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Abstract: The shift towards the renewable energy market for carbon-neutral
power generation has encouraged different governments to come up with a
plan of action. But with the endorsement of renewable energy for harsh envi-
ronmental conditions like sand dust and snow, monitoring and maintenance
are a few of the prime concerns. These problems were addressed widely in the
literature, but most of the research has drawbacks due to long detection time,
and high misclassification error. Hence to overcome these drawbacks, and to
develop an accurate monitoring approach, this paper is motivated toward the
understanding of primary failure concerning a grid-connected photovoltaic
(PV) system and highlighted along with a brief overview on existing fault
detection methodology. Based on the drawback a data-driven machine learn-
ing approach has been used for the identification of fault and indicating
the maintenance unit regarding the operation and maintenance requirement.
Further, the system was tested with a 4 kK Wp grid-connected PV system, and a
decision tree-based algorithm was developed for the identification of a fault.
The results identified 94.7% training accuracy and 14000 observations/sec
prediction speed for the trained classifier and improved the reliability of fault
detection nature of the grid-connected PV operation.
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1 Introduction

Due to climate change, renewable energy has been attaining huge consideration in recent years. The
rapid growth in the share of renewable energy has enabled the decentralization of power generation.
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It has even reduced the cost of energy for the consumer and helped the utility to deal with ever-
growing energy demand. To further support the boost different countries have come up with their
national policies and initiatives which encourage the adoption of renewable energy [1]. For promoting
sustainable energy projects, United Nations has agreed on certain sustainable development goals [2].
Even European Union has committed to reducing the emission of about 80-95% of greenhouse gases
by 2050 [3]. In 2017, the overall installation of solar power project surpassed the net installation of coal
gas and nuclear put together [4]. There has been an intense transition from oil-based power generation
to renewable energy in the Middle Eastern and North African Region. Countries such as the Kingdom
of Saudi Arabia (KSA) and the United Arab Emirates (UAE) are at the forefront of this transition
[5]. The KSA has come up with an ambitious 2030 vision that majorly aims at reducing country
dependency on oil. According to Saudi Vision 2030, it aims to install 20 GW of solar photovoltaic
(PV) by 2023 [6]. To attain this objective the PV industry in KSA has to increase from 45% in 2018 to
75% in 2023, which will encourage participation of private sector [7]. The 40 G of solar installation
by 2030 is the largest PV installation plan announced by in the world by KSA.

For the development of renewable energy, the distributed generations (DGs) system needed to
be monitored for any anomalies at the time of operation. Any abnormal operation in a certain DG
can induce fault in the complete Power system and cause a mass blackout. There has been a lot of
research focusing on the fault detection and monitoring of grid connection PV systems [8]. Most of
the research in the literature utilized the Voltage-current (V-I) monitoring of PV panels to identify
faults whereas techniques such as panel thermal mapping and inverter output signal are monitored for
fault identification. But the time to fault detection was one of the major drawbacks of such techniques.
Hence to achieve fast response time many intelligent fault detection techniques have been introduced
[9]. Many fuzzy-based algorithms have been used for fault identification [10,11]. But their dependence
on a particular set of rules can result in false classification. In addition to monitoring the faults in the
system, it is also required to manage the fault and provide a proper fault clearance mechanism. This can
be achieved by designing a fault ride-through (FRT) approach [12] based on the information available
regarding the system operating condition. Few of the research has discussed the FRT mechanism by
either switching the controller or using different reactive power injection strategies [13,14]. If the fault
is severe, then maintenance needs to be scheduled past the FRT limit. And, if the fault is cleared by
FRT then the scheduled maintenance can be notified about the fault so that deep testing is performed
during the maintenance period.

Based on the literature, in this research, a machine learning technique is proposed for performing
condition monitoring and achieving maintenance management for a grid-connected PV system. The
decision tree approach is used to develop the condition monitoring approach which localizes the faults
at the direct current (DC) side, alternating current (AC) side, and converter level. Further, maintenance
management is achieved by analyzing the classified state of operation of the system and estimating the
required control operation. The major aspects of the developed approach are:

e The decision trees provide a significant advantage with condition monitoring by forcing the
consideration of all possible outcomes of a system operating state.

e The proposed framework identifies the decision nodes for estimating the control aspect of
clearing the fault by providing a comprehensive analysis of all the consequences along the
branches of the tree.

e For an unknown source of information, the proposed approach learns the scenario and uses
a probabilistic estimate to accurately classify the condition of system operation in a feed-
forward loop.
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e The proposed framework provides an intuitive and easy-to-use approach by presenting all the
alternative decisions with quick decision-making.

Further, the development of the proposed approach is discussed in the manuscript as follows:
Section provides an overview of all the available maintenance management techniques for PV systems
operating in a grid-connected environment. In Section 111, the different faults and failure mechanisms
that are widely identified in the literature are analyzed and the fault detection mechanisms are
discussed. Section IV discusses the proposed fault detection mechanism with wavelet transform for
data pre-processing and the decision trees for classification training. Further, the simulation and
experimental testing are discussed in Section V and the research is concluded in Section VI.

2 Maintenance Management Technique

For evaluating the health of the components, it is a necessity to monitor and manage the
characteristics of the components and in case of fault intercept the operation. Different aspects
regarding the management and monitoring of fault have been discussed in [15]. Whereas in [16], and
investment-based management techniques are discussed that presents a brief knowledge regarding
the change in investment decision based on maintenance requirement. During device condition
management, the optimization of maintenance remains a concern as the risk of failure and cost
involved keep increasing with time [17]. A brief overview of maintenance management is presented
in Fig. 1.

Facility  As-built
provided records

Resources l l ¢ l l(i;isl.l::}r

7 Asset Identification

Maintained
requirement of ¢

Assel Occupancy !
= Assessment of = Characteristics i
3 cereareraeeeaeeen) performance ettty idh
£ Value of requirment <«— Performance | —
5 Performance agenils i >
£ ¢Smtcmcnl i
5 2
L Performance t =
Component Assessment Assessment ::
: condition Mecthodology | 3
i g
: 2 P
ereeeeresecesmesenenns) Maintenance A iz

: Work order Plam’iillg Conflicling

maintenance ¢ Objective
Maintenance i
) operation P IR— i
Budget —» management <«— Time

.

Operational Facility
Figure 1: Maintenance management model [1§]

A few of the stages required for assessment of operation and maintenance of the photovoltaic
system are as follow:
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Preventive Maintenance: During preventive maintenance, the system is monitored continuously,
and the exhausted component is replaced before the failure occurs. This type of maintenance can
either take place systematically or conditionally. During the systematic maintenance, the worn-
out component is replaced by scheduled maintenance [19]. The preventive maintenance could be
performed via various strategies, i.e., calendar-based, usage-based, etc. The most commonly used
methods are the ones in which the cost of implementation is minimum and system priority dominates
the budget [20]. The main objective of this maintenance scheme is to ensure the reliability of the system.

Corrective Maintenance: During corrective maintenance, a breakdown system is a setup. The
maintenance process comprises two stages. Firstly, during the palliative corrective maintenance, the
partially or completely broken system is repaired. The time of repair is critical as the system needs
to be operational at the earliest [21]. The aim is not only to repair the system but also to make it
capable enough so that it can perform the associated task in a certain time frame. Secondly, during the
curative corrective maintenance, all the wore out components of the system are repaired. The curative
action is more planned than the palliative action. The time interval is more critical than the speed
of maintenance. Corrective maintenance aims to replace the component with the new one once the
component is not able to perform the assigned task [19].

3 Fault Detection Technique

In the case of normal operation, the output power of the PV array is very close to the predictive
power. However, during the real-world application, may factor impacts the operation of PV array
which in return reduces the efficiency. The factors are classified as a fault which is categorized based
on system location as presented in Fig. 2 [22]. Further, a brief description of different faults is presented
in Tab. 1. Identification of these faults is necessary for appropriate maintenance of the PV system [23].
Many techniques have been developed for the identification of different faults. The techniques assist
in improving the reliability and lifetime of PV systems [24]. An overview of different fault detection
techniques is presented in Fig. 2.

Table 1: Fault classification description

PV side PV faults Description

Environment Shade Temporary

faults e Partial shading is caused due to

overcast weather.
e Bird drops and a dusting of PV
panels.

Permanent )
e Shading of trees or overhead

cables

(Continued)
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Table 1: Continued

PV side PV faults

Description

Electrical Inverters
fault

Array faults

Physics Panel fault
fault

AC side

DC Side

Line-Ground
fault

Open circuit
fault

Line-Line fault

External fault

Internal fault

Inverter failure due to high
thermal stress on the power
electronic switches.

Issues caused due to grid fault,
equipment failure, maintenance

service failure, and human error.

Degraded battery and issues in
the interconnection.

Failure in power electronic
switch of a DC-DC converter.

When one conductor is
connected to neutral or falls to
the ground.

Disconnection in a section of
the line.

Caused due to accidental
connection between two nodes
of PV panel.

Breaking of panel glass
Delamination
Discoloration

Defect in frame

Salt accumulation
Micro crack

Damage in the diode of the
panel cells.

4003
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Figure 2: Fault classification in grid-connected PV system [22]
Further, the detection techniques as represented in Fig. 3 are as follow:
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Figure 3: Fault detection techniques
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Electrical Characteristics:

e Climate Independent Data Technique: The technique is independent of any climate data such
as irradiance and temperature. Fault detection is performed by external devices such as LCR
meters and signal generators [25].

o V-I-based Techniques: The V-1 characteristics of the PV panel are monitored to identify the fault.
Real-time monitoring is performed by using a microcontroller and fill factor, shunt resistance
(Ry,), series resistor (R,) are monitored to determine the performance of the system [§].

e Power Loss Analysis: The power loss of the PV panel is analyzed to identify the fault. The
method was proposed by [26], in which the power loss is calculated by comparing the monitored
data with a simulated one.

e Machine Learning-based detection: The different characteristics of the PV panel are recorded
to create a database and based on the fault in the panel the real-time data is compared with the
pre-existing databases to identify the fault [27].

e Residual current monitoring: In this method, the amount of current entering the PV panel and
the amount of current leaving the panel are monitored. The current-carrying conductor is used
for monitoring purposes.

e Frequency Spectrum Analysis: This method is used for the analysis of faults with lower frequency
content. In the case of irradiance variation, partial shading of the noise from the frequency
is below 1000 Hz which can generate a false trip signal. Arcing frequency above 100 kHz
comprises less arcing energy and frequency above 500 kHz interacts with external RF noise.

Infrared Thermal Imaging: Thermal imaging is a popular method for fault detection of PV panels.
This method is based on the identification of localized heat spots in case of panel-based faults,
i.e., delamination, panel crack, etc. [28,29]. Even for the inverters and other systems, thermography
can help in the identification of faults such as poor contact, short circuit, etc. [30,31]. During
thermal image-based fault detection, the failure spot emerges as a bright spot. The thermal imaging
can be performed in two methods (a) Forward biased and (b) Reverse biased imaging techniques.
In forwarding biased technique the real-time thermography-based monitoring of forwards biased
connected module is performed. This method is used for the detection of faults such as hot spots,
loose connections, etc. Whereas in reverse biased the modules are connected in reverse biased with the

system and fault such as ohmic shunt is monitored.

Visual-based Inspection: It is a basic and initial stage to identify the fault. As per the IEEE 61215
standards, the visual inspection needs to be performed under 1000 lux light. Inspection needs to be
performed with different angles to avoid any error due to the deflection of light. A brief regarding
vision inspection is presented in [32].

Ultrasonic-based inspection. This method is based on the identification of vibration in ultrasonic
signals. It is generally used for the detection of cracks in PV modules. The most commonly used
ultrasonic methods are (a) pulse-echo and (b) transmission methods. The ultrasonic pulse transducer is
moved along the X-Y axis of the module [33]. In the case of the pulse echo method, the reflected signal
is recorded and analyzed. Whereas during the transmission method, an attenuated signal is recorded
for analysis.

Electroluminescence Imaging technique: During the electroluminescent imaging, the excess carrier
charges are recombined in the solar cell. The current injection causes excitation which initiates the EL
effect [34]. The excitation can also be initiated by the process of photoluminescence.
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Component Fault for power Converters: In power electronics converters the faults are generally
caused due to the passive component’s failure or due to the stress on the power electronics switches.
The passive components may cause short or open circuit faults. However, the power electronic switch-
based fault can be analyzed by thermal and mechanical stress analysis. Majorly the fault detection
technique can be classified into (a) model-based, and (b) model-free approaches. The model-based
approach relies on the parameter estimation or state observer approach [35]. The knowledge of system
and signal processing techniques is required for these approaches. Whereas in a model-free approach
the data-based learning is required to identify a particular operating condition.

Grid-based failures: The failure at the grid end or maintenance break may cause the grid to
disconnect from the distributed generation unit. This type of fault causes the DGs to operate in an
islanded mode of operation. Many islanding detection techniques have been implemented by the
researcher in the literature [36—38]. The islanding detection techniques can be classified as active,
passive, and hybrid techniques.

4 Proposed Fault Detection Algorithm

Faults impact the current and the voltage at PCC for the grid-connected PV system. The impacts
of these faults can be analyzed by assessment of current and voltage signals. For assessment, wavelet
transform is used to break down the signal into various features. The features add accuracy by
identifying minor fluctuations in the signal. Wavelet transform [39,40] is a spectrum-based analysis
method where the signal is decomposed into a set of oscillatory functions which are known as a
wavelet. Further, the wavelet transform is used to obtain different features by decomposition and
reconstruction of the signal. Once the features are extracted for different operating conditions, a
database of classifications is established. A decision tree is one of such classification tools that has
been used for analysis in our research. The classification techniques follow a tree-based structure with
an arrangement from root nodes to the leaf node for sample classification [41] as represented in Fig. 4.
The leaf node represents one classification to which a sample is assigned.

Root Node
Interior Node Interior Node
Leaf Leaf ,/ \4
Node Node Interior Node Interior Node
Y N L
Leaf Leaf Leaf Leaf
Node Node Node Node

Figure 4: Decision tree-based classification

Initially, the classification began at the root node. Further, the movement is performed in the
direction of a leaf node and the number of stages is determined by the value of samples. The process
involved in the decision tree is Data collection, data preparation (wavelet transform), data analysis,
training, and testing. The most commonly used decision tree algorithm techniques are the C4.5 and
ID3 algorithms. Both of the techniques are based on the greedy search method.

In the ID3 algorithm [42] the concept learning method is used. The classification criteria are
selected in each node based on the unused property with the highest gain. The process is performed
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until a classified example can be trained to formulate a decision tree. The data is divided into an ordered
state. The gain is used to judge if the model selected is providing the optimal path for the divide data.
The higher gain value represents a better result for a divided dataset. The entropy can be expressed as:

H=-2 px)logpx) (M
i=1
The probability regarding selected classification i is represented by P (x;). The remaining number
of classifier attributes are denoted by #.

The gain of a property 4 with dataset .S can be expressed as:

S,
Gain (S, 4) = H(S) - > %H(SV) )

veValue(A)

where all values for attributes 4 are denoted by Value (A). S (v) denotes a subset for 4. The ID3
formulation can be further expressed as depicted in Fig. 5.

Aunbute with highest
information Gain

- ¥ 4
Attribute with highest e Attribute with highest
. " it Decision 1 o . iy .
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[ 4 [ 4
Decision 1 Decision 2 Decision 1 Decision 2

Figure 5: ID3 algorithm of decision tree classification

C4.5 algorithm is another version of the decision tree as represented in Fig. 6. The C4.5 utilizes
the information from the gain rate for attribute selection [43]. The decision is pruned for avoiding the
overfitting of data. The data splitting can be expressed as:

v
Split S, A) = —|S/‘1 —‘Sj‘ 3
plitinfo (5. 4) = — > o, < 3
Jj=1
‘ Condition A
True l False
‘ [ j
Condition B Condition C
”_”(,17 Faise
|- - i Condition D
]’}-r.-c Faltﬁs'y Trie _|__ False
¥ ¥ ¥ ¥
‘ Result 1 ‘ Result 2 Result 3 Result 4 Result 5

Figure 6: C4.5 algorithm of decision tree classification
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The samples S are divided into v values for A. Further, the gain can be calculated as:
Gain (S, A)

GainRatio (S, 4) = < mrmic—s |
ainRatio (S, A) SplitInfo (S, A) )

5 Simulation and Experimental Analysis

To validate the monitoring and maintenance of Grid-connected PV systems, a single-phase grid-
connected PV system is simulated with MATLAB/Simulink. A 4 kW grid-connected PV system is
considered for experimentation and parameters of the system are mentioned in Tab. 2.

Table 2: System parameters

System Parameters
PV array 4 kWp
DC-DC converter Boost inductance 1 mH
DC-link capacitance 2400 uF
DC link voltage 400 V
Inverter (Full bridge topology) IGBT rating 600 V, 30 4
Diode rating 400 — 600 V, 15 4
Converter side filter inductance 218 mH
Grid side filter inductance 1 mH
Filter capacitance 2.2 x 10~%uf
Output voltage 230 V.,
Output frequency 50 Hz

The abnormality in the grid-connected PV system are monitored used a decision tree Algorithm.
For the purpose of training 70% of the data was used. For testing, 15% data was utilised and remaining
15% data was used for validation. The further details related to trained classifier is presented in the
Tab. 3 along with other approach using same dataset.

Table 3: Classification parameter comparative analysis

Parameters Model type
Pre-set Support vector K- nearest Decision Tree

machine neighbour

ID3-DT C4.5-DT

Network structure 8 predictors-5 8 predictors-5 8 predictors-5 8 predictors-5

responses responses responses responses
Feature matrix 2565 x 8 2565 x 8 2565 x 8 2565 x 8
Truly classified 2294 2362 2178 2429

(Continued)
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Table 3: Continued

4009

Parameters Model type
Pre-set Support vector K- nearest Decision Tree

machine neighbour

ID3-DT C4.5-DT

Falsely classified 271 203 387 136
sample
Accuracy 89.47% 92.1% 84.91% 94.7%
Misclassification 10.56% 7.91% 14.81% 5.3%
error
Training time 8.9157 sec 8.7849 sec 8.6517 sec 8.3418 sec

For the Tab. 3, it can be concluded that the decision tree classifier performed faster training with
reduced misclassification. The result of the trained classifier is illustrated in the confusion matrix as
shown in Fig. 7. For the result in Fig. 7a, it can be deduced that out of 2565 samples, 2429 are truly
classified and 136 are classified falsely. In Fig. 7b, it can be observed that that the true positive rate id
100% for fault 2 remaining faults have 89.5%, 92.8%, 91.8% and 99.4% positive rate. For the Fig. 7c,
a 100% of positive prediction value can be observed for fault 1 and 2. Rest all condition has a positive
prediction value of 85.5%, 92.7% and 96.6%. Different cases have been studied for better understand
of the monitoring and its management protocol.
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Figure 7: (Continued)
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Figure 7: Confusion matrix for decision tree classifier

Case I: Fault not Clear during Standard Time

In this condition, a fault is injected into the system at = 0.25 sec, from Fig. 8a it can be deduce
that the voltage is falling, and current is increasing at the time of fault injection. The case is further
elaborated in Fig. 8b. The voltage in post fault condition is 230 V" and value of current is 17.39 A.
Once the fault is injected the current value false to 150 " and the current value increase to 26.6 A.
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Figure 8: Voltage and current at point of common coupling during case I operation

As per IEC 62116 standard, if the fault is not cleared in 2 sec from fault detection, then the system
needs to be disconnected. As during this case the FRT is unable to recover the fault hence after 2 sec
from fault detection signal, a trip signal is generated as depicted in Fig. 10. Once the trip signal is
generated the voltage and current at point of common coupling (PCC) reduce to zero as depicted in
Fig. 8c. The variation in active and reactive power is illustrated in Fig. 9. It is observed that, during
the fault condition, the voltage drop results in the drop of active power from 3.6 kWp to 2.5 kWp. In
this condition, the PV system tries to inject reactive power for restoring the voltage and clearing the
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fault. For any condition, if the reactive power injection fails to clear the fault as shown in Fig. 9, the
PV system is disconnected from the grid and trip signal is generated. The trip signal sent a notification
to the monitoring team to assign a maintenance at the earliest.
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Figure 9: Active and reactive power during case I operation
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Figure 10: Trip and fault detection signal during case I operation

Case II: Fault clear during standard time

In this condition, a fault is injected into the system at t = 0.25 sec, from Fig. 11a it can be deduce
that the voltage is falling, and current is increasing at the time of fault injection. The case is further
elaborated in Fig. 11b. The voltage in post fault condition is 230 V" and value of current is 17.39 A.
Once the fault is injected the current value false to 150 V" and the current value increase to 26.6 A.
As per IEC 62116 standard, if the fault is not cleared in 2 sec from fault detection, then the system
needs to be disconnected. As during this case the FRT recovers the fault hence ay 1 = 4 sec the fault
detection signal drops and no trip signal is generated as depicted in Fig. 13. Once the fault is cleared
the voltage and current at point of common coupling (PCC) returns to normal operating condition as
depicted in Fig. 11c. The variation in active and reactive power is illustrated in Fig. 12. It is observed
that, during the fault condition, the voltage drop results in the drop of active power from 3.6 K Wp to
2.5 kWp. In this condition, the PV system tries to inject reactive power for restoring the voltage and
clearing the fault. As the reactive power injection restores the voltage, the fault is cleared as shown in
Fig. 12, and the PV system remains connected.
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Further, for the validation of the result, experimental testing is performed. The experimental setup
isillustrated in Fig. 14. The operation of the PV array is simulated with the help of an Agilent Keysight
solar simulator which is further connected with a Semikron inverter. The inverter is controlled using
Typhoon Hardware in the Loop unit. The grid interface is connected to the output of the inverter
and an AC load is connected parallelly. The field programmable gate array (FPGA) devices are used
for implementing the trained classifier due to their advantage with speed, and their ability of direct
hardware execution. Another important factor in using FPGAs is their re-configurability and reusable
hardware architectures for rapid prototyping of the digital system. The Altera DE2 FPGA board along
with the Quartus programming software is utilized in this project. The task is to load the VHDL
program of the trained classifier using ModelSim HDL Simulator to the FPGA, and after loading the
program on the kit and carrying out the assignment of the monitored output to the GPIO of the board
we have connected the GPIO ports of the FPGA board to an oscilloscope to be able to experimentally
examine the outputs. Further, these outputs are also used in maintenance management with the grid
connected systems. But before being able to download the VHDL program simulated in MODELSIM
the Quartus software must be used in order to be able to download the last to the FPGA where the
program must be compiled in the Quartus environment. Programmable logic device design software
produced by Altera [44]. Quartus enables analysis and synthesis of HDL designs, which enables the
developer to compile their designs, perform timing analysis, simulate a design’s reaction, and configure
the target device with the programmer. To analyse the results, the test is performed with a 4 kWp grid-
connected PV system.

Inverter Control

Emulator Control

Voltage and Current  'Dverter

Measurement

Keysight Solar
Emulator

Figure 14: Experimental setup

The normal operating condition of the grid-connected PV system is illustrated in Fig. 15. It can be
observed that the voltage at PCC is 230 V" and correspondingly a 17 A current is present. A Constant
active and reactive power is represented in the figure.
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Figure 15: Normal mode of operation

The fault clearance mode of the grid-connected PV system is illustrated in Fig. 16. It can be
observed that the voltage at PCC is 230 V' and correspondingly a 17 A current is present. When
the fault is introduced into the system the current is the rise and the voltage is dropped. The trained
classifier in the FPGA connected with the voltage and current measurements identifies the condition
as fault with a misclassification error of approximately 4.1%. In the same instance, the inverter
starts injecting reactive power into the system. As the fault is cleared in 2 sec periods no trip
signal is generated. Once the fault is cleared the system is thoroughly checked during the scheduled
maintenance.
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Figure 16: Fault clearance in grid standard-based time
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6 Conclusion

Renewable energy being the future of power generation has been a prime concern for the
researcher’s development, and countries such as the kingdom of Saudi Arabia have been pushing hard
to achieve the goal. In this research, the prime focus is to understand the faults that commonly occur
while operating grid-connected PV system in harsh condition and based on the fault to study the
fault detection techniques which are currently being implemented. Based on the study an advance
data-driven machine learning algorithm is implemented to enhance the fault detection time so that
the system can inform the controller and attempt to recover the system. The training accuracy of the
machine learning classifier with the extracted data is around 94.7% and the misclassification error
during testing with the trained classifier is 4.15. In case of system recovery failure, the faulty section
is disconnected, and emergency maintenance is scheduled. Whereas if the fault was cleared by the
recovery action of the controller, then the maintenance team is informed so that they can perform
an in-depth diagnostic check when the normal maintenance is scheduled. Further, the work can be
extended to develop a power management approach based on the monitored system condition. Besides,
the reliability analysis can be performed to asses the lifetime of the converter and other components
while operating in such harsh environment conditions.
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