
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.026574

Article

Dynamic Intelligent Supply-Demand Adaptation Model Towards Intelligent
Cloud Manufacturing

Yanfei Sun1, Feng Qiao2, Wei Wang1, Bin Xu1, Jianming Zhu1, Romany Fouad Mansour3 and Jin Qi1,*

1School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China
2College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications,

Nanjing, 210003, China
3Department of Mathematics, Faculty of Science, New Valley University, El-Karaga, 72511, Egypt

*Corresponding Author: Jin Qi. Email: qijin@njupt.edu.cn
Received: 30 December 2021; Accepted: 02 March 2022

Abstract: As a new mode and means of smart manufacturing, smart cloud
manufacturing (SCM) faces great challenges in massive supply and demand,
dynamic resource collaboration and intelligent adaptation. To address the
problem, this paper proposes an SCM-oriented dynamic supply-demand (S-
D) intelligent adaptation model for massive manufacturing services. In this
model, a collaborative network model is established based on the properties
of both the supply-demand and their relationships; in addition, an algorithm
based on deep graph clustering (DGC) and aligned sampling (AS) is used to
divide and conquer the large adaptation domain to solve the problem of the
slow computational speed caused by the high complexity of spatiotemporal
search in the collaborative network model. At the same time, an intelligent
supply-demand adaptation method driven by the quality of service (QoS) is
established, in which the experiences of adaptation are shared among adapta-
tion subdomains through deep reinforcement learning (DRL) powered by a
transfer mechanism to improve the poor adaptation results caused by dynamic
uncertainty. The results show that the model and the solution proposed in this
paper can perform collaborative and intelligent supply-demand adaptation for
the massive and dynamic resources in SCM through autonomous learning and
can effectively perform global supply-demand matching and optimal resource
allocation.

Keywords: Smart Cloud Manufacturing; supply and demand sides; dynamic
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1 Introduction

SCM is the result of applying next-generation information technologies such as big data, artificial
intelligence and Internet of Things [1] to the field of cloud manufacturing, and it has further
expanded into the fields of production, circulation and consumption [2]. As a very new approach to
manufacturing services, SCM has the characteristics of having a large scale and being highly dynamic.
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It is difficult to achieve collaborative, intelligent, intensive supply-demand matching and the optimal
allocation of service resources, because there is a lack of an intelligent adaptation mechanism based
on the interaction between supplies and demands. This has become one of the great challenges in this
field [3].

In order to meet the above challenges, domestic and foreign researchers have built different models
and proposed different methods to solve the demand for the adaptation of massive service resources in
the field of intelligent cloud manufacturing, and achieved some results. It includes the construction of
mixed integer linear programming model and the mathematical optimization model based on multi-
index to solve the process of service matching [4,5]. However, the above research is based on the
supply and demand matching scenario of static service resources, and does not take into account
the dynamic changes of tasks and services. With the increasing demand for the optimal allocation
of intelligent service resources in intelligent manufacturing driven by artificial intelligence, and the
diversity and complexity of tasks and services in intelligent cloud manufacturing, the contradiction
between collaborative supply and demand adaptation is becoming more and more prominent [6].
Intelligent adaptation of massive dynamic service resources in intelligent cloud manufacturing has
gradually become the focus of research.

With the deepening of research, some achievements have been made in the research considering
the dynamic change scenarios of tasks and services in the process of resource adaptation. Reference
[7] established a model of the dynamic cloud manufacturing scheduling problem and proposed a
scheduling method based on simulation to improve its performance. Reference [8] used a simulation-
optimization approach based on a hedging strategy to capture the randomness of the uncertain
parameters. Reference [9] presented a realistic production–distribution planning model that is robust
to common supply interruptions and demand variations, which aims to reduce the dynamic impact on
adaptation. Reference [10] considered the supply and demand matching method of the dynamic change
of machine tool information, and reference [11] combined the static and dynamic characteristics of 3D
printer to realize fast supply and demand matching. In view of the double uncertainty of supply and
demand, a supply and demand adaptation method considering speculative delay strategy was proposed
in reference [12]. This method can reduce the influence of dynamics on supply and demand adaptation
as much as possible. The above research has made some progress in solving the dynamic uncertainty
of service resource adaptation, but it has not taken into account the dynamic addition and withdrawal
of service resources in the process of supply and demand adaptation. Therefore, considering the above
factors, in order to meet the efficient interaction of service resources and improve the intelligence
and robustness of adaptation, this paper innovatively transforms the traditional supply and demand
adaptation problem into reinforcement learning (RL) problem [13]. so that the algorithm can learn
the law of supply and demand adaptation.

With the explosive growth of massive service resources in SCM, in order to meet the demand
for efficient and collaborative supply and demand adaptation, such as search, matching and selection
of service resources, and to improve the efficiency and quality of supply and demand adaptation,
the construction of a global service network model for collaborative interaction of massive service
resources has become an urgent problem to be solved in the optimal allocation of intelligent cloud
manufacturing service resources. At present, the research on this problem is in the preliminary stage,
with few results. However, in other fields, common solutions to such problems are to divide the
service resources by clustering [14,15] or to improve the efficiency of the traditional optimization
algorithm so that it can overcome the impact of high-dimensional massive service resources [16,17].
However, these methods are not suitable for the massive and dynamic service resources in an
SCM scenario. Reference [18] constructed a matching network model consisting of service network,
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manufacturing network and super-edge between them to match supply and demand. Reference [19]
proposed enterprise collaboration network based on this network and adopted PSO algorithm to
realize optimal collaboration. Reference [20] proposed a classified hypernetwork model and used
NSGA-II algorithm to solve the supply-demand optimization. However, these methods do not have the
dynamic processing and transfer characteristics of reinforcement learning. Therefore, an aggregated
divide-and-conquer method based on DGC and an AS algorithm is proposed to divide the complex
adaptation problem into several simple subproblems and transfer experiences among subproblems
through transfer learning (TL) to improve the synergy and efficiency of supply-demand adaptation.

Therefore, this paper aims to solve the problem of the large scale and high dynamics encountered
by the supply-demand adaptation of service resources in SCM, and it puts forward an SCM-oriented
dynamic supply-demand intelligent adaptation model for massive manufacturing services. In this
model, collaborative tasks and service networks are built based on both the properties of the supply-
demand and their relationships; in addition, a divide-and-conquer framework of adaptation tasks
based on DGC and TL is introduced to reduce the computational complexity; then, the DRL
algorithm is used to solve this problem and finally achieve the collaborative, intelligent and intensive
adaptation of the massive and dynamic service resources in SCM.

The main contributions of this paper are as follows: (1) An SCM-oriented dynamic supply-
demand intelligent adaptation model for massive manufacturing services is proposed, in which a
collaborative network model is established based on both the properties of supply-demand and their
relationships; in addition, an intelligent adaptation method driven by the generalized QoS is proposed
to achieve collaborative, intelligent and intensive adaptation; (2) A divide-and-conquer method based
on DGC is proposed to solve the problem of the slow computational speed caused by the high
complexity of spatiotemporal search in the collaborative network model; (3) An intelligent supply-
demand adaptation method based on DRL is proposed, which makes use of the autonomous learning
ability of DRL to reduce the adaptation difficulties caused by dynamic uncertainty and improve the
effectiveness of dynamic adaptation; (4) An adaptation task collaboration mechanism based on TL is
proposed to share experiences among the adaptation subdomains so that multiple tasks can cooperate
with each other to improve the efficiency of dynamic adaptation; (5) The experimental results show
that the model and the method proposed in this paper can not only effectively solve the problem of the
supply-demand adaptation of massive and dynamic service resources in SCM but also greatly improve
the universality and flexibility of supply-demand adaptation.

2 Supply-Demand Adaptation Model For SCM

This paper builds an SCM-oriented massive-resource dynamic adaptation model for both the
supply and demand sides to achieve collaborative and intelligent optimal configuration of service
resources in SCM.

2.1 Collaborative Supply-Demand Network Model for SCM

As our goal is to better cluster tasks and services to divide-and-conquer massive manufacturing
resources, in order to simplify the supply-demand adaptation problem in SCM. Therefore, distinguish
from traditional methods, we consider the potential relationships between tasks or services to improve
the performance of clustering. Inspired by reference [18], a collaborative network model is established
to provide a knowledge representation basis for the supply-demand adaptation of service resources,
as well as to better divide-and-conquer the supply-demand adaptation problem.



2828 CMC, 2022, vol.72, no.2

(1) Network Model for Manufacturing Tasks

The tasks in SCM can be divided into indissoluble meta-tasks and composite tasks composed of
meta-tasks, and the combination of meta-tasks into a composite task follows the rules of a working
procedure and time sequence. Therefore, it is necessary to construct a task network (TN) model based
on a weighted directed graph, in which positive and negative weights represent the directions of the
edges:

TN =< T , ET > (1)

T = {
T 1

pri, T 2
pri, . . . Tl

pri

}
(2)

ET = {
eij

}
, ET = {

eij

}
; i, j = 1, 2, . . . , l (3)

Tpri =< InputT , OutputT , StT , EtT , Rc, . . . > (4)

where T represents the set of task nodes; ET is the set of edges, which represent relationships between
tasks; Tpri is a meta-task, and its features are extracted from a specific description of the physical
manufacturing resources [21]; InputT , OutputT , StT and EtT are the input, output, starting time and
ending time of the task, respectively; Rc = {rc1, rc2, . . .} is a collection of the task’s consumption of
various customized QoS indicator attributes; eij represents the type of edge between the i-th and j-th
meta-tasks; and wij is the weight of an edge. There are three kinds of relationships that need to be
defined:

Definition 1. Similar Tasks: When eij = −1, Outputi
T = Outputj

T or Inputi
T = Inputj

T , T i
pri and T j

pri

are similar tasks, and the edge between them is undirected;

Definition 2. Complementary Tasks: When eij = 1 and Outputi
T = Inputj

T , Eti
T � Etj

T , or eij =
1, Outputj

T = Inputi
T , and Etj

T � Eti
T , T i

pri and T j
pri are complimentary tasks, and the edge between

them is undirected;

Definition 3. Sequential Tasks: When eij = 1, wij = 1, Outputi
T = Inputj

T , and Eti
T ≤ Etj

T , or eij =
1, wij = −1, Outputj

T = Inputi
T , and Etj

T ≤ Eti
T , T i

pri and T j
pri are sequential tasks, and the edge between

them is directed from the preorder to the postorder.

(2) Network Model for Manufacturing Services

Service providers generally do not provide sequential services in the process of the supply-demand
adaptation of service resources driven by task requirements [22], which makes the use of sequential
relationships inappropriate for describing the services. Therefore, the service network (SN) model that
is to be built is based on an undirected graph:

SN =< S, ES > (5)

S = (
S1

pri, S2
pri, . . . , Sm

pri

)
(6)

ES = {
eij

}
; i, j = 1, 2, . . . , m (7)

Spri =< Inputs, Outputs, Sts, Ets, Rg > (8)

where S represents the set of service nodes; ES is the set of edges, which represent relationships between
services; Spri is a meta-service; InputS, OutputS, StS and EtS are the input, output, starting time and
ending time of the service, respectively; R = {rg1, rg2, . . .} is a collection of the service’s gross of various
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customized QoS indicator attributes; and eij represents the type of edge between the i-th and j-th meta-
services, which can indicate two kinds of relationships:

Definition 4. Similar Services: When Outputi
S = Outputj

S or Inputi
S = Inputj

S, Si
pri and Sj

pri are similar
services, eij = −1;

Definition 5. Complementary Services: When Outputi
S = Inputj

S or Outputj
S = Inputi

S, Si
pri and Sj

pri

are complementary services, and eij = 1.

2.2 Optimization Model for Supply-demand Adaptation in SCM

This paper considers the supply-demand adaptation problem of SCM in the adaptation domain:

M =< TN, SN > (9)

Assume that Tk
pri ∈ TN and Sl

pri ∈ SN represent the k-th meta-task in TN and the l-th meta-
service in SN, respectively. When task Tk

pri is assigned to Sl
pri, some of the QoS indicator resources of

Sl
pri are occupied. In most cases, multiple tasks will match multiple services. To determine the best

combination, a generalized QoS-driven supply-demand adaptation model is introduced in this paper:

max QoS = Q (ibr, obr) (10)

where Q is a function of various evaluation indexes. Different definitions of Q represent different
preferences of decision-makers; therefore, the idea of QoS here is generalized.

ibr is the local equilibrium degree of service, and it measures the difference level of QoS indexes
within the service:

ibr =
m∑

i=1

(roi − RO)
2
/p (11)

where roi represents the occupancy rate of the i-th indicator, RO represents the average occupancy rate
of various indicators, and p is the total number of indicators.

obr is the global equilibrium degree of services; it measures the difference level of the occupancy
rate of normalized QoS indexes between services and is expressed in the form of variance:

obr =
n∑

i=1

(
ROi − RO

)2

/m (12)

where ROi represents the mean occupancy rate of various indicators in the i-th service, RO is the mean
value of RO, and m is the number of services in the adaptation domain.

2.3 Constraints

On the basis of the intelligent adaptation model of cloud manufacturing established in this paper,
multiple constraints of service resource adaptation on both sides of supply and demand of intelligent
cloud manufacturing should also be considered. The adaptation problem in this paper follows the
principles of function matching and time domain (TD) matching. That is, the functions provided by
the service must meet the requirements of the task, and the time of the task must be within the cycle
of the service. Therefore, the matching of Tk

pri and Sl
pri should satisfy the constraints below:

Constraint 1. Functionality Constraint: Inputk
T ⊆ Inputl

S and Outputk
T ⊆ Outputl

S.

Constraint 2. TD Constraint: Stk
T ≥ Stl

s and Etk
T ≤ Etl

s.
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For the indexes in Rc and Rg, the upper limit of the index, described below, should also be satisfied.

Constraint 3. Index Upper Limit Constraint:

∀i ∈ [1, m] , ∀j ∈ [1, l] ,
p∑

k=1

rcjk
i ≤ rgj

i (13)

where m is the number of indicators, n is the number of services in M, p is the number of tasks assigned
to the corresponding service, rcjk

i is the occupation of the i-th index of the k-th task assigned to the j-th
service, and rgj

i represents the upper limit of the i-th index of the j-th service.

3 Simplification and Solution of Dynamic Supply-Demand Adaptation of Massive Service Resources in
SCM

The model established in this paper is to solve the problem of mass and dynamic service resource
supply and demand optimization driven by quality of service. To simplify the proposed network model,
reduce the computational complexity and increase the accuracy of artificial intelligence learning, an
aggregated divide-and-conquer algorithm based on a graph neural network is introduced [23]. Then,
a novel method based on DRL powered by the transfer mechanism is carried out to solve the dynamic
adaptation problem intelligently while overcoming the drawback of the traditional optimization
algorithm that is difficult to cope with dynamic changes in the environment. The general procedure of
our solution is shown in Fig. 1

Sub Matching 
Domain #1

Sub Matching 
Domain ...

Sub Matching 
Domain #n

Transfer learning

Transfer learning

Sampled Services

Sampled Tasks

...

...

Reinforcement 
learning

Sub matching domains Sub matching taskTask/Service Network

Divide and 
conquer

Figure 1: Procedure of the adaptation task

The corresponding algorithm flow is shown in Fig. 2. In the first stage of the flow chart, the
network model is simplified by aggregated divide-and-conquer. In the second stage, transfer-based
deep reinforcement learning is adopted for each sub-adaptive domain to cope with the dynamic
changes of supply and demand adaptation.

3.1 Simplification of the Collaborative Network Model

Considering the high spatiotemporal search complexity of the collaborative network model
established in this paper, which is large scale and highly hybrid in the adaptation domain M =<

TN, SN >, the computational speed is extremely slow. To overcome the disadvantages mentioned
above, a novel method is proposed to cluster the nodes in TN and SN and then sample multiple
service and task subdomains from the clusters. Finally, the global network model is divided into
various adaptation subdomains that have similar distributions to the global model to enable divide-
and-conquer.
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Y
N

Y

Stage 2
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Figure 2: Flowchart of the adaptation task

(1) Optimization of Adaptation Domains Based on DGC

Optimization of adaptation domains of massive supply and demand data includes two steps:
Clustering adaptation domains to form supply and demand service resource sets of different functional
groups, and sampling from the above different resource sets to form multiple sub-adaptation domains.

The collaborative supply-demand network model is a graph network that considers the properties
of the supply-demand and their relationships between the supply and demand. Inspired by [24], this
paper proposes a novel graph clustering method based on graph neural networks and deep learning.

This method uses a graph attention network (GAT) to generate a unique vector representation of
the nodes in the network model; next, it divides the nodes into several categories according to these
vector representations with clustering algorithms. Then, it assigns the same pseudo-label to nodes in
the same category; finally, it uses the pseudo-labels to train the GAT to achieve a satisfactory clustering
result. The clustering process is shown in Fig. 3.
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Figure 3: Process of the clustering of tasks and services in SCM

The GATs can handle both directed and undirected graph, due to its vertex-by-vertex operation
mode, that is, each operation needs to loop through all the vertices on the graph. It means that the
problem of directed graph can be solved by getting rid of the constraint of Laplacian matrix. So, the
proposed DGC, which adopted GAT, can operate both the directed TN and the undirected SN.

The sampling algorithm guarantees the distribution consistency between the generated adaptation
subdomain and the entire adaptation domain by ensuring that the subdomain covers the samples in
each cluster and that the proportion of samples from each cluster in the subdomain is the same as that
in the entire domain. Before sampling, to eliminate the interference of singular clusters, which have
very small sample sizes, each singular cluster should be merged into the corresponding cluster with
the smallest distance from its cluster center. After that, the number of samples in the smallest cluster
should be ensured to be much larger than the number of subdomains n. On this premise, random
sample replication is used for each cluster to supplement its number of samples, an integer multiple of
n. Finally, the entire domain is divided into several adaptation subdomains Msubs after AS:

Msubs = {
m1

sub, m2
sub, . . . , mk

sub, . . . , mn
sub

}
(14)

mk
sub =< ti

sub, sj
sub > (15)

sj
sub ∈ Ssubs = {

s1
sub, s2

sub, . . . , sj
sub, . . . , sn

sub

}
(16)

ti
sub ∈ Tsubs = {

t1
sub, t2

sub, . . . , ti
sub, . . . , tn

sub

}
(17)

where mk
sub =< ti

sub, sj
sub > represents one adaptation subdomain; Ssubs and Tsubs are sets of service and

task subdomains, respectively; and sj
sub and ti

sub are a service and a task subdomains in Ssubs and Tsubs,
respectively.

(2) Recursive Optimization Mechanism of Adaptation Domains

In the case of huge supply and demand adaptation data, the complexity of sub-adaptation domain
is still too high after optimization of the adaptation domain. The adaptive domain optimization
method proposed in this paper can be applied to sub-adaptive domains to further reduce the
complexity of adaptation. That is, the optimization method can be used recursively until the complexity
of the sub-adaptation domain is reduced to a reasonable value.

(3) Divide-and-conquer Algorithm Based on DGC and AS

To simplify the network model, first is to classify supplies and demands through DGC algorithm.
Second, adaptation subdomains with similar distributions and less complexity are formed by applying
AS to the clustered supply and demand instances. The divide-and-conquer algorithm for adaptation
based on DGC and AS is shown in Algorithm 1:
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Algorithm 1: Divide-and-conquer Algorithm for S&D Adaptation Tasks Based on DGC and AS
Input: Number of clusters ks, threshold of a singular cluster ε, number of adaptation subdomains

n, SN, TN, graph attention network GAT , total number of training cycles Epochs, number of iterations
Episodes, threshold size of a subdomain δ

Output: Adaptation subdomains Msubs = {
m1

sub, . . . , mj
sub, . . . , mn

sub

}
1 for Network in {SN, TN}:
2 while size (Network) > δ:
3 Initialize ks, Epochs, Episodes, formerClusters = [], GAT
4 for i = 0 to Episodes:
5 processedServiceNodes = GAT(Network)
6 [clusters, pseudoLabel] = Kmeanspp(processedServiceNodes, ks, formerClusters)
7 formerClusters = clusters
8 for j = 0 to Epochs: train GAT by inputting Network and pseudoLabel, then update GAT
9 while min (len(clusters))< εn: codd=argmin(len(clusters))
10 for item in codd: relocate item
11 for cluster in clusters: diff = len (cluster) % n, then randomly double one instance in clusterdiff

times
12 for i = 0 to n:
13 for cluster in clusters: randomly choose len(cluster)/n instances, then add it to si

sub or ti
sub

14 mi
sub=

〈
ti

sub, si
sub

〉
15 Network = mi

sub

16 return M = {
m1

sub, m2
sub, . . . , mj

sub, . . . , mn
sub

}

3.2 Intelligent Solution to Adaptation Tasks Based on Deep Reinforcement Learning with Transfer
Mechanism
The supplies and demands may appear or disappear at any time in SCM. The traditional

optimization algorithm must address the problem that a tiny fluctuation will lead to a large change
in the solution space. Therefore, this paper adopts the DRL algorithm, which has the abilities of
migration and dynamic learning, to independently find the best adaptation scheme under a wide
range of complicated decision-making [25]. At the same time, the parameters generated by DRL can
be transferred among subdomains to improve the efficiency and results of adaptation tasks in other
adaptation subdomains.

(1) Transformation of an Adaptation Task into an RL Problem

The adaptation environment in this paper is denoted as SDEnv, and the adaptation process is
described as follows: In the adaptation domain mi

sub, each task finds the most suitable service according
to the current state of services. Accordingly, each such process is regarded as a STEP in the training of
the RL, and an EPISODE is ended after all tasks have been allocated or when there are abnormalities.
We set the REWARD as a polynomial in the QoS and denote an OBSERVATION of RL as

〈
tcur, S′

sub

〉
,

where tcur is the feature set of the current task to be assigned and S′
sub is the feature set of all services as

well as the assigned tasks in the adaptation domain. An ACTION is the sequence number of the service
that matches the task. In addition, if the matching result given by RL does not meet the constraint of
supply-demand adaptation, the REWARD is directly set to a negative value as punishment [26]. The
details of SDEnv are shown in Tab. 1.
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Table 1: Details of SDEnv

Item Category Description

observation Variable (tensor) Denoted as
〈
tcur, S′

sub

〉
; a feature set of the

current task to be assigned and all services.
reward Variable (number) A polynomial of the QoS.
reset( ) Function Resets the SDEnv.Reorder tasks to be

assigned, then returns observation.
step(action) Function Assigns tasks according to action. Returns

observation, reward, done (if completed), over (if
ended abnormally); Abnormal state ends the
process when the process or result does not satisfy
any of the constraints 1, 2, or 3.

(2) Collaborative Mechanism of S-D Adaptation Based on TL

The distributions among adaptation subdomains are similar, so the parameters of DRL can be
transferred among subdomains at a low cost. Coupled with the randomness of DRL, it is easy to find
the optimal strategy using parallel training. Therefore, we combine the parameter transfer mechanism
with RL; that is, each subdomain performs an independent RL process and carries out parameter
transfer among processes simultaneously. Transfer is achieved through an external shared parameter
pool, where each process uploads its parameters to the pool and searches for better parameters from
the pool to apply to itself according to the rules.

(3) Supply-demand Adaptation Algorithm Based on DRL Powered by a Transfer Mechanism

It is necessary to establish a proper external shared parameter pool to share the experiences and
conduct transfer learning in order to perform supply-demand adaptation and result optimization. This
paper takes the double DQN (DDQN) algorithm [27,28] as the baseline, as shown in Algorithm 2:

Algorithm 2: S-D Adaptation Algorithm Based on RL with a Parameter Transfer Mechanism
Input: Total number of episodes Episodes, Parameter transfer iterations TLIter, Memory size

memorySize, parameter replacement iterations TPRIter, DDQN, SDEnv, External shared parameter
pool paraPool

Output: Adaptation results, DDQN parameters
1 initialize DDQN, SDEnv, step = 0
2 for episode = 0 to Episodes:
3 observation = SDEnv.reset()
4 while True:
5 action = argmax (DDQN (observation)))
6 [observation_, reward, done, over] = SDEnv.step(action)
7 push [observation, action, reward, observation_] to memory, step+ = 1
8 if step > memorySize: train DDQN using sampled trajectories from memory, then delete

these trajectories
9 if step % TPRIter == 0: replace TargetNet parameters with EvlNet Parameters
10 if done or over: break
11 observation = observation_

(Continued)
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Algorithm 2: Continued
12 if (episode + 1) % TLIter == 0: apply each paraCollection in paraPool to DDQN; find the

best paraCollection, denote its performance as perfBest; denote the original performance as
perfOrigin

13 if paraBest > paraOrigin: replace TargetNet and EvlNet parameters with paraCollection
14 else: upload the original parameters to the paraPool
15 return observation

4 Analysis of Experimental Results

To verify the model and methods proposed in this paper, two experiments are designed. One aims
to show the validity of the divide-and-conquer method for the adaptation domain, and the other aims
to verify the effectiveness of the DRL powered by the transfer mechanism in performing the dynamic
adaptation task. The experimental environment is set as follows: the hardware is an i7-9900k with 32
GB RAM and a GTX1080; the software is a Python 3.7.4 platform with CUDA 10.0, TensorFlow
1.14.0 and Ubuntu 16.04. For different experiments, the supply-demand service dataset, and the Cora
dataset [29] are adopted in this paper. The service network in the supply-demand service dataset
includes 100 nodes and 736 edges, and the task network has 400 nodes and 2,143 edges. The Cora
dataset contains 2,708 nodes, 5,429 edges, and 7 types of nodes, each of which has 1,433 dimensions.

4.1 Results of the Divide-and-conquer Method Based on DGC

To achieve the intelligent dynamic adaptation of massive service resources, we propose a divide-
and-conquer method based on DGC simplify the complex adaptation problem. In this experiment,
both the Cora and the supply-demand service datasets are used to verify the validity of the method.

(1) Results on the Cora Dataset

In accordance with reference [30], the first 140 nodes in the dataset are selected for training, and
the last 1000 nodes are selected for testing, while another 500 nodes are selected in the middle for
cross-validation. The number of clusters is set to 7 according to the number of categories in the Cora
dataset to obtain the best clustering results. Based on the parameter setting in reference [30] and the
pretraining carried out before the experiment, the specific parameters are shown in Tab. 2:

Table 2: Hyperparameters of DGC

Hyperparameter Value Parent

Training Set Size 140 nodes GAT
Test Set Size 1000 nodes GAT
Validation Set Size 500 nodes GAT
Batch Size 1 GAT
Epochs 200 GAT
Episodes 20 DGC
Patience 50 GAT
Learning Rate 0.002 GAT
Hidden Units 8 GAT

(Continued)
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Table 2: Continued
Hyperparameter Value Parent

Active Function LeakyReLU GAT
Number of Clusters 7 DGC

Where Epochs is the number of GAT’s training cycles; Episodes is the number of cycles, which
includes the complete procedure of GAT forward propagation, clustering, pseudo-label generation
and GAT training, processed by DGC; and Patience is the threshold at which the training of the GAT
stops prematurely.

The adjusted Rand index (ARI), adjusted mutual information (AMI)-based scores, the mean of
homogeneity and completeness (V-measure), Fowlkes-Mallows scores and the silhouette coefficient
(SC) are used to evaluate the clustering algorithms. Only the SC is used for situations where the ground
truth is unknown; therefore, it is also used to evaluate the results on the supply-demand service dataset.
We also use the results of K-means (KM), the Gaussian mixture model (GMM), the spectral clustering
algorithm (SCA) and k-means++ (KMPP), which are implemented in scikit-learn, as comparisons.
Since none of the above algorithms can properly process graph data, only the features of the nodes in
the graph are considered, when clustering with these algorithms.

As shown in Fig. 4, the performance of DGC on various evaluation indicators increases with
the number of iterations and tends to level off and eventually converge after 5-6 iterations. This is
because the training of the DGC makes its neural network increasingly close to reality, leading to
the correction and redistribution of pseudo-labels. The results of the clustering algorithms other than
DGC fluctuate randomly, mainly because they have no “learning” process. Additionally, the result
of the first episode of DGC is worse than that of its counterparts because the weights of the GAT
are initialized randomly. It is also clear that the similarity between the results of DGC and the ground
truth shows an obvious advantage over other traditional algorithms. That is, the results of DGC better
represent the real categories of the original data.

Fig. 5a shows the variation in the number of samples in each cluster of DGC. In the first few
episodes, it varies greatly because the DGC has not been fully trained. As training goes on, fewer
samples are redistributed, and a balanced state is reached within approximately 5–6 episodes. This
result is consistent with Fig. 4; that is, when the clustering results tend to be stable, the evaluation
indicators also tend to be at their highest value. Fig. 5b shows the number of iterations required for
the DGC and KMPP algorithms to converge. The KMPP algorithm fluctuates irregularly, while the
DGC algorithm, as the neural network is trained, gradually reduces the number of iterations. Similarly,
it reaches a balanced state at 5–6 episodes, which is consistent with the previous conclusion.

(2) Results on the Supply-demand Service Dataset

The clustering result of the DGC algorithm on the task network and service network is also
verified in this paper. We set different numbers of clustering categories and then calculate the mean
value in each case. The results are shown in Fig. 6.
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Figure 4: Performance of DGC on various evaluation indicators
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Figure 6: Performance of DGC on the supply-demand service dataset

Fig. 6 shows the results on the supply-demand service dataset and are consistent with the results
on the Cora dataset. The clustering results of DGC improve as training deepens, and finally, it is far
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superior to the traditional algorithm. In summary, these experimental results show the effectiveness
of the simplification method for the proposed collaborative network model. The divide-and-conquer
algorithm based on DGC and AS can perform better classification and improve the distribution
consistency between the adaptation subdomain and the entire domain. It also reduces the complexity
of the intelligent adaptation algorithm and reduces the cost of the transfer of experience. Finally, it
significantly reduces the difficulty of dynamic adaptation of large amounts of resources.

4.2 Results of the Divide-and-conquer Method Based on DGC

In Section 3, the problem of supply-demand adaptation was transformed into a problem of RL,
and the DDQN algorithm, which has stable performance, was selected as the baseline for this problem.
After some pretraining sets, the parameters of DDQN are shown in Tab. 3.

Table 3: Hyperparameters of DDQN

Hyperparameter Value

Observation Dimension 56
Action Dimension 6
Memory Size 200000
Target Net Replacement Iteration 20000
Learning Rate 0.002
Batch Size 256
Reward Decay 0.95
ε-Greedy, Increment 0.95, 0.0001
Eval/Target Net Structure 2 Dense layers with 50 units
Active Function ReLU

In this table, Memory Size represents the maximum number of trajectories stored in the playback
library; ε-greedy and Increment are the maximum probability of nonrandom exploration and the
increment rate of it in each iteration, respectively; and TargetNetReplacementIteration represents the
update interval of the target net. Due to the randomness of RL, the indicators will fluctuate greatly.
Therefore, in a total of 60,000 episodes, we calculated the mean value every 500 episodes, and then
formed 120 data points.

(1) Results of Intelligent Adaption

In this paper, the results of the intelligent supply-demand adaptation method for the model based
on the generalized QoS are shown in Fig. 7.

Fig. 7 shows the changes in the normalized QoS value and the two evaluation indicators. As
shown in the figure, the algorithm begins to learn in the 24th evaluation period after storing 200,000
experiences. Since the QoS function we set prefers the obr value, it decreases after learning, while the
other indicator increases accordingly due to the strict relationship between them. Once learning starts,
the indicators gradually become stable after 20 more evaluation periods, and the normalized QoS
increases in fluctuation and finally tends toward stability, indicating that the method in this paper can
ultimately achieve the goal of supply-demand adaptation.
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Figure 7: Results of the supply-demand adaptation

(2) Effectiveness in Solving the Dynamic Supply-demand Adaptation Problem

We studied the probability of completing the adaptation task and the change in the cumulative
reward obtained after completion.

Fig. 8a shows the variation in the average failure rate of the adaptation tasks. For the subdomain,
the failure rate reaches as high as 85% before learning begins, due to the random exploration of the
DDQN. However, once learning starts, it rises briefly and then rapidly falls. After reaching a certain
value, the failure rate declines slowly, with fluctuations, and eventually falls below 30%. This indicates
that the RL algorithm has learned the law of supply-demand adaptation and is able to process the
situation and then allocate the tasks effectively. In contrast, the adaptation task in the entire adaptation
domain, which doesn’t adopt the divide-and-conquer method, cannot make any progress under the
corresponding computational cost due to the large search space caused by the dimensional explosion.
This indirectly demonstrates the practicality and effectiveness of the proposed divide-and-conquer
method. Fig. 8b shows the change in the cumulative reward, which has the similar change law shown
in Fig. 8a, and it also shows the effectiveness of the DRL algorithm in solving the problem of supply-
demand adaptation.

(a) Mean Failure Rate in Completing One Episode (b) Reward per Evaluation Period

0

0.5

1

1 21 41 61 81 101

Fa
il

ur
e 

ra
te

Evaluation period

on adaptation subdomain on entire adaptation domain

0

0.05

0.1

0.15

0.2

0.25

1 21 41 61 81 101

R
ew

ar
d

Evaluation Period

Figure 8: Progresses of the adaptation task along with training

In summary, RL has inherent advantages in solving dynamic supply-demand adaptation prob-
lems. When a task or service is introduced or removed, this algorithm can adapt according to previous
experience without re-optimization, which greatly improves the efficiency of adaptation. Therefore, the
method proposed in this paper can learn the laws of adaptation and can solve the dynamic adaptation
problem.

(3) Advantages of TL in Solving Massive Supply-demand Adaptation Problems

In this paper, TL is used to share experiences in the adaptation subdomains to an external shared
parameter pool as candidate experiences for other subdomains, and the performance improvements
are investigated.
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Fig. 9a shows the variation in the failure rate of the TL and non-TL methods. After the use of
TL, the failure rate immediately decreases by approximately 30% compared with that of the non-TL
method, indicating that the experience in the subdomain has some applicability. With the deepening
of training, the final failure rate of TL is 5%–10% lower than that without TL, indicating that TL
can improve the performance of adaptation. Fig. 9b shows how the rewards change, and the same
conclusion can be drawn from this figure.
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Figure 9: Comparison of methods with and without parameter transfer

We also recorded the change in the adaptation results and adaptation efficiency in each adaptation
subdomain by turning the TL mechanism on and off.

As shown in Fig. 10a, the initial adaptation result of TL was greatly improved, with an average of
37.3% improvement in any subdomain. For the final adaptation result, there was an improvement in
most cases, with the average reaching 4.7%. Fig. 10b shows a comparison of the number of evaluation
periods needed with and without TL when achieving 80% of the optimal adaptation result. This
indicator shows the advantage of TL in improving training efficiency. In most cases, TL has an
advantage of more than 20 evaluation periods, and the mean number is 24.647.
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Figure 10: Overall advantages of TL

In summary, using TL to transfer parameters between adaptation subdomains can greatly improve
not only the results but also the efficiency of adaptation. The excellent results of TL also indirectly
show that there is a very similar distribution rule in the adaptation subdomains and the entire
adaptation domain, which proves the great benefits of applying the divide-and-conquer method.
Therefore, as a part of the framework proposed in this paper, TL greatly improves the ability to perform
massive supply-demand adaptation.
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5 Conclusion

This paper proposes a new dynamic supply-demand adaptation model that can handle the massive
resources involved in SCM. The proposed model effectively solves the problem of highly dynamic
and massive services caused by the expansion of cloud manufacturing. The goal is to simplify the
adaptation tasks by a divide-and-conquer strategy and empower the model to cope with dynamic
resources by transforming the adaptation task into an RL problem to achieve the collaborative,
intelligent and intensive adaptation of the large amounts of dynamic service resources in SCM. In
this article, TL is also used to share experiences among adaptation subdomains to further improve the
synergy and efficiency of supply-demand adaptation.

The results of the experiments show that the dynamic supply-demand adaptation model proposed
in this paper is reasonable. The divide-and-conquer method based on DGC can reduce both the
complexity of intelligent supply-demand adaptation algorithms and the cost of transferring adaptation
experiences. Additionally, the RL environment proposed in this paper can learn the laws of adaptation
and can solve dynamic supply-demand adaptation problems. Furthermore, TL, as a part of the
proposed divide-and-conquer framework, greatly improves the ability of the model to handle supply-
demand adaptation tasks involving large amounts of service resources.
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