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Abstract: Medical image processing becomes a hot research topic in healthcare
sector for effective decision making and diagnoses of diseases. Magnetic
resonance imaging (MRI) is a widely utilized tool for the classification and
detection of prostate cancer. Since the manual screening process of prostate
cancer is difficult, automated diagnostic methods become essential. This
study develops a novel Deep Learning based Prostate Cancer Classification
(DTL-PSCC) model using MRI images. The presented DTL-PSCC technique
encompasses EfficientNet based feature extractor for the generation of a set
of feature vectors. In addition, the fuzzy k-nearest neighbour (FKNN) model
is utilized for classification process where the class labels are allotted to the
input MRI images. Moreover, the membership value of the FKNN model can
be optimally tuned by the use of krill herd algorithm (KHA) which results in
improved classification performance. In order to demonstrate the good clas-
sification outcome of the DTL-PSCC technique, a wide range of simulations
take place on benchmark MRI datasets. The extensive comparative results
ensured the betterment of the DTL-PSCC technique over the recent methods
with the maximum accuracy of 85.09%.

Keywords: MRI images; prostate cancer; deep learning; medical image pro-
cessing; metaheuristics; krill herd algorithm

1 Introduction

Prostate cancer is one of the common forms of cancer that is accountable for 26% of cancer
diagnoses for American men [1]. So far, prostate cancer is detected by systematic biopsies that contain
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millions of specimens taken from the prostate through a core needle. A systematic biopsy is invasive
and has lower sensitivity; furthermore, it creates a possibility of bleeding, infection, and sepsis [2]. A
non-invasive imaging technique to diagnose prostate cancer at an earlier stage might enhance prostate
cancer treatment and diagnosis. For a new ultrasound technique, the Contrast Enhanced Ultrasound
(CEUS) could offer suitable modality to visualize the dynamic pattern of the blood flows, allowing
clinical experts to diagnose angiogenesis for cancer detection [3,4]. Until now, numerous studies of the
CEUS based prostate cancer diagnosis are accomplished by measuring distinct parameters of the time
intensity curve (TIC). Machine learning (ML) is a subdivision of artificial intelligence (AI) which is
depending on the concept of the system learning patterns from a largescale dataset through statistical
and probabilistic mechanisms and also make predictions or decisions on the new information [5].
In medical imaging sector, computer-aided diagnosis and detection (CAD), that is an integration
of ML classification and imaging feature engineering, has shown promising results in supporting
radiotherapists for precise diagnoses, reducing the time and cost of diagnosis [6].

Conventional feature engineering approaches are depending on quantitative imaging feature
extraction [7] like intensity, texture, volume, shape, and different statistical features from imaging data
as well as ML classifiers like Decision Tree (DT), Support Vector Machines (SVM), and Adaboost.
The deep learning (DL) method has shown effective results in different kinds of computer vision (CV)
tasks like object-detection, segmentation, and classification. Nonetheless, in order to attain effective
implementation, a precise fine-tuning of hyperparameter and optimum structures and combinations of
the layer are needed. This remains one of the key challenges of DL-based approaches while employed
in distinct sectors like medical imaging [8–10]. With convolutional neural network (CNN) promising
result in the fields of computer vision (CV), medical imaging researchers have changed their interest
towards DL-based approaches to design CAD systems for the diagnosis of cancer.

This study develops a novel Deep Transfer Learning based Prostate Cancer Classification (DTL-
PSCC) model using MRI images. The presented DTL-PSCC technique encompasses EfficientNet
based feature extractor for the generation of a set of feature vectors. In addition, the fuzzy k-nearest
neighbour (FKNN) model is utilized for classification process where the class labels are allotted to the
input MRI images. Moreover, the membership value of the FKNN model can be optimally tuned by
the use of krill herd algorithm (KHA) which results in improved classification performance. In order
to demonstrate the enhanced classification outcome of the DTL-PSCC technique, a wide range of
simulations take place on benchmark MRI datasets.

The rest of the study is organized as follows. Section 2 offers the related works, Section 3 discusses
the proposed model and Section 4 provides the experimental validation. Lastly, Section 5 draws the
conclusion.

2 Literature Review

Zhang et al. [11] integrated a GrowCut and Zernik feature extraction and extreme learning
machine (ELM) approaches for lesion segmentation in MRI and prostate cancer diagnosis. They
utilize GrowCut approach for the segmentation of the suspicious cancer region and the integration of
ML models in ensemble learning to diagnose prostate cancer. De Vente et al. [12] developed a neural
network (NN) system that grades and detects cancer tissue in end-to-end manner simultaneously. It is
medically applicable when compared to the classifier goals of the ProstateX-2 challenge. They utilized
the data set for testing and training. Also, employed a two-dimensional U-Net with MRI as input and
lesion segmentation map which encodes the Gleason Grade Group (GGG), a measurement for the
aggressiveness of cancer, as output.
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Ye [13] designed an AI-based method (called AI-biopsy) for the earlier diagnoses of prostate
cancer through MRI labelled with histopathology data. The DL method is designed to differentiate
1) higher-risk tumors from lower-risk tumors and 2) benign from cancerous tumors. Alkadi et al.
[14] trained a deep convolution encoder-decoder framework for segmenting the malignant lesions, the
prostate, and anatomical structure. To integrate the 3D contextual spatial data given by the MRI, we
present a three-dimensional sliding window model that preserves two-dimensional domain difficulty
when utilizing three-dimensional data.

Feng et al. [15] introduced a DL architecture for diagnosing prostate cancer in the CEUS image.
The presented approach extracts feature uniformly from temporal and spatial dimensions by carrying
out 3D convolutional operation that captures dynamic data of the perfusion encoded in many adjacent
frames. The DL model was validated and trained against expert’s delineation through the CEUS
image recorded by 2 kinds of contrast agents. In [16], a strong DL based convolutional neural
network (DL-CNN) approach is applied by means of transfer learning (TL) method. The outcomes
are compared to several ML approaches. Cancer MRI databases are employed for training ML
classifiers and GoogleNet, different features like Entropy based, Morphological, Texture, Elliptic
Fourier Descriptors, and Scale Invariant Feature Transform (SIFT) is extracted.

3 The Proposed Model

In this study, an effective DTL-PSCC technique has been developed to classify prostate cancer
using MRI images. The proposed DTL-PSCC technique involves several subprocesses namely prepro-
cessing, EfficientNet based feature extraction, FKNN based classification, and KHA based parameter
tuning. The membership value of the FKNN model can be optimally tuned by the use of KHA which
results in improved classification performance.

3.1 Pre-processing

The ground truth given by PROSTATEx-2 challenge is coordinate point at centre of lesion [17].
The region of interest (ROI) of size 65 × 65 nearby the ground truth has cropped in T2W image and
ROI of size 21 × 21 are collected to remove 2D GLCM features. The size of ROI has been selected then
a manual inspection so that the maximum tumor amongst the provided data set is suitable inside the
ROI. The Lloyd-max quantization was executed on ROI with the amount of gray level fixed to baseline
parameter 32 that minimized mean square error (MSE) to provide the amount of quantization levels.

3.2 Feature Extraction: EfficientNet Model

CNN is a typical DL approach which could produce cutting-edge results for almost all the
classification problems [18]. CNN achieved good results on image classification, however, it could
yield better accuracy on text data. CNN is Mainly utilized for automatically extracting the feature
from the input data set, in addition ML method, where the user requirements to elect the feature 2D,
and 3D CNN is employed for video and image data, correspondingly, while 1D CNN is applied to text
classification. The CNN framework employs a sequence of convolution layers for extracting features
from the input data set. Max pooling layer afterward every convolution layer and the dimension of
extracted feature is decreased. In the convolution layer, the size of the kernel performs an important
role in feature extraction. The model’s hyperparameter represents the kernel size and number of filters.

This layer translates the word into a vector space module based on how frequently words appear
closer to another word. The embedding layers use random weight to learn embedding for each term
in the trained data set. The softmax layer is utilized as the classification layer that could achieve better
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results for the multi-class problems. The softmax function contains N units, in which the N represents
the amount of units. All the units are connected fully with preceding layer and compute the likelihood
of every class on N as follows

Softmax = eωNx+bN∑N

m=1 eωmx+bm
. (1)

WM indicates the weight matrix which connects the mth unit to the preceding layer, x denotes the
final output, and bm signifies the mth unit bias. DL is a type of CNN and is extremely utilized in images.
In recent times, DL was extremely utilized in analysis of several medicinal diseases. Likewise, a few
analyses are developed to analysis of skin disease utilizing DL. The DL has several connected layers
utilizing numerous weight as well as activation functions. A fundamental DL comprises a convolution
layer, pooling, and connected layers. Many activation functions are utilized for adjusting the weight.
The activation function generates a feature map which is input as to succeeding layer.

The pooling as well as convolution layers were utilized to remove the feature. These layers were
utilized to remove the visual feature and recognize the difficult nature of image. But, the nature of
skin cancer lesions has highly complex, and increasing an automated analysis model utilizing DL was
stimulating. For alleviating this issue, TL was employed. Fig. 1 illustrates the structure of EfficientNet
technique. During the current study, EfficientNetB3 was utilized for skin cancer recognition. An
EfficientNetB3 is a recent, cost-efficient, and robust method established by scaling 3 parameters like
depth, width, and resolution [19]. An EfficientNetB3 method with noisy-student weight has been
utilized from scenarios I and III to TL method, but “isicall_eff3_weights” weights were utilized as pre-
training to scenarios II and IV. The amount of parameters are decreased. Besides, the rectified linear
unit (RELU) activation function was employed with 3 dense and 2 dropout layers. The resultant layer
has several outcome units to multiclass classifier utilizing the softmax activation function.

Figure 1: Framework of EfficientNet

3.3 Optimal Fuzzy KNN Based Classification

In this section, the FKNN classifier to detect and classify different classes of prostate cancer is
applied. In the FKNN model, the fuzzy membership values of the instances are allocated to distinct
class labels as given below [20].
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while i = 1, 2, . . . C, j = 1, 2, . . . , K, C denotes the class count and K represents the nearest
neighboring count. The fuzzy parameter (m) can be utilized for determining the weighted distance
upon determining every neighbor’s influence on the membership values. m ∈ (1, ∞) . ‖x − xj‖ is
commonly chosen as the m value. Besides, Euclidean distance among x and its jth nearest neighbors
xj, are chosen as the distance measure. Moreover, uij indicates the degree of membership xj from the
trained data to class i amongst the k-nearest neighbor (KNN) of x. Here, the limited fuzzy membership
model is used where the KNN of every training data is computed and the membership of xk in every
class gets allocated using Eq. (3):

uij (xk) = {0.51 +
( nj

K

)
∗ 0.49, if j = i

( nj

K

)
∗ 0.4, if j �= i. (3)

where nj depicts the neighboring count under jth class. The membership values need to fulfill the
succeeding equations.

c∑
I=1

μij = 1, (4)

j = 1, 2, · · · , n, C is the number of classes (4)

0 <

n∑
j=1

uij < n, uij ∈ [0, 1] .

Once the membership values are calculated, it gets allocated to the classes with maximum degree
of membership, i.e.,

C (x) = argC
i=1max (ui (x)) (5)

For tuning the parameters involved in the FKNN model, the KHA is applied. Antarctic krill is
the main animal species on Earth. The capability to procedure huge swarm is most important feature
of this species. An individual krill gets out from the herd once predators namely whales seals attack the
krill. This attack decreases the density of krill herd (KH). The restructuring of KH then predation was
influenced by several parameters. An essential purpose of herding performance of the krill individuals
was improving krill density and attaining the food. The KH technique utilizes this multiobjective
herding to resolve global optimized issues. Thus, the outcome, the krill individual transfers near an
optimum solution once its searches for maximum density of herd as well as food. This performance
generates the KH nearby the global minimal of optimized issue.

The time-dependent place of individual krill from 2D surfaces has been led by the subsequent 3
important performances [21].

1. Effort induced by another krill individual;
2. Foraging motion
3. Physical or random diffusion

The subsequent Lagrangian method was generalizing to n-dimension decision space:

dXi

dt
= Ni + Fi + Di (6)

While Ni refers the motion caused by another krill individual; Fi implies the foraging motion; and
Di represents the physical diffusion of ith krill individual.
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The effort of all krill individuals is determined as:

Nnew
i = Nmaksαi + ωnNold

i (7)

αi = αloca1
i + αtarget

i (8)

where Nmaks stands for the maximal induced speed, and based on the measured value, it could be
obtained as 0.01 (m/s). ωn refers the inertia weight of motion induced from the range zero and one. αlocal

i

refers the local effects offered by neighbors, target is the destination way outcome given by an optimum
krill individual and Nold

i denotes the final motion-induced. ωn defines the inertia weight as equivalent
to 0.9 at start of optimization. Afterward, it can be linearly reduced to 0.1. Fig. 2 demonstrates the
flowchart of KH technique. The outcome of neighbors is considered an attractive or repulsive tendency
amongst the individuals to local searches. α

target
i denotes the target way outcome given by an optimum

krill individuals are determined as:

αtarget
i = CbestK̂i, bestX̂i,best (9)

where Cbest implies the coefficient of impacts and determined as under.

Cbest = 2
(

rand + I
Imaks

)
(10)

where rand stands for the arbitrarily created number amongst zero and one, I refers the actual iteration
number and Imaks implies the maximal amount of iterations.

Figure 2: Flowchart of KH
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4 Results and Discussion

The performance validation of the DTL-PSCC technique takes place using the PROSTATEx-2
Challenge dataset [22], which holds a set of 162 MRI images with 5 class labels namely transaxial
T2W, sagittal T2W, ADC, DW, and Ktrans. In this study, the five classes are represented by targets.
The results are examined under varying ratios of training and testing data. A few sample images are
demonstrated in Fig. 3.

Figure 3: Sample images

Tab. 1 and Fig. 4 offer a brief prostate cancer classification result analysis of the DTL-PSCC
technique under the training/testing dataset of 80:20. The results show that the DTL-PSCC technique
has obtained effective performance. For instance, the DTL-PSCC technique has classified the images
into target 1 with precn, recal, accuy, Fscore, and kappa of 84.55%, 86%, 85.09%, 85.58%, and 84.45%
respectively.

Table 1: Result analysis of DTL-PSCC technique with different measures on training/testing (80:20)

Classes Precision Recall Accuracy F-Score Kappa

Target 1 84.55 86.00 85.09 85.58 84.45
Target 2 85.60 85.92 85.51 85.49 84.67
Target 3 85.27 86.14 85.03 84.55 84.41
Target 4 84.50 85.65 85.06 84.46 85.69
Target 5 85.06 85.38 84.75 85.03 85.50

Average 85.00 85.82 85.09 85.02 84.94

Moreover, the DTL-PSCC technique has categorized the images into target 3 with precn, recal,
accuy, Fscore, and kappa of 85.27%, 86.14%, 85.03%, 84.55%, and 84.41% respectively. Furthermore,
the DTL-PSCC technique has identified the images into target 5 with precn, recal, accuy, Fscore, and
kappa of 85.06%, 85.38%, 84.75%, 85.03%, and 85.50% respectively.

Fig. 5 demonstrates the average prostate cancer detection results of the DTL-PSCC technique
under the training/testing dataset of 80:20. The figure reported that the DTL-PSCC technique has
accomplished improved classification performance with the average precn, recal, accuy, Fscore, and kappa
of 85%, 85.82%, 85.09%, 85.02%, and 84.94% respectively.
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Figure 4: Result analysis of DTL-PSCC technique on training/testing (80:20)

Figure 5: Average analysis of DTL-PSCC technique on training/testing (80:20)

Fig. 6 illustrates the accuracy analysis of the DTL-PSCC methodology on training and testing
(80:20) dataset. The outcomes exhibited that the DTL-PSCC approach has accomplished increased
efficiency with higher training and validation accuracy. It can be demonstrated that the DTL-PSCC
manner has reached increased validation accuracy over the training accuracy.

Fig. 7 showcases the loss analysis of the DTL-PSCC methodology on training and testing (80:20)
dataset. The results established that the DTL-PSCC approach has resulted in a proficient outcome
with the decreased training and validation loss. It can be stated that the DTL-PSCC technique has
lower validation loss over the training loss.
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Figure 6: Accuracy analysis of DTL-PSCC technique on training/testing (80:20)

Figure 7: Loss analysis of DTL-PSCC technique on training/testing (80:20)
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Tab. 2 and Fig. 8 provide a detailed prostate cancer classification result analysis of the DTL-PSCC
approach under the training/testing dataset of 70:30. The outcomes outperformed that the DTL-PSCC
method has obtained effective performance. For instance, the DTL-PSCC algorithm has classified
the images into target 1 with the precn, recal, accuy, Fscore, and kappa of 84.95%, 85.14%, 84.77%,
84.81%, and 84.76% respectively. Moreover, the DTL-PSCC method has categorized the images into
target 3 with the precn, recal, accuy, Fscore, and kappa of 84.87%, 85.26%, 85.24%, 84.32%, and 85.58%
correspondingly. Also, the DTL-PSCC methodology has identified the images into target 5 with the
precn, recal, accuy, Fscore, and kappa of 84.63%, 85.34%, 85.22%, 85.03%, and 84.51% correspondingly.

Table 2: Result analysis of DTL-PSCC technique with different measures on training/testing (70:30)

Classes Precision Recall Accuracy F-Score Kappa

Target 1 84.95 85.14 84.77 84.81 84.76
Target 2 84.13 85.86 84.58 85.51 84.10
Target 3 84.87 85.26 85.24 84.32 85.58
Target 4 84.63 85.94 84.56 85.31 85.44
Target 5 84.63 85.34 85.22 85.03 84.51

Average 84.64 85.51 84.87 85.00 84.88

Figure 8: Result analysis of DTL-PSCC technique on training/testing (70:30)

Fig. 9 depicts the average prostate cancer detection outcomes of the DTL-PSCC methodology
under the training/testing dataset of 70:30. The figure stated that the DTL-PSCC technique has
accomplished increased classification performance with average precn, recal, accuy, Fscore, and kappa
of 84.64%, 85.51%, 84.87%, 85%, and 84.88% correspondingly.

Fig. 10 portrays the accuracy analysis of the DTL-PSCC approach on training and testing (70:30)
dataset. The results proved that the DTL-PSCC methodology has achieved improved results with
increased training and validation accuracy. It is noticed that the DTL-PSCC technique has gained
improved validation accuracy over the training accuracy.
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Figure 9: Average analysis of DTL-PSCC technique on training/testing (70:30)

Figure 10: Accuracy analysis of DTL-PSCC technique on training/testing (70:30)

Fig. 11 depicts the loss analysis of the DTL-PSCC algorithm on training and testing (70:30)
dataset. The outcomes established that the DTL-PSCC system has resulted in a proficient outcome
with the decreased training and validation loss. It can be stated that the DTL-PSCC methodology has
obtainable minimal validation loss over the training loss.
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Figure 11: Accuracy analysis of DTL-PSCC technique on training/testing (70:30)

Lastly, a detailed comparative analysis of the DTL-PSCC technique with recent methods is offered
in Tab. 3 and Fig. 12. The results demonstrated that the LL-support vector machine (SVM), LL-
logistic regression with L1 penalty (LLR) (LLR), and HL-SMC methods have obtained least prostate
classification performance with accuy of 33.92%, 28.57%, and 47.30% respectively. Meanwhile, the
decision tree (DT) and random forest (RF) models have obtained moderate outcomes with accuy of
72.81% and 75.24% respectively. However, the DTL-PSCC technique has shown supreme performance
with precn, recal, accuy, Fscore, and kappa of 85%, 85.82%, 85.09%, 85.02%, and 84.94% respectively.
Therefore, it is ensured that the DTL-PSCC technique has gained maximum prostate classification
performance over the other compared methods.

Table 3: Comparative analysis of DTL-PSCC technique with existing approaches

Methods Precision Recall Accuracy F-Score Kappa

LL-SVM 42.30 30.60 33.92 35.50 31.99
LL-LLR 43.50 48.80 28.57 46.00 37.92
HL-SMC 57.10 55.60 47.30 56.30 53.26
Decision Tree 70.56 73.28 72.81 74.56 72.67
Random Forest 73.11 76.29 75.24 74.15 73.85
DTL-PSCC 85.00 85.82 85.09 85.02 84.94
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Figure 12: Comparative analysis of DTL-PSCC technique with existing approaches

5 Conclusion

In this study, an effective DTL-PSCC technique has been developed to classify prostate cancer
using MRI images. The proposed DTL-PSCC technique involves several subprocesses namely prepro-
cessing, EfficientNet based feature extraction, FKNN based classification, and KHA based parameter
tuning. The membership value of the FKNN model can be optimally tuned by the use of KHA which
results in improved classification performance. In order to demonstrate the enhanced classification
outcome of the DTL-PSCC system, a wide range of simulations takes place on benchmark MRI
datasets. The extensive comparative results ensured the advancement of the DTL-PSCC system over
the recent methods with the higher accuracy of 85.09%. Hence, the DTL-PSCC technique has appeared
as a proficient approach for prostate cancer classification and detection. In future, deep learning based
segmentation techniques can be derived to improve the efficiency of the DTL-PSCC technique
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