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Abstract: We introduce a new wavelet based procedure for detecting out-
liers in financial discrete time series. The procedure focuses on the analysis
of residuals obtained from a model fit, and applied to the Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) like model, but not
limited to these models. We apply the Maximal-Overlap Discrete Wavelet
Transform (MODWT) to the residuals and compare their wavelet coefficients
against quantile thresholds to detect outliers. Our methodology has several
advantages over existing methods that make use of the standard Discrete
Wavelet Transform (DWT). The series sample size does not need to be a
power of 2 and the transform can explore any wavelet filter and be run up
to the desired level. Simulated wavelet quantiles from a Normal and Student
t-distribution are used as threshold for the maximum of the absolute value
of wavelet coefficients. The performance of the procedure is illustrated and
applied to two real series: the closed price of the Saudi Stock market and
the S&P 500 index respectively. The efficiency of the proposed method is
demonstrated and can be considered as a distinct important addition to the
existing methods

Keywords: GARCH models; MODWT wavelet transform; outlier detections;
quantile threshold

1 Introduction

Financial time series often exhibit high or low kurtosis and volatility which consists of unpredicted
periods of high and low volatility. The introduction of the Autoregressive Conditional Heteroskedas-
ticity (ARCH) model by [1] and the GARCH model by [2,3] are widely used to model such financial
data, starting with the Normal distribution and then allowing the Student’s t-distribution for the
error terms. In this context it is very common to assume that if the fitted model has captured the
structure of the data, then the residuals are supposed to be independent and identically distributed
random variables (i.i.d). However, it has been observed that the estimated residuals computed from
such models might register excess kurtosis as reported by [4,5]. The main raison for this to occur is
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due to the presence of outliers in the returns. The presence of outliers in a data series heavily affect the
estimation of the model parameters, and reduce the accuracy and reliability of forecasted future values.
In the forecasting context removing outliers without investigating their underlying cause might not be
the best approach. For example, we may have a large numbers of online shopping over a particular
period of time, and removing such outliers is like assuming that nothing unusual happened over that
particular period of time. In order to overcome the problem of outlier removals from the original series,
different approaches have been proposed in the literature see [6–8] for wavelet based methods and
[9–14] for other methods, where the main focus was to detect and identify anomalies such as outliers.
A recent review available online in [7] about outliers detection in time series data mining which will
soon be published.

This research work focuses mainly on the problem of detecting outliers in financial time series
models. Outliers are defined as values that are significantly larger or smaller than other values in the
series. We consider a wavelet based approach that allow to detect and correct outliers in large class of
times series data. Our approach is inspired by the work of [6]. They proposed an outlier detection and
correction method based on wavelets that are not applied to the series but to the residuals obtained
from selected volatility models. Their procedure allows to identify outliers recursively, one by one
and can be extended to detect patches of outliers based on the detail coefficients resulting from the
standard DWT of the residuals. These are obtained after fitting a particular volatility model with either
Gaussian or a Student’s t-distribution errors. Outliers are then identified as those observations in the
original series whose residuals detail coefficients are greater in absolute value than a certain threshold.
They restrict their procedure to the use of the Haar wavelet only.

In this paper, we propose a novel wavelets based approach in detecting outliers in general time
series models. Although inspired by a similar idea that focuses on residuals analysis, our approach
offers a more general framework that can be applied to residuals resulting from any fitted time series
model, including autoregressive–moving-average (ARMA) models. First, we do not apply the standard
DWT, instead we apply the MODWT that allows to process a series of any sample size and not
necessary of size of power 2, for full details see [15]. Secondly, we can apply any wavelet filter, including
the Haar wavelet. Third, our quantile thresholds are computed directly from the wavelet coefficients
rather than the detail coefficients, and finally, our procedure allow to detect patches of outliers in a
single run. The proposed procedure is based on the wavelet coefficients resulting from the MODWT
transform of the series of residuals obtained after fitting a particular model. The outliers are then
identified as those observations in the original series whose residuals wavelet coefficients are greater
in absolute value than a quantile threshold.

Wavelets are a powerful tool for data processing and are a well-established technique in signal
processing which allow to extract features over a broad range of time scales. In a similar manner as
wavelet coefficients are applied in the domain of de-noising signals, these coefficients are expected to
be large in magnitude at times where there are jumps or outliers in a data series. This distinctive feature
is a key point in determining our quantile thresholds. In this paper we aim to explore the MODWT
transform to decompose a series of residuals into wavelets and allows to obtain a reconstruction of the
same series using the inverse IMODWT, while preserving the main features of interest in the series. A
fundamental difference between our work and the research paper [6] is that we don’t use the standard
DWT which must be run on series of size of power 2. Their algorithm is not designed to make use
of wavelet coefficients because the resulting wavelet coefficients series in DWT are downsized from
n to n/2j at the j-level. Our procedure is quite different from their algorithm. In fact their algorithm
is designed to process details from the Haar wavelet filter. This particular filter results in a DWT
coefficients that are free of boundary conditions which make it easy to locate single outlier. But it must
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be point out here that these wavelet filters with very shortest lengths like the Haar filter can introduce
undesirable artifacts into the analysis. The resulting Multiresolution Analysis (MRA) would be driven
by the wavelet filter shape and produces unrealistic blocky look of wavelet details. For more details
about this subject, we refer to Section 4.11, pages 134–136 of [15]. In practice when processing time
series data we should be able to use different wavelet filters of different lengths to avoid artifacts.

Our main focus now will be on detecting outliers in a time series by applying a threshold level on
the maximum of the absolute value of the wavelets coefficients of residuals resulting from a GARCH
type model. Using a Monte Carlo scheme, we can compute, for different sample sizes, the distribution
of the maximum of the absolute value of wavelet coefficients resulting from the MODWT of i.i.d
random variables following either a standard Normal or a Student’s t-distribution.

This paper is organized as follows: in Section 2 we present some GARCH Models with Outliers.
In Section 3 we simulate the wavelet quantile thresholds from a Normal and Student t-distribution and
describe the outliers detection procedure. Two real time series: the closed price series of respectively
the Saudi stock market and S&P 500 index are processed. Their performances are discussed in Section
4, and conclusion is given in Section 5.

2 GARCH Model with Outliers

For illustration, our method is applied to several volatility models, such as the standard GARCH,
the Exponential-GARCH (EGARCH) as defined in [16] and the Glosten, Jagannathan and Runkle-
GARCH (GIR-GARCH) models in [17], with errors following either a Normal or a t-distribution.
We can distinguish between two types of outliers as discussed in [9]. The additive outliers only affect
the level we label as additive level outliers (ALO), and those that also affect the conditional variance
labeled as additive volatility outliers (AVO). We consider in this study the effects of both the additive
level outliers and additive volatility outliers. As a common practice in financial time series, we often
work with returns due to their statistical characteristics and are unit-free. For time series Xt such that
Xt > 0 we consider the return series Rt defined by

Rt = 100 ∗ (ln (Xt) − ln (Xt−1)) t = 2, . . . , N (1)

2.1 Additive Level Outliers (ALO)

Assume that the series of returns is given by a standard GARCH (1, 1) model

Rt = μt + at with at = σtεt (2)

where μt is the conditional mean and the volatility σt is such that

σ 2
t = ω + α1a2

t−1 + β1σ
2
t−1 (3)

where εt is an i.i.d. white noise. The parameters ω, α1 and β1 are such that

ω > 0, α1 ≥ 0, β1 ≥ 0 and α1 + β1 < 1

An outlier of the type additive level is an outlier where the mean level of the time series changes
at particular time, and then the series keeps evolving in the same way as previously. The conditional
mean with additive level outliers (ALO) is defined as

Rt = μ∗
t + at = μ + μA IS (t) + at (4)
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where μA is the magnitude of the additive level outlier at the unknown time s. IS (t) = 1 for t ∈ S and
0 otherwise and S is the set of times when outliers are occurring. Note that in practice, the timing of
the outlier s is often unknown.

2.2 Additive Volatility Outliers (AVO)

The additive volatility outliers (AVO) for the GARCH(1, 1) model is defined as

Rt = μt + a∗
t = μt + σ ∗

t εt

a∗
t = μA IS (t) + at and σ ∗2

t = ω + α1a∗2
t−1 + β1σ

∗2
t−1 t = 1, 2, . . . n (5)

where σ ∗2
t is affected by previous outliers and can be expressed in terms of outlier effect by replacing

a∗
t as follows:

σ ∗2
t = ω + α1a2

t−1 + α1

(
2μAD at−1 + μ2

AD

)
IS (t − 1) + β1σ

∗2
t−1 (6)

Note that Eq. (6) can be used to generate a GARCH(1, 1) with a set of outliers. On the other hand,
in order to express the contaminated σ ∗2

t in term of the uncontaminated conditional variance σ 2
t given

by Eq. (3), we first substitute a∗
t from Eq. (5) to get

σ 2
t = α0 + α1

t∑
j=1

β j−1
1 a2

t−j where α0 = ω
(
1 − β t

1

)
/ (1 − β1) + β t

1σ
2
0 (7)

Then it follows from Eqs. (3), (5) and (7) that

σ ∗2
t = σ 2

t + α1 β t−s−1
1

(
2μA as + μ2

A

)
IS (t − 1) (8)

Eq. (8) is also given by Eq. (8) in [10], and show that the effect of the outlier on the volatility
diminishes over time. This means that the effect of the initial impact of the outlier is limited to the few
subsequent observations, and the length of the impact depend on the model coefficients.

3 Outliers Detection

Let X = (X1, . . . , Xn ) be an observed time series; then, by applying the MODWT to the series
X, we obtain the wavelet coefficients Wj,1, Wj,2 . . . , Wj,n at level j for j = 1, 2, . . . J. The main properties
of wavelet coefficients Wj,t is their sensitivity to the existence of nonsmooth features in the data such
as spikes and jumps in data, and more importantly, they remove any trend in the series. Motivated by
such attractive properties, let define the maximum of the absolute value of these coefficients.

Wj,max = max
t

∣∣Wj,t

∣∣ (9)

Unfortunately, the distribution of Wj,max is unknown and complicated, the critical values have to be
calculated numerically. Using Monte Carlo simulation, we obtain the (1 − α) 100% quantiles given in
Tab. 1 for the distribution of Wj,max for different sample sizes n of the series. For the sake of simplicity
we restrict ourselves to the first few levels and in our case we run the procedure for j = 1, 2, 3. In
practice we can run for upper levels but we should bear in mind that the corresponding quantiles
decrease in value as we move to higher levels.
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Table 1: The (1 − α) 100% quantiles computed from 10000 replications for the distribution of the
Wj,max for j = 1,2,3 respectively under the LA (8) and the Haar wavelet filter. Three sample size
were considered n = 500, 1000, 2000 from i.i.d random variables respectively with Normal and t-
distribution

N(0, 1) t(7)

n q1,α q2,α q3,α q1,α q2,α q3,α

α = 0.05
LA(8)

500
1000
2000

2.7457
2.8683
2.9606

1.9031
2.0033
2.0995

1.3363
1.4227
1.4453

4.7483
5.1466
5.6699

2.9793
3.3724
3.6500

1.7910
1.9205
2.1657

α = 0.02
LA(8)

500
1000
2000

2.8642
2.9945
3.1255

2.0307
2.1345
2.2352

1.4062
1.4892
1.5299

5.5194
5.7801
6.3640

3.3246
3.4565
3.9606

2.0451
2.1432
2.3260

α = 0.05 500 2.7461 1.9337 1.3671 4.6578 2.9646 1.8331
Haar 1000 2.8590 2.0188 1.4275 5.1340 3.2845 1.9609

2000 2.9687 2.1023 1.4867 5.6910 3.5467 2.0998

3.1 Identification of Outliers

The outliers are identified as those observations in the series whose absolute value of wavelet
coefficients exceed a threshold value which we set to be the (1 − α) 100% quantile qj,α of the distribution
of Wj,max. This procedure can provide a soft approach to deal with outliers and help to remove outliers
from the residuals that may invalidate the fitted model to the series and severely affect the model
coefficients. We should note here that the quantiles in Tab. 1 are computed under the Least Asymmetric
(LA(8)) wavelet filter for α = 0.05 and α = 0.02, and under the Haar wavelet filter for α = 0.05. We
can observe that these quantiles are nearly the same under the Normal distribution, but are also very
close under the t-distribution which is similar to the Normal but with fatter tails.

3.2 Wavelet Quantile Distribution

The distribution of Wj,max resulting from an i.i.d sequence following either a standard Normal or a
Student’s t distribution is depicted in Figs. 1 and 2 for the sample size of n = 1000. These distributions
are right heavy tailed distribution starting with larger values at lower scales and decrease as we move
toward high scales. We should point out here that our quantiles under the Haar filter are all smaller
than those obtained in [6]. This is because they use details of the standard DWT instead of the wavelet
coefficients obtained from the MODWT as in our case. Both quantiles obtained under the LA(8) and
the Haar wavelet are very close. This shows that there are not very sensitive to wavelet shape and length
under the t-distribution. The Haar wavelet filter is the shortest filter and the LA(8) which belong to a
family of filters is of moderate length and considered as against artifacts. In practice, different wavelet
filters can be applied to achieve a wavelet decomposition and generally one should try different wavelet
filters. Although our computed 95% quantiles show no dependency to the filter being used LA(8) or
the Haar filter under both distributions Normal and t-distribution. This should not be misinterpreted
and consider that the choice of the wavelet filter is irrelevant. In practice when analyzing time series
data using DWT or the MODWT, we should apply wavelet filters of moderate lengths, with compact
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support and higher order of vanishing moments to avoid artifacts as discussed in [15], and this is where
the LA(8) is recommended over the Haar filter.

Figure 1: Histograms computed from 10000 replication for the distributions of Wj,max resulting from
the MODWT with LA (8) filter applied to i.i.d standard Normal with sample size n = 1000

Figure 2: Same as Fig. 1 but applied to an i.i.d sequence from the Student t-distribution with sample
size n = 1000

3.3 Methodology

We propose the following steps of the procedure to detect additive outliers in a GARCH model:

(1) Fit a volatility model, such as a GARCH, EGARCH or GJR-GARCH to the returns Rt

(2) Set the J-level wavelet transform as J. Let Wj,t be the j-level wavelet coefficient of the series of
residuals a∗

t resulting from the fitting in step (1).
(3) Find the maximum value W (obs)

j,k = max
t

{∣∣Wj,t

∣∣ > qj,α

}
where k is the index of the maximum of

absolute value of the observed wavelet coefficient and qj,α is the applied threshold level.
(4) Set W (obs)

j,k = 0 and reconstruct the residual series to obtain a∗
1,t using the IMODWT

(5) Set the new series of returns as R1,t = μt + a∗
1,t

(6) Steps (1)-(5) can be repeated by increasing the J-level until no further outliers are left.

The above procedure can be applied to any GARCH like model.
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4 Results and Discussions

In order to measure the performance of the above procedure on real data, we consider two
financial return series. The closed price series of the Saudi Stock market of length 2027 over the period
Aug. 10 2011 to Dec. 31 2019 described in [18], and the S&P 500 index of the closed price series over
the period Jan. 05 2006 to Oct. 26 2012 of length 1717. The S&P 500 data is available from https://
www.investing.com/indices/us-spx-500-historical-data. Note that when running our outliers removal
procedure we apply the MODWT using the wavelet filter LA(8) for both series.

4.1 The Saudi Stock Market Closed Prices

The descriptive statistics of the returns Rt show an excess kurtosis of 10.7504 larger than the
Normal value of 3.0. This finding of excess positive kurtosis shows that the distribution tails of the
returns series are “fatter” than the Normal distribution, and hence this can be regarded as evidence
that support the presence of outliers.

4.1.1 The Conditional Mean

The returns series Rt has a non-constant variance and high variability between 2014 and 2016.
The autocorrelation sample (ACF) of Rt and its square R2

t are shown in Fig. 3, a) and b) respectively.
The estimated autocorrelation coefficient of Rt at lag 1 is well outside the test bounds, which suggest
an AR(1) model for the mean of the series. Also the ACF of the squared series R2

t shows that they
are many lags that are well outside the test bounds. The amount of dependence displayed by the series
R2

t is important. This is considered as evidence that support the use of an appropriate GARCH like
model to account for the amount of this autocorrelation. On the other hand the Quantile-Quantile
plot (QQ-plot) in Fig. 3, c) confirms that Rt does not come from a Normal distribution and suggest a
fat-tail distribution.

Figure 3: The sample ACF of Rt and its square R2
t respectively in a) and b), and c) the sample quantile

QQ-plot relative to the normal distribution of Rt

4.1.2 Volatility Modeling

Three class of GARCH models are considered in the analysis of the returns series, mainly the
standard GARCH (1, 1), the exponential EGARCH (1, 1) which models the logarithm of σ 2

t and
expected to capture the effect of external shocks on the predicted volatility, and the GIR-GARCH(1,
1) which is expected to observe the fact that negative shocks at time t − 1 have a stronger impact
on the variance at time t than positive shocks which is known as the leverage effect. The conditional

https://www.investing.com/indices/us-spx-500-historical-data
https://www.investing.com/indices/us-spx-500-historical-data
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variance σ 2
t in these GARCH type models depends on the lagged squared residuals as well as on lagged

conditional variances.

Tab. 2 summarizes the main parameters and their p-values for the three GARCH models fitted
to the return series Rt under the t-distribution before removing any outliers. The last two columns of
the Tab. 2 give the root mean square error (RMSE) and the root mean absolute error (RMAE) as a
measure of forecast accuracy computed on the basis of out-of-sample data.

Table 2: Fitted models to the Returns series Rt before removing outliers and their estimated parameters
with their p-values under the t-distribution. Skewness and Kurtosis of the residuals from each model
are reported, and the last two columns give the forecasting error in terms of the RMSE and RMAE

Model AIC μ̂ ω̂ α̂1 β̂1 Skewness Kurtosis RMSE RMAE

GARCH 2.4612 0.0697
(0.0000)

0.0359
(0.0005)

0.1597
(0.0000)

0.8195
(0.0000)

−0.3443 11.1338 1.1887 0.9304

EGARCH 2.4332 0.0489
(0.0101)

−0.0177
(0.0100)

−0.1155
(0.0000)

0.95925
(0.0000)

−0.3398 11.1389 1.3004 0.9652

GJR-
GARCH

2.4375 0.0513
(0.0042)

0.0315
(0.0002)

0.0107
(0.5496)

0.8619
(0.0000)

−0.3355 11.144 1.2482 0.9435

We can easily see that the GARCH (1, 1) achieves the best performance, and EGARCH (1, 1) is
of acceptable performance under the t-distribution. However, the Kurtosis values of residuals of both
models are over 11.0. This indicates excess of positive kurtosis and hence the presence of heavy tail
distribution in the residuals which is very likely due to the presence of outliers in the return series.
The returns are then subject to the procedure as described in the methodology. After running the
procedure steps, we summarize in Tab. 3 the parameter estimates in the three models. The GARCH
(1, 1) realizes the best performance, and the Kurtosis value of all three models is around 3 which is
very close to the one of Normal distribution. This is a strong evidence that the presented wavelet based
procedure removes the effect of outliers and allow for a much better modelling of the return series. We
should also note that similar results can be drawn under the asymmetric t-distribution but without any
improvement.

Table 3: Fitted models to the Returns series Rt after removing outliers and their estimated parameters
with their p-values under the t-distribution. The Kurtosis of the residuals are very close to 3 and the
estimated RMSE remain very close to the values in Tab. 2.

Model AIC μ̂ ω̂ α̂1 β̂1 Skewness Kurtosis RMSE RMAE

GARCH 2.6624 0.0711
(0.0001)

0.0175
(0.0111)

0.0939
(0.0000)

0.8951
(0.0000)

−0.4201 3.2785 1.5315 1.0164

EGARCH 2.6469 0.0547
(0.0053)

−0.0067
(0.1315)

−0.0888
(0.0000)

0.9723
(0.0000)

−0.4187 3.2788 1.5727 1.0197

GJR-
GARCH

2.6557 0.0546
(0.0032)

0.0246
(0.0006)

0.0207
(0.1334)

0.8923
(0.0000)

−0.4173 3.2791 1.5696 1.0231
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4.1.3 A Lower Hard Threshold

Although satisfied by the results in Tab. 3, the residuals distribution analysis in term of the QQ-
plot still displays outliers. This can be explained by the fact that some threshold quantile used as
threshold for outliers are larger as given in Tab. 1, particularly at lower levels of the wavelet transform.
Hence not all larger residual values are discarded, and this is more likely to occur if the probability
distribution of the residuals does not match the distribution under which the quantile threshold were
computed. Now one of the attractive properties of the MODWT wavelet transform is that the wavelet
coefficients at higher level of the transform get smoother, smaller in magnitude and their expected
values are such that E(Wj,t) = 0. As an empirical rule we suggest to use the higher j-level wavelet
quantile threshold for lower j-level wavelet coefficient of residuals. Obviously using this approach, we
certainly face the problem of how do we choose these higher j-level wavelet threshold quantile. In our
Saudi Stock returns series example, we used the lowest quantile threshold as the single common hard
threshold. This correspond to the higher level J = 3 in our case. The results given in Tab. 4 show that
the Kurtosis are getting smaller around the value 1.0 which means that the residuals distribution is
platykurtic and has fewer and less extreme outliers than does the normal distribution. We can notice
and improvement in term of the overall goodness of fit of GARCH models and their residuals.

Table 4: Similar results as in Tab 3, after removing outliers using the lower quantile threshold as the
single common threshold under the the symmetric t-distribution

Model AIC μ̂ ω̂ α̂1 β̂1 Skewness Kurtosis RMSE RMAE

GARCH 2.4938 0.0602
(0.0039)

0.0122
(0.0444)

0.0768
(0.0000)

0.9098
(0.0000)

−0.2346 1.0182 1.3768 0.9885

EGARCH 2.4867 0.0451
(0.0329)

−0.0123
(0.0109)

−0.0685
(0.0000)

0.9696
(0.0000)

−0.2345 1.0186 1.3939 0.9873

GJR-
GARCH

2.4929 0.0419
(0.0475)

0.0166
(0.0056)

0.0275
(0.0470)

0.9072
(0.0000)

−0.2345 1.019 1.3980 0.9914

4.2 The S&P 500 Index of the Closed Prices

The methodology is also applied to the S&P 500 Index series which is downloaded from
investing.com. The time period of analysis is over 6 years and 10 months. Returns were computed
from the original series of the closed prices. Fig. 4 represents the original series and the returns. It
can easily be observed that the series is not stationary and displays a high variability over the period
2008–2009 which is also displayed by the presence of larger and smaller returns over the same period.

The autocorrelation sample ACF of Rt and its square R2
t are shown in Fig. 5, a) and b). The

estimated autocorrelation coefficient of Rt suggest an AR (1) model for the mean of the series. Also
the ACF of the squared series R2

t shows a very similar pattern as in Fig. 3. The serial dependence
displayed by the series R2

t is important and taken as evidence that support the use of a GARCH like
model to account for this autocorrelation. This is also comfirmed by the QQ-plot in Fig. 5, c) which
suggest a fat-tail distribution and indicates the presence of outliers in the Rt series
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Figure 4: a) The S&P 500 series between Jan. 05 2006 to Oct. 26 2012, and b) The returns series Rt

Figure 5: The sample ACF of Rt and its square R2
t respectively in a) and b), and in c) the sample quantile

QQ-plot relative to the normal distribution of Rt

Tab. 5 summarizes the results obtained from the three GARCH models. It can be observed that
the GARCH (1, 1) model provides good performance relatively to the other models under the t-
distribution. We should point out here that by allowing a Normal or the asymmetric t-distribution
it was not possible to achieve similar performance. On the other hand the larger positive kurtosis
values in the residuals are regarded as evidence for the presence of extreme values such as outliers.

Table 5: Fitted models to the S&P500 returns series Rt before removing outliers and their estimated
parameters with their p-values under the t-distribution, The last four columns display similar estimate
as in Tab. 2.

Model AIC μ̂ ω̂ α̂1 β̂1 Skewness Kurtosis RMSE RMAE

GARCH 3.0272 0.0879
(0.0000)

0.0125
(0.0160)

0.1007
(0.0000)

0.8982
(0.0000)

−0.3623 8.3214 1.0827 0.9605

EGARCH 2.9906 0.0636
(0.0000)

−0.0052
(0.2078)

−0.1594
(0.0000)

0.9859
(0.0000)

−0.3577 8.3219 1.1283 0.9653

GJR-
GARCH

2.9920 0.0619
(0.0013)

0.0129
(0.0032)

0.0000
(0.9999)

0.9055
(0.0000)

−0.3585 8.3218 1.0522 0.9407

By applying the wavelet based procedure to the returns Rt, it can easily be observed that the effect
of such outliers is removed and this is comfirmed by the small estimated Kurtosis values down from
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8.32 to 1.44 as given in Tab. 6. This means that the residuals distribution is platykurtic which in turn
indicates they have light tails and lack of outliers.

Table 6: Fitted models to the S&P 500 returns series Rt after removing outliers and their estimated
parameters with their p-values under the t-distribution

Model AIC μ̂ ω̂ α̂1 β̂1 Skewness Kurtosis RMSE RMAE

GARCH 2.7276 0.0749
(0.0002)

0.0074
(0.0627)

0.0792
(0.0000)

0.9198
(0.0000)

−0.3273 1.4371 1.1338 0.9043

EGARCH 2.7067 0.0536
(0.0060)

−0.0052
(0.1500)

−0.1108
(0.0000)

0.9847
(0.0000)

−0.3370 1.4449 1.2061 0.9417

GJR-
GARCH

2.7109 0.0568
(0.0043)

0.0068
(0.0372)

0.0000
(1.0)

0.9332
(0.0000)

−0.3265 1.4370 1.1716 0.9116

In contrast to the first series, because of the small Kurtosis values in Tab. 6 there is no need to apply
a lower hard threshold. Thus when applied to the S&P500 returns series it did not really improve the
goodness of fit for all models, but it did remove some few values of very small magnitude from the
residuals.

5 Conclusion

Our MODWT wavelet coefficients based detection of outliers is applied to two real financial
dataset: the closed price of the Saudi Stock market and the S&P500 returns series. The outliers
detection approach make use of the maximum of the absolute value of these wavelet coefficients as
described in the procedure. Using “rugarch” the R package we fitted the standard GARCH (1, 1),
EGARCH (1, 1) and GJR-GARCH (1, 1) models to each series as given in Tabs. 2 and 5. None of
the original series is stationary and the estimated residuals Kurtosis from each series strongly suggest
the presence of outliers. By applying our procedure separately to each series, the results of Tab. 2
show that the GARCH(1, 1) model was selected as the best fit to the Saudi Stock returns, but their
residuals still show excess of Kurtosis, and certainly do not behave as a white noise. This is evidence
that the fit did not quite capture the structure in the data, and the residuals were submitted to the
outliers detection procedure. Tab. 3 shows that after removing outliers from wavelet coefficients of
residuals, the reconstructed returns still show a slight excess in Kurstosis, but was down from 11.1338
to 3.278 which is a big improvement. The new GARCH(1, 1) model was again selected as the best
fit. Further analysis of the residuals show that their QQ-plot displays a slight mismatch between the
fitted t-distribution and the true unknown distribution of errors. Tab. 4 shows an improvement in the
residuals after applying the lowest hard threshold as the single common threshold and both models
GARCH (1, 1) and EGARCH (1, 1) provide a good fit for the new reconstructed series of returns.
For the second returns series we went through the same procedure before and after removing outliers.
Tab. 6 shows that the GARCH(1, 1) model perform well after removing the outliers. On the contrary
to the previous example the use of the lowest hard threshold as the single common threshold did not
add any improvement in the performance of the fitted model. This should not be very surprising given
the small Kurtosis values in Tab. 6.

The proposed procedure is a promising addition to existing methods for detecting outliers in a
general discrete time series models, where the focus is on the analysis of the residuals.. The two real
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data examples illustrate that our procedure is very successful in detecting outliers in financial time
series.
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