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Abstract: Industrial Control Systems (ICS) can be employed on the industrial
processes in order to reduce the manual labor and handle the complicated
industrial system processes as well as communicate effectively. Internet of
Things (IoT) integrates numerous sets of sensors and devices via a data
network enabling independent processes. The incorporation of the IoT in the
industrial sector leads to the design of Industrial Internet of Things (IIoT),
which find use in water distribution system, power plants, etc. Since the IIoT
is susceptible to different kinds of attacks due to the utilization of Internet
connection, an effective forensic investigation process becomes essential. This
study offers the design of an intelligent forensic investigation using optimal
stacked autoencoder for critical industrial infrastructures. The proposed strat-
egy involves the design of manta ray foraging optimization (MRFO) based
feature selection with optimal stacked autoencoder (OSAE) model, named
MFROFS-OSAE approach. The primary objective of the MFROFS-OSAE
technique is to determine the presence of abnormal events in critical industrial
infrastructures. The MFROFS-OSAE approach involves several subprocesses
namely data gathering, data handling, feature selection, classification, and
parameter tuning. Besides, the MRFO based feature selection approach is
designed for the optimal selection of feature subsets. Moreover, the OSAE
based classifier is derived to detect abnormal events and the parameter tuning
process is carried out via the coyote optimization algorithm (COA). The
performance validation of the MFROFS-OSAE technique takes place using
the benchmark dataset and the experimental results reported the betterment
of the MFROFS-OSAE technique over the recent approaches interms of
different measures.
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1 Introduction

In recent time, new technologies for example Cloud computing (CC) [1] and Internet of Things
(IoT) depends largely on Internet and network services for data communication and exchange.
Cybersecurity has become an effective area for several experts worldwide in diverse areas of researches
like Critical Infrastructure Security, Data Hiding, Big Data Security, cloud, and IoT forensics [2].
Industrial Control System (ICS) comprises different classes of control system namely Distributed
Control Systems (DCS), Programmable Logic Controllers (PLC), and Supervisory Control and
Data Acquisition (SCADA) [3]. Each control scheme is found in the crucial infrastructure and
industrial sectors namely transportation network, Gas Pipelines, water distribution network, gas,
nuclear power generation, and electric power distribution network [4]. The major variation among the
conventional Information Technology (IT) environments and ICSs is that ICS strongly interacts with
the physical devices and instruments. At the present time, ICS is considered cyber-system, hence, they
are susceptible to attacks from outside and inside environments. ICS is very difficult when compared
to conventional IT systems since they involve various parts found in single geographical area [5].
From a cybersecurity viewpoint, the ICS system consists of Field, Enterprise, and Control tiers. Fig. 1
illustrates the process involved in digital forensics method.

Figure 1: Process involved in digital forensics method

Over the last decades, Smart device has been turning out at fast speed. The IoT is an emerging
innovation that allows the capability to connect objects or things to the computerized world for
information forwarding [6]. But, most of these IoT object is easily compromised and hacked.
Accordingly, the security of IoT has become a challenging consideration. The risk revealed to the
smart device should be resolved [7]. The battle among malware designers and security experts is an
everlasting fight. Current studies emphasize the growth of things as a result of which the pattern of
malware is emerging. For identifying and detecting this malware the ML method is employed. To
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remain conscious of malware, security specialists and experts should continually extend their cyber
defences. One key element is a maximal secured system at the endpoint. Endpoint defence offers
a set of security strategies e.g., email security, firewall, anti-spam, sandboxing, and URL filtering.
Currently, ML method plays an important role in cyber-security for detecting anomalies. Various
methods like behavioural-based methods, anomaly-based methods, signature-based systems, and so
on. But, behavioural-based method is very effective when compared to the anomaly and signature-
based methods. Because of the heterogeneous norm of IoT deployment, emerging an effective network
forensic solution demand depth-analysis for detecting and tracing attacks [8–10].

Koroniotis et al. [11] proposed a network forensic architecture called Particle Deep Framework
(PDF), depending on deep learning and optimization method. Next, usage of optimization technique
based PSO to choose the hyperparameter of the DNN. Then, the comparison and of evaluation the
performances demonstrated by the DNN with another classification method. Chhabra et al. [12]
presented a method for big data forensics, with effective precision and sensitivity. In the suggested
method, a comprehensive forensic architecture was presented that uses Google programming method,
MapReduce as the support for traffic analysis, translation, and extraction of dynamic traffic feature.
For the presented method, researchers have employed publicly available tools such as Mahout,
Hadoop, and Hive.

Selim et al. [13] introduced investigative research of finding malicious activities, cyberattacks, and
anomalies in a cyber-physical of crucial water framework in the IIoT architecture. This work employs
different ML methods for classifying the anomalies event including IIoT hardware failures and attacks.
A real-time data set covering fifteen anomaly events of standard system activity were examined for the
study of presented model. The test situation includes a wider-ranging of occurrences from hardware
failure to water SCADA device damage. Usman et al. [14] presented a hybrid model based on Cyber
Threat Intelligence, Dynamic Malware Analysis, Data Forensics, and ML. The presented technique
compute severity and highlight the big data forensic problems, assessing the confidence, risk score as
well as lifespan at the same time.

Cui et al. [15] examined the usage of a multilayer model to security which generates an exhaust-
trail of digital evidence, based on the features of the system attacks. Then, this method is estimated
regarding general features of system breaches, and a set of considerations and characteristics for
structure designer has been introduced. Zheng et al. [16] proposed a secured storage auditing system
that supports effective key updates and is utilized in cognitive industrial IoT platforms. Furthermore,
the presented method prolonged to assist batch auditing viz. appropriate for many end devices to audit
the data block instantaneously.

This study offers the design of a manta ray foraging optimization (MRFO) based feature selection
with optimal stacked autoencoder (OSAE) model, named MFROFS-OSAE model. The primary aim
of the MFROFS-OSAE system is to determine the presence of abnormal events in critical industrial
infrastructures. The MFROFS-OSAE technique involves several subprocesses namely data gathering,
data handling, feature selection, classification, and parameter tuning. Besides, the MRFO based
feature selection approach is designed for the optimal selection of feature subsets. Moreover, the OSAE
based classifier is derived to detect abnormal events and the parameter tuning process is carried out
via the coyote optimization algorithm (COA). The performance validation of the MFROFS-OSAE
technique takes place using the benchmark dataset.

The rest of the paper is planned as follows. Section 2 introduces the proposed model, Section 3
develops the experimental validation, and Section 4 draws the conclusion.
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2 The Proposed Model

This study has designed an MFROFS-OSAE technique for intelligent forensic investigation
on critical industrial infrastructures. The proposed model effectively determines the presence of
abnormal events in critical industrial infrastructures. The MFROFS-OSAE technique involves several
subprocesses namely data gathering, data handling, MFRO based feature selection, SAE based
classification, and COA parameter tuning. Fig. 2 demonstrates the overall process of MFROFS-OSAE
technique.

Figure 2: Overall process of MFROFS-OSAE technique

2.1 Data Collection Process

IoT device has been deployed on a network which is under examination. The device has been
organized in a promiscuous model, therefore allowing us to view each traffic in a local network. Then,
Network packets is performed by applying network capturing tools namely Ettercap, Wireshark, and
Tcpdump. The gathered pcap files are later transmitted to the data gathering phase.

2.2 Data Handling Process

This is the initial phase in the network investigation method, where the information is collected in
a form that could be further examined and analyzed, namely the UNSW-NB15 and BoT-IoT datasets.
At first, for the preservation purpose, an SHA-256 hashing function is applied for maintaining
the privacy of the gathered information. By using this hashing function, the generated digest of
the gathered files is utilized post-investigation to declare that the primary information hasn’t been
compromised. Then, the gathered pcaps are treated by data flow extraction models such as Bro
or Argus, which extracts the network flow from the pcap file. A further step during this phase is
pre-processing, by managing unuseful and missing feature values, producing and re-scaling original
features that could help a model training. Afterward cleaning and filtering data sets, the OSAE method
is employed for discovering cyberattacks and traces their origin.

2.3 MRFO Based Feature Selection Process

At this stage, the MRFO algorithm can be used to choose an optimal subset of features. Zhao
et al. [17] proposed a meta heuristic optimization method called manta ray foraging optimizer
(MRFO) stimulated from the manta rays in catching the prey and the foraging behavior. Followed,
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chain, somersault, and cyclone foraging are the three foraging operators. The chain foraging is
mathematically formulated by:
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In which x(t)
i represent the ith individual location at iteration t, r indicates an arbitrary vector in

range; x(t)
best indicates the optimal solution at iteration t, N shows the amount of manta rays and α
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where ω represent an arbitrary value in range of Da Luz et α (2020),
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In which β represent a weighting factor:

β = 2e
r1( T−t+1

T ) sin (2πr1) (5)

In the equation, t signifies the existing iteration, T represent the maximal amount of iterations and
r1 denotes an arbitrary value in range. The cyclone foraging has better exploitation for the optimal
solution space since each manta rays do search procedure for the food according to the reference
position [18]. Furthermore, this procedure improves the exploration method by forcing the individual
to search for novel position that is farther from the present optimal one. It is executed by allotting an
arbitrary location in the searching space:

χrand = Lb + r.(Ub − Lb) (6)
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In which Lb and Ub indicate the lower and upper bounds of the problem variable, χrand signifies
an arbitrary location allotted for the searching space. The somersault foraging is last stage followed
in MRFO where the food is observed as a hinge. In this phase, all the manta rays tend to swim back
and forth around the tumble and hinge to a novel location:

x(t+1)

i = x(t)
i + S.(r2. xbest − r3. x(t)

i )i = 1, 2, . . . N (8)

Whereas S denotes a factor of somersault applied in determining the manta rays somersault range,
r2 & r3 represent arbitrary numbers in range. In this stage, the distances among the best one and the
manta ray position decrease that implying converge to the optimum solution. The feature selection
using the FS method is represented as a N sized vector in which N signifies the amount of features.
Now, all the locations of the vector could assume the value as 0 or 1 in which 0 indicates the feature
isn’t selected and 1 represents the features is elected. The transfer function shows the probability of
differing position vector components from zero to one and vice versa more effectively and easily. A
transfer function greatly impacts the result of the FS method during searching the optimum set of
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features related to avoiding local optimal issues and maintaining the tradeoffs amongst exploitation
as well as exploration procedures. As abovementioned, the fitness function (FF) for deciding solution
from this state crated to attain balance among the 2 objectives as:

fitness = αΔR(D) + β
|Y |
|T | (9)

ΔR(D) indicates the classification error rate. |Y | indicates the size of subset and |T | overall number
of features included from the present data sets. α describes the variable ∈ [0, 1] compared to the weight
of error rate of classification however β = 1 − α implies the consequence of feature reduction.

2.4 OSAE Based Classification Process

During classification process, the chosen subset of features is passed into the OSAE model. From
the fundamental viewpoint, the AE is an axisymmetric SLNN [19]. The AE encoded the input sensor
information by utilizing the hidden state, estimating the minimal error, and attaining the optimum-
feature hidden state term. For sample, the AE doesn’t learn some practical features with copy and
input memory as to implicit state, but it is recreate input data with maximum precision. In order to
the adhesion state recognition of locomotive, k groups of observing information {x1, x2, x3, . . . , xn}
occur that are recreated as to N×M dataset {x(1), x(2), x(3), . . . , x(N)}, x(i) ∈ RM . This data is utilized
as input matrix X. An input information encoding by AE was utilized for constructing a mapping
connection. During this case, the activation function of AE is sigmoid that is planned for obtaining
an optimum demonstration of input information: h(X , W , b) = σ(WX + b). The sparse penalty as
included to sparse AE cost function for limiting the average activation value of hidden state neurons.
Usually, once the resultant value of neuron is one, it can be active, and the neuron has inactive once its
resultant value is zero. The determination of applying sparsity is for limiting the unwanted activation.
aj(x) is fixed as jth activation values. During the procedure of feature learning, the activation values
of hidden state neurons are generally written as a = sigmoid(WX + b), while W implies the weight
matrix and b represents the deviation matrix [20]. The mean activation value of jth neurons from the
hidden state is determined as:

ρj = 1
n

n∑
i=1

[aj(x(i))]. (10)

The hidden state was retained at lesser value for ensuring that standard activation value of sparse
variable was determined as ρ, as well as the penalty expression was utilized for preventing ρj in
deviate in parameter ρ. The Kullback-Leibler (KL) divergence was employed under this analysis of
the fundamental of punishment:

KL(ρ||ρj) = ρ ln
ρ

ρj

+ (1 − ρ) ln
1 − ρ

1 − ρj

. (11)

When ρj doesn’t differ in parameter ρ, the KL divergence values are zero; else, the KL divergence
value is slowly improved with deviations. The cost function of NN is set as C(W , b). Afterward, the
cost function of increasing the sparse penalty expression as:

Csparse = C(W , b) + β

s2∑
j=1

KL(ρ||ρj) (12)

where S2 refers to the amount of neurons from the implicit state and β signifies the weight of sparse
drawback expression. The trained focus on NN is for finding the suitable weight and threshold
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parameters (W , b). Next, the sparse penalty expression was determined, the sparse term is attained by
reducing the sparse cost function. For optimal tuning of the parameters involved in the SAE model,
the COA is utilized. COA is a recently developed metaheuristic method that is presented by Qais et al.
[21]. COA has a stimulating method to get a balance among exploitation and exploration. The method
begins with NP amount of populations and Nc amount of coyotes as the candidate solution:

SOCp,t
c = x = [x1, x2, . . . , xD] (13)

In which, c determines the number and p determined the group and t describes the simulation time
for the model variable. In the beginning, random cayote has been produced as a solution candidate in
the searching space as follows

SOCp,t
c,j = LBj + η × (Urj − Lrj) (14)

In the equation, η ∈ [0, 1] indicates is a random value and Urj and Lrj determines the upper and
lower ranges of jth dimension in the searching space as follows [21]:

objp,t
c = f (SOCp,t

c,j ) (15)

The process randomly upgrades the group position. As well, the candidate updated their location
by leaving their groups to another one as follows:

P1 = 0.05 × N2
c (16)

The optimal solution of all the iterations is taken into account as the alpha coyotes in the equation:

αp,t = socp,t
c for min objp,t

c (17)

The general characteristics of the coyote for the culture transformation are given in the following:

culp,t
j =

⎧⎨
⎩
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2 ,j
, Nc is odd number

1
2

(
Rp,t

Nc
2 ,j

+ Rp,t
NC

2 +1,j

)
0.W .

(18)

Let, Rp,t be the coyote, social condition ranking for group number p at time t for the dimension j:

Blep,t
j =

⎧⎨
⎩

socp,t
r1,j, rj < prs or j = j1

socp,t
r2,j, rj ≥ prs + pra or j = j2

σj, O.W .
(19)

In the equation, rj ∈ [0, 1] determines a random value and r2 signifies an arbitrary coyotes in the
group p, σj defines an arbitrary values within the design variable limits, j1 and j2 determined random
design variable, and pra and prs represents the scatter and association likelihoods, correspondingly
states that the coyote cultural diversity from the group as follows [22]:

prs = 1
d

(20)

Pra = 1
2
(1 − pr) (21)
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While d defines the dimension for variable. The cultural transition amongst the groups is
determined by δ1 and δ2 factors:

δ1 = αp,t − socp,t
cr1 (22)

δ2 = culp,t − socp,t
cr2 (23)

Consider, δ1 signifies the culture difference among the designated coyote (cr1) and the leader
(alpha) and δ2 represent the cultural differences amongst the selected coyote (cr2) and group culture
trending. To upgrade the social behaviour according to the group and the leader impact, the
subsequent formula has been applied:

nsocp,t
c = socp,t

c + r1 × δ1 + r2 × δ2 (24)

Whereas r1 and r2 indicates random numbers among zero and one. Consider the update equation, the
new cost can be attained by:

nobjp,t
c = f (nsocp,t

c ) (25)

socp,t+1
c =

{
nsocp,t

c , nobjp,t
c < objp,t

c

socp,t
c , O.W . (26)

A significant part of this technique is its capacity to escape from the local optimal point.

3 Experimental Validation

The performance validation of the MFROFS-OSAE technique takes place using two benchmark
datasets namely Bot-IoT and UNSW_NB15 datasets.

Tab. 1 and Fig. 3 offer a brief result analysis of the MFROFS-OSAE technique under various
epochs. The results show that the MFROFS-OSAE technique has effectually attained maximum
detection performance. For instance, with 10 epochs, the MFROFS-OSAE technique has obtained
accuracy, precision, recall, and F-score of 99.94%, 100%, 99.94%, and 99.92% respectively. Moreover,
with 30 epochs, the MFROFS-OSAE method has achieved accuracy, precision, recall, and F-score of
99.92%, 100%, 99.95%, and 99.93% correspondingly. Simultaneously, with 50 epochs, the MFROFS-
OSAE algorithm has gained accuracy, precision, recall, and F-score of 99.91%, 100%, 99.91%, and
99.91% respectively. Concurrently, with 60 epochs, the MFROFS-OSAE methodology has reached
accuracy, precision, recall, and F-score of 99.94%, 100%, 99.95%, and 99.94% correspondingly.

Table 1: Result analysis of MFROFS-OSAE technique with different measures

No. of epochs Accuracy Precision Recall F-measure

Epoch-10 99.94 100.00 99.94 99.92
Epoch-20 99.93 100.00 99.95 99.94
Epoch-30 99.92 100.00 99.95 99.93
Epoch-40 99.92 100.00 99.92 99.93
Epoch-50 99.91 100.00 99.91 99.91
Epoch-60 99.94 100.00 99.95 99.94
Average 99.93 100.00 99.94 99.93
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Figure 3: Result analysis of MFROFS-OSAE technique with varying measures
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Fig. 4 illustrates the ROC analysis of the MFROFS-OSAE system on the test dataset. The figure
shows that the MFROFS-OSAE technique has reached increased outcomes with the minimal ROC of
99.8869.

Figure 4: ROC analysis of MFROFS-OSAE technique

Fig. 5 demonstrates the ROC analysis of the OSAE algorithm on the test dataset. The figure
depicted that the OSAE method has gained improved outcomes with the lower ROC of 99.8341.

Figure 5: ROC analysis of OSAE technique

Fig. 6 showcases the ROC analysis of the SAE technique on the test dataset. The figure revealed
that the SAE algorithm has achieved enhanced outcomes with the minimal ROC of 99.7124.

Figure 6: ROC analysis of SAE technique
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The DR analysis of the MFROFS-OSAE method with FS-DNN model on the Bot-IoT dataset is
given in Tab. 2 and Fig. 7. The results show that the MFROFS-OSAE system has resulted in maximal
efficiency over the other one. For instance, the MFROFS-OSAE algorithm has classified the instances
under DDoS class with the higher DR of 99.21% whereas the FS-DNN technique has obtained lower
DR of 99%. Similarly, the MFROFS-OSAE technique has classified the instances under DoS class
with the increased DR of 99.30% whereas the FS-DNN method has attained decreased DR of 99%.
Followed by, the MFROFS-OSAE method has classified the instances under Information theft class
with the superior DR of 99.01% whereas the FS-DNN system has reached a reduced DR of 99%. At
last, the MFROFS-OSAE approach has classified the instances under Normal class with the superior
DR of 99.30% whereas the FS-DNN technique has attained lower DR of 99%.

Table 2: Detection rate analysis of MFROFS-OSAE technique on Bot-IoT dataset

Classes Detection rate (%)

FS-DNN MFROFS-OSAE

DDoS 99.00 99.21
DoS 99.00 99.30
Information
gathering

99.00 99.33

Information theft 99.00 99.01
Normal 99.00 99.30

Figure 7: DR analysis of MFROFS-OSAE technique on Bot-IoT dataset

The DR analysis of the MFROFS-OSAE technique with FS-DNN model on the UNSW_NB15
dataset is given in Tab. 3 and Fig. 8. The results show that the MFROFS-OSAE technique has resulted
in maximum efficiency over the other one. For instance, the MFROFS-OSAE technique has classified
the instances under Normal class with the higher DR of 99.92% whereas the FS-DNN technique has
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attained lower DR of 99.90%. Likewise, the MFROFS-OSAE approach has classified the instances
under Backdoor class with the superior DR of 99.93% whereas the FS-DNN system has attained
minimum DR of 99.90%. Similarly, the MFROFS-OSAE technique has classified the instances under
Generic class with the maixmum DR of 99.93% whereas the FS-DNN technique has gained minimal
DR of 99.90%. Eventually, the MFROFS-OSAE methodology has classified the instances under
Shellcode class with the higher DR of 99.92% whereas the FS-DNN algorithm has achieved reduced
DR of 99.90%.

Table 3: Detection rate analysis of MFROFS-OSAE technique on UNSW_NB15 dataset

Classes Detection rate (%)

FS-DNN MFROFS-OSAE

Normal 99.90 99.92
Fuzzers 99.90 99.95
Analysis 99.90 99.93
Backdoor 99.90 99.93
DoS 99.90 99.95
Exploits 99.90 99.93
Generic 99.90 99.93
Reconnaissance 99.90 99.94
Shellcode 99.90 99.92

Figure 8: DR analysis of MFROFS-OSAE technique on UNSW_NB15 dataset

Finally, a detailed comparative result analysis of the MFROFS-OSAE technique with existing
techniques is made in Tab. 4.
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Table 4: Comparative analysis of MFROFS-OSAE technique with existing approaches

Methods Accuracy Precision Recall FPR FNR F-measure

FS-DNN 99.90 100.00 99.90 0.00 0.10 99.90
Decision tree 85.60 90.80 89.50 25.50 10.50 90.20
Naïve bayes 93.20 94.80 94.40 9.00 5.60 94.60
MLP 72.70 92.00 62.70 9.50 37.30 74.60
SVM 88.30 100.00 88.30 0.00 11.70 93.80
RNN 99.70 99.90 99.70 73.30 0.30 99.80
MFROFS-
OSAE

99.93 100.00 99.94 0.00 0.06 99.93

Fig. 9 offers the accuracy and precision analysis of the MFROFS-OSAE technique with recent
methods. The results show that the MLP, DT, and SVM models have obtained ineffectual outcomes
with lower values of accuracy and precision. Followed by, the NB model has reported moderate
accuracy and precision of 93.20% and 94.80% respectively. Though the FS-DNN and RNN models
have demonstrated competitive performance, the MFROFS-OSAE technique has resulted in higher
accuracy and precision of 99.93% and 100% respectively.

Figure 9: Accuracy and precision analysis of MFROFS-OSAE technique

Fig. 10 provides the recall and F-measure analysis of the MFROFS-OSAE technique with recent
approaches. The results demonstrated that the MLP, DT, and SVM techniques have obtained ineffec-
tual outcomes with the minimum values of recall and F-measure. Afterward, the NB methodology has
reported moderate recall and F-measure of 94.40% and 94.60% correspondingly. But, the FS-DNN
and RNN techniques have demonstrated competitive performance, the MFROFS-OSAE approach
has resulted in superior recall and F-measure of 99.94% and 99.93% correspondingly.
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Figure 10: Recall and F-measure analysis of MFROFS-OSAE technique

4 Conclusion

This study has designed an MFROFS-OSAE technique for intelligent forensic investigation
on critical industrial infrastructures. The proposed model effectively determines the presence of
abnormal events in critical industrial infrastructures. The MFROFS-OSAE technique involves several
subprocesses namely data gathering, data handling, MFRO based feature selection, SAE based
classification, and COA parameter tuning. The OSAE based classifier is derived to detect abnormal
events and the parameter tuning process is carried out via the COA. The performance validation
of the MFROFS-OSAE technique takes place using the benchmark dataset and the experimental
results reported the betterment of the MFROFS-OSAE technique over the recent approaches interms
of different measures. In future, advanced DL models can be used instead of SAE to accomplish
maximum detection rate.
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