parents (t), and task (t) is their
child. A node without an entry node is called an entry node and is called a node without a child, a
termination node [25].

As shown in Fig. 1. The time to perform a task we call the cost of the computation. Whenever
the cost of calculating a ni node is indicated by (ni) weight. The graph also contains E direct edges
that represent a partial order between tasks. The partial arrangement offers a DAG group restricted
by precedence and means that if it (ni → nj), nj is a child, which cannot begin until the ni asset ends.
The weight on the edge represents the cost of communication between tasks referred to by C (ni, nj),
and the communication cost is considered only if ni and nj are set in different processors, otherwise,
it is calculated to be zero, in which case ni and nj are assigned to the processor itself. If a ni node is
set to the p processor, the start time and the end time of the node are indicated by ST (ni, p) and
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FT (ni, p) respectively. After assuming scheduling, the length of the schedule is defined as the max{FT
(ni, p)} across all processors.

Figure 1: An example of DAG [25]

The task scheduling problem is to find the task schedule in the processors so that the length of
the schedule is minimized across possible schedules, where task dependency restrictions are retained.
Task dependency restrictions state that no task can be initiated until all parents are finished. Let pj be
the processor that Kth original tk task of Ti task is scheduled. The Data Arrival Time (DAT) of ti in the
pj processor is the time when the data is available for each required to perform the task, in defined as
in [25] as follows:

DAT = max{FT(tk, pj) + C(ti, tk)} where k = 1, 2, . . .Number_Parent (1)

C(ti, tk) = 0 if task i and k are scheduled on the same processor.

5 Rao Optimization Algorithm

Rao [9] introduced Rao’s algorithm. Rao algorithm is a population algorithm on a simple
and easy to execute basis for optimization problems. This algorithm has neither specific algorithm
parameters nor metaphorical explanations. The general control parameter, i.e., population size, is the
only parameter that needs to be adjusted once the termination standard has been fixed. Therefore, it
becomes much easier to implement these algorithms for engineering applications.

During the repetitive process, these algorithms use the best iteration solution, the worst iteration
solution, and random interactions among the population to explore and exploit the search area. The
flow of these three algorithms is similar, but the motion equation used is different for each algorithm.
The steps needed from Rao’s algorithms to improve objective function G(y) are as follows [10].

Step 1: Define the number of population (N); define the number of design variables (D) and
their boundaries: lower bound, upper bound; termination criterion: it can be a number of
function evaluations or level of accuracy required for the objective function.
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Step 2: Randomly initialize the population of size N and evaluate the objective function G(y)
values.
Step 3: Select the best_solution and worst_solution from the population depending on their
objective function value. If the G(y) is a minimization function, then the solution with the
minimum G(y) value is the best_solution, and the solution with the maximum G(y) value is
the worst_solution. Similarly, if the G(y) is a maximization function, then the solution with
the maximum G(y) value is the best_solution, and the solution with the minimum G(y) value
is the worst_solution.
Step 4: Locate the new solutions for all the population (pop = 1, 2 . . . N): during the ith iteration,
let Yv,p,i be the value of vth variable for the pth solution, Yv,b,i be the value of vth variable for the
best solution, Yv,w,i be the value of vth variable for the worst solution, and Yv,p,i be the newly
located value of Yv,p,i. Then, For the Rao-1 algorithm, the new solutions are found using the
following equation:

Yv,p,I = Yv,p,i + r1,v,i(Yv,b,i−Yv,w,i) (2)

For the Rao-2 algorithm, the new solutions are located using the following equation:

Yv,p,i = Yv,p,i + r1,v,i(Yv,b,i−Yv,w,i) + r2,v,i(|Yv,p,i or Yv,q,i| − |Yv,q,i or Yv,p,i|) (3)

where r1,v,i and r2,v,i are the two random numbers selected in the range [0, 1] for the vth variable during
the ith iteration.

Step 5: Evaluate the objective function values for the new population and apply the greedy
selection process. If the objective function value corresponding to the new solution Yv,p,i is better
than that of the old solution, then replace the old solution with the new solution or otherwise
discard the new solution.
Step 6: Check for the termination criterion. If the termination criterion is not satisfied, go to
Step 3, or else report the optimum solution from the final population.

6 The Proposed Algorithm

PRAO algorithm begins with the first set of population solutions. Then, by applying some
operators the best solution is selected according to the objective value of the function. In the PRAO
algorithm we declare the following steps:

6.1 Initial Population
The initial population is randomly generated according to this relation

pop(i, j) = LB(j) + rand ∗ (UB(j) − LB(j)) (4)

where LB is a lower bound and UB is upper bound we consider that the value of the upper bound is
equal to the number of processors and lower bound value is equal to 1 we see that the representation of
a vector is a continuous value, so we will use the Smallest Position Value (SPV) rule [26] and Largest
Position Value (LPV) rule [27] and by using modulus function with the number of processors and
increasing the value by 1 as shown in Fig. 2.

Where the tasks T2, T6 are scheduled into processor 1 and the tasks T4, T5, T7 are scheduled into
processor 2 and T1, T3 are scheduled into processor 3, as shown in Fig. 3.
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1.5 2.1 1.3 1.8 3.0 2.5 1.2

POP

7 3 1 4 2 6 5

SPV

2 1 2 2 3 1 3

Modulus with SPV and no_processor=3

5 6 2 4 1 3 7

LPV

Modulus with LPV and no_processor=3

3 1 3 2 2 1 2

Figure 2: An example of proposed schedule

3 1 3 2 2 1 2

Figure 3: Proposed schedule

6.2 Priority Operation
Task priority plays a big role in task scheduling and calculating schedule length. The proposed

priority is randomly generated in order that preserves the precedence constraints.

6.3 The Objective Function
The main objective of the scheduling problem is to reduce schedule length. That is:

Objective_Function = a
S_Length

(5)

where a is a constant and S_Length is the schedule length which is determined by the following
equation:

S_Length = max(FT(Ti)) (6)

The pseudo-code for the task schedule using the Standard Genetic Algorithm (SGA) [25] is as
follows:

For all processor Pj RT[Pj] = 0; j = 1, . . . N.

For i = 1 to N

{
Remove the first task Ti form list LT.

For j = 1 to M

{
If Ti is scheduled to processor Pj

ST[Ti] = max{RT[Pj], DAT(Ti, Pj)}
FT[Ti] = ST[Ti] + weight[Ti]

RT[Pj] = FT[Ti]
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End If

}
}
S_Length = max {FT}

6.4 The PRAO Operations
Step 1: Select the best solution

Step 2: Select the worst solution

Step 3: Select a randomly solution but not be the same as the current solution

Step 4: Calculate the objective function

Step 5: If the current solution is less than the randomly chosen solution calculate Ynew and call

function manar(Ynew)

Step 6: If the current solution is greater than the randomly chosen solution calculate Ynew and

call function manar(Ynew)

Step 7: Calculate the schedule length

Step 8: If the new solution is better than the current solution update the current

Step 9: If the minimum value is less than the best update the best value

Step 10: Repeat step 1 . . . step 9 until reaching maximum iteration value

Function manar(s)

R = random number between [1 . . . 5]

Switch case (R)

Case 1:

Use SPV rule

Case 2:

Use LPV rule

Case 3:

Use round nearest function

Case 4:

Use floor nearest function

Case 5:

Use ceil nearest function

End case

End function
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7 Evaluation of the PRAO

In this section, we show PRAO effectiveness by applying it to three examples. The first example of
10 tasks and three processors is heterogeneous. The second example is 11 tasks and two heterogeneous
processors. The third of 10 tasks and two processors is heterogeneous. PRAO algorithm was imple-
mented as a system by MATLAB 2016. We run our system one more time with the initial population
= 100, and the maximum number of iteration = 100 for all three examples.

7.1 Example 1
We consider an example of 10 tasks {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10} as shown in Fig. 4 to be

executed on three heterogeneous processors {p1, p2, p3}, the cost of executing each task on different
processors is shown in Tab. 1, [28]. The best solution and the schedule obtained by the PRAO are
shown in Fig. 5 and Tab. 2 respectively. The results obtained by the PRAO are compared with that
obtained by ACO [23], Critical Path on Processor (CPOP), and Heterogeneous Earliest Finish Time
(HEFT) [28] as shown in Tab. 3 and Fig. 6 with the proposed task priority {T1, T4, T3, T2, T5, T6, T9,
T8, T7, T10}.

Figure 4: An example of DAG application with 10 tasks [28]

Table 1: Computation cost matrix on DAG in Fig. 4

T/P P1 P2 P3

T1 14 16 9
T2 13 19 18
T3 11 13 19
T4 13 8 17
T5 12 13 10
T6 13 16 9
T7 7 15 11
T8 5 11 14

(Continued)
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Table 1: Continued
T/P P1 P2 P3

T9 18 12 20
T10 21 7 16

3 3 1 2 2 3 1 2 2 2

Figure 5: The best solution for example 1

Table 2: Schedule obtained by PRAO

P1 P2 P3

ST FT ST FT ST FT

T1 - - - - 0 9
T2 - - - - 9 27
T3 21 32 - - - -
T4 - - 18 26 - -
T5 - - 26 39 - -
T6 - - - - 27 36
T7 32 39 - - - -
T8 - - 55 66 - -
T9 - - 43 55 - -
T10 - - 66 73 - -

Table 3: Comparison results for example 1

Algorithm Makespan

CPOP 86
HEFT 80
ACO 78
PRAO 73
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Figure 6: Comparison of makespan for DAG in Fig. 4

7.2 Example 2
In this example, the number of tasks {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11} as shown in

Fig. 7 to be executed on two heterogeneous processors {P1, P2}, the cost of executing each task on
different processors and inter-task communication cost between the tasks shown in Tab. 4, [29]. The
best solution and the schedule obtained by the PRAO are shown in Fig. 8 and Tab. 5 respectively.
The obtained results are compared with Upward and Downward [29], GA [30], and Particle Swarm
Optimization (PSO) [31] for the proposed task priority {T1, T3, T2, T7, T4, T5, T6, T8, T10, T9, T11}, as
shown in Tab. 6 and Fig. 9 respectively.

Figure 7: An example of DAG application with 11 tasks [29]

Table 4: Computation cost matrix on DAG in Fig. 7

T/P P1 P2

T1 7 9
T2 10 9
T3 5 7
T4 6 8
T5 10 8

(Continued)
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Table 4: Continued
T/P P1 P2

T6 11 13
T7 12 15
T8 10 13
T9 8 9
T10 15 11
T11 8 9

1 1 2 1 1 1 2 2 1 2 2

Figure 8: The best solution for example 2

Table 5: Schedule obtained by PRAO

P1 P2

ST FT ST FT

T1 0 7 - -
T2 7 17 - -
T3 - - 21 28
T4 17 23 - -
T5 23 33 - -
T6 33 44 - -
T7 - - 28 43
T8 - - 43 56
T9 44 52 - -
T10 - - 56 67
T11 - - 67 76

Table 6: Comparison results for example 2

Algorithm Makespan

Downward 88
Upward 86
GA 78
PSO 77
PRAO 76
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Figure 9: Comparison of makespan for DAG in Fig. 7

7.3 Example 3
In this example, the number of tasks {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10} as shown in Fig. 10 to

be executed on two heterogeneous processors {P1, P2}, the cost of executing each task on different
processors and inter-task communication cost between the tasks are shown in Tab. 7, [32]. The
best solution and the schedule obtained by the PRAO are shown in Fig. 11 and Tab. 8 respectively.
We run our proposed algorithm and compare the results with four algorithms Predict Earliest
Finish Time (PEFT), HEFT, and Task Scheduling Heterogeneous Computing Systems (TSHCS) [32],
Heterogeneous Scheduling with Improved Task Priority (HSIP) [33], and Hybrid List-based Task
Scheduling Duplication (HLTSD) [34] with the proposed task priority {T1, T3, T5, T4, T2, T6, T7, T9,
T8, T10} as shown in Tab. 9 and Fig. 12 respectively.

Figure 10: An example of DAG application with 10 tasks [32]

Table 7: Computation cost matrix on DAG in Fig. 10

T/P P1 P2

T1 171 125
T2 133 114
T3 26 131
T4 145 192
T5 120 184

(Continued)
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Table 7: Continued
T/P P1 P2

T6 10 152
T7 114 30
T8 50 126
T9 191 65
T10 3 2

2 2 2 1 1 1 2 1 2 1

Figure 11: The best solution for example 3

Table 8: Schedule obtained by PRAO

P1 P2

ST FT ST FT

T1 - - 0 125
T2 - - 256 370
T3 - - 125 256
T4 258 403 - -
T5 138 258 - -
T6 403 413 - -
T7 - - 370 400
T8 413 463 - -
T9 - - 410 475
T10 482 485 - -

Table 9: Comparison results for example 3

Algorithm Makespan

PEFT 537
HEFT 521
HSIP 521
HLTSD 521
TSHCS 507
PRAO 485
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Figure 12: Comparison of makespan for DAG in Fig. 10

8 Conclusion and Future Work

In this paper, we introduced PRAO algorithm to solve the task scheduling problem in distributed
systems. The system was two processes. The first process consists of a limited number of fully connected
homogeneous processors and the second consists of a limited number of fully connected heterogeneous
processors. We compared the results of PRAO with ACO, CPOP, and HEFT, it is clear that the length
of PRAO’s schedule was less than that of CPOP, HEFT, and ACO as shown in Fig. 6. Also, we
compared PRAO results in the case of heterogeneous processors, Fig. 9 shows that the length of the
PRAO heterogeneous processor schedule was less than that obtained by Upward, Downward, GA and
PSO. In addition, the PRAO results were better than those found by PEFT, HEFT, TSHCS, HSIP,
and HLTSD as shown in Fig. 12.

The scheduling problem contains many versions of different structures and systems, especially
with the current importance of account capabilities. In the meantime, the efficiency of time is strongly
required from any system, and this is achieved through new algorithms rather than faster devices.
Even the new 5G connection depends on the efficiency of the software account. For future work,
PRAO may be used to solve the scheduling problem based on the OpenCL framework. In addition,
study the scheduling problem considering Energy in the cloud computing system and solve it by PRAO
algorithm.
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