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Abstract: The task of mining erasable patterns (EPs) is a data mining problem

that can help factory managers come up with the best product plans for the

future. This problem has been studied by many scientists in recent times,

and many approaches for mining EPs have been proposed. Erasable closed

patterns (ECPs) are an abbreviated representation of EPs and can be con-

sidered condensed representations of EPs without information loss. Current

methods of mining ECPs identify huge numbers of such patterns, whereas

intelligent systems only need a small number. A ranking process therefore

needs to be applied prior to use, which causes a reduction in efficiency. To

overcome this limitation, this study presents a robust method for mining top-

rank-k ECPs in which the mining and ranking phases are combined into a

single step. First, we propose a virtual-threshold-based pruning strategy to

improve the mining speed. Based on this strategy and dPidset structure, we

then develop a fast algorithm for mining top-rank-k ECPs, which we call

TRK-ECP. Finally, we carry out experiments to compare the runtime of our

TRK-ECP algorithm with two algorithms modified from dVM and TEPUS

(Top-rank-k Erasable Pattern mining Using the Subsume concept), which are

state-of-the-art algorithms for mining top-rank-k EPs. The results for the

running time confirm that TRK-ECP outperforms the other experimental

approaches in terms of mining the top-rank-k ECPs.

Keywords: Pattern mining; erasable closed pattern mining; top-rank-k pattern

mining

1 Introduction

Frequent pattern mining is one of the most popular topics in data mining and involves extracting

frequent itemsets from a database. By identifying frequent patterns, we can observe that some items are

strongly correlated together and can easily recognize similar characteristics and associations among

them. This topic has attracted a lot of research attention, and many methods have been proposed,

such as dEclat [1], FP-Growth ∗ [2], DBV-FI (Dynamic Bit Vector for mining Frequent Itemsets)

[3], and NSFI (N-list and Subsume-based algorithm for mining Frequent Itemsets) [4]. Frequent
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itemsets have also been applied to solvethe problem of multi-attribute users under conditions of local

differential privacy [5]. There are also numerous variations of patternmining, including frequent closed

itemset mining [6], maximal frequent patterns [7], frequent weighted itemset mining [8], utility patterns

[9,10], colossal patterns [11], erasable itemset mining [12], and so on. These variations have different

meanings and are used in intelligent systems for specific situations. In addition, too many patterns

are often generated when traditional approaches are used in intelligent systems, making it time- and

resource-consuming to rank the patterns and find the most promising. Several top-k and top-rank-k

approaches have been developed [13–18] for different types of patterns and rules, such as frequent

patterns, frequent weighted patterns, closed sequential patterns, and association rules, in order to

combine the mining and ranking processes into a single algorithm. This can help intelligent systems

to work better.

Erasable pattern mining, developed by Deng et al. [12] in 2009, aims to help manufacturing

managers to come up with the best production plans for the coming years. This problem often arises in

the product planning process in a factory. In this scenario, a factory produces a wide range of products,

each of which is made from certain components (items) and earns a particular amount of money for

the manufacturer as profit. The current production plan requires the manufacturer to spend large

amounts of money to purchase and store these items. In unexpected situations, such as a financial

crisis or the COVID 19 pandemic, the manufacturer cannot afford to purchase all the necessary items

as usual; managers therefore need to reconsider their production plans to ensure the stability of the

manufacturing process. In the case described above, the problem involves finding itemsets that can

be eliminated but do not greatly affect the factory’s profit. In other words, we wish to find the sets

of itemsets which can best be eliminated (erased) (called EPs) so that managers can then utilize this

knowledge to create a new production plan that minimizes the profit reduction. Numerous algorithms

have been proposed to solve the EP mining problem, such as META [12], MEI (mining erasable

itemsets) [19], EIFDD (erasable itemsets for very dense datasets) [20], pMEI (parallel mining erasable

itemsets) [21], and BREM (bitmap-representation erasable mining) [22]. Several variations have also

been developed, such as mining EPs with constraints [23], mining erasable closed patterns [24], mining

maximal EPs [25], mining top-rank-k EPs [26,27] mining erasable patterns in incremental database

[28,29], and mining EPs in data streams [30–33].

When applied to the problem of mining erasable closed patterns (ECPs), the traditional mining

approaches proposed in [24] give very large numbers of patterns, and this is the reason for the low

efficiency of intelligent systems. These systems mine ECPs by applying traditional algorithms (in the

mining phase) and then rank the results to select the top patterns based on their gains (in the ranking

phase). This two-phase process is time- and resource-consuming, and such systemsmay even fail to run

due to memory and storage space limitations. Hence, in this paper, we address the problem of mining

top-rank-k ECPs in order to combine the mining and ranking phases. The key contributions of this

study are as follows: (i) we develop a virtual-threshold-based pruning strategy for the mining of top-

rank-k ECPs, in which the virtual threshold is set to the highest threshold of the results in the mining

process, thus helping to improve the mining time by avoiding the creation of unsatisfactory candidates;

(ii) we present the TRK-ECP algorithm, which uses a virtual-threshold-based pruning strategy for the

mining of top-rank-k ECPs; (iii) we conduct experiments to demonstrate the effectiveness of the TRK-

ECP algorithm in terms of the mining time, the results of which indicate that TRK-ECP outperforms

two alternative modified algorithms (namely dVM and TEPUS) in terms of the mining time for top-

rank-k ECPs.

The rest of this study is structured as follows. An overview of the basic principles of EPs and ECPs

is given in Section 2. A definition of the mining of top-rank-k ECPs and a fast-mining algorithm are
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introduced in Section 3. Our experimental results are presented in Section 4, and it is shown that these

confirm the effectiveness of the TRK-ECP algorithm. The conclusions of the study and suggestions

for future work are given in Section 5.

2 Basic Principles

This section introduces the basic concepts needed to understand the topic of this study. Section 2.1

presents the definition of EPs and gives examples based on a toy product dataset. Section 2.2 discusses

the concept of an ECP and presents some examples.

2.1 Erasable Patterns

Deng et al. [12] introduced an interesting problem called erasable pattern mining, as briefly

summarized in this section. We consider a product dataset for a factory, denoted as DB. This dataset

contains n products, as P = {P1, P2, . . . , Pn}. Each product in this dataset is created from a set of

components. For convenience in terms of our study of pattern mining, the set of all components can

be considered as the set of all items, denoted by I = {i1, i2, . . . , im}. Each product in the product dataset

is represented in the form 〈Items, Val〉, in which Items are the components required to manufacture

this product, and Val is the profit that the factory gains by selling this product. A toy product dataset

is presented in Tab. 1 and is used as an example throughout this study.

Table 1: Toy product dataset

Identifier Components Val

P1 A1, A2 1,000

P2 A1, A2, A5 200

P3 A3, A5 150

P4 A2, A4, A5, A6 50

P5 A3, A4, A5 100

P6 A4, A5, A6, A7 200

P7 A4, A7 150

P8 A4, A6, A7 100

Definition 1. For a product dataset denoted by DB and a threshold ξ , a pattern X is an erasable

pattern if and only if:

g(X) ≤ T × ξ (1)

g(X) =
∑

{Pk |X∩Pk .Item6=∅}

Pk.Val (2)

T =
∑

Pk∈DB

Pk.Val (3)

In Eqs. (1)–(3), g(X ) is the gain due to X , and T is the total profit of the whole dataset DB.

According to Eq. (1), the problem of mining EPs involves finding all patterns X with gains g(X ) that

are less than T × ξ .
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Example 1. For the product dataset which shown in Tab. 1, we calculate the total profit as T =∑
Pk∈DB

Pk.Val = $1,950.We can calculate the gain from itemA5 as follows: g(A5)=
∑

{Pk |A5∩Pk
.Item6=∅}Pk.Val

= P2.Val + P3.Val + P4.Val + P5.Val + P6.Val= 200+ 150+ 50+ 100+ 200 = $700. For a threshold

ξ = 50%, A5 is an EP, as g(A5) = 700<T × ξ = $975.

2.2 Erasable Closed Patterns

In 2017, Vo et al. [24] presented the definition of an ECP, which can be summarized as follows.

An EP is called an ECP if and only if there are no supersets that have the same gain. For instance,

consider the dataset in Tab. 1 with ξ = 40%. In this example, A5 and A5A3 are two EPs, as g(A5) =

g(A5A3) = 700<T × ξ = $780. In terms of the problem of ECP mining, A5 is not an ECP, because we

have a superset (A5A3) with the same gain as A5, i.e., g(A5) = g(A5A3) = $700. Hence, A5A3 is an ECP

and A5 is not. Tab. 2 provides all ECPs for our dataset with ξ = 40%.

Table 2: ECPs for the example dataset with ξ = 40%

No ECPs Gain

1 A3 250

2 A6 350

3 A6A3 600

4 A7 450

5 A7A3 700

6 A7A6 500

7 A4A7A6 600

8 A4A7A6 A3 750

9 A5A3 700

2.3 dPidset Structure

In 2014, Le et al. [19] developed the dPidset structure, which is typically used to mine EPs. In this

study, we also use this structure to mine top-rank-k ECPs. We can summarize the dPidset structure as

follows. Firstly, the pidset p(X ) of pattern X is determined as:

p(X) =
⋃

A∈X

p(A) (4)

where A is an item in pattern X , and p(A) is the set of products that contain A.

Example 2. For the dataset in Tab. 1, the pidsets of A5, A3, and A6 are p(A5) = {2, 3, 4, 5, 6}, p(A3)

= {3, 5}, and p(A6) = {4, 6, 8}, respectively. We have p(A5A3) = p(A5) ∪ p(A3) = {2, 3, 4, 5, 6}. We also

have p(A5A6) = p(A5) ∪ p(A6) = {2, 3, 4, 5, 6, 8}.

Definition 2. Let XA and XB be two patterns. The dPidset of XAB, denoted as dP(XAB), is

computed by the following equation:

dP(XAB) = p(XB)/p(XA). (5)



CMC, 2022, vol.72, no.2 3575

Example 3. In Example 2, the pidsets ofA5,A3, andA6 are p(A5)= {2, 3, 4, 5, 6}, p(A3)= {3, 5}, and

p(A6) = {4, 6, 8}. Based on Definition 2, we know that the dPidset of A5A3 is dP(A5A3) = p(A3) /p(A5)

=Ø. Similarly, the dPidsets of A5A6 and A5A3A6 are dP(A5A6)= p(A6)/p(A5)= {8}, and dP(A5A3A6)=

p(A5A6)/p(A5A3) = {8}, respectively.

Theorem 1 [19]. Let XA and XB be two patterns with dPidsets dP(XA) and dP(XB), respectively.

The dPidset of XAB is determined using the following equation:

dP(XAB) = dP(XB)\dP(XA) . (6)

Example 4. In Example 3, the dPidsets of A5A3 and A5A6 are dP(A5A3) = Ø and dP(A5A6) = {8},

respectively.We have dP(A5A3A6)= dP(A5A6)/dP(A5A3)= {8}. The results for Examples 3 and 4 clearly

verify Theorem 1.

Theorem 2 [19]. The gain of XAB can be computed based on the gain of XA and the dPidset of

XAB, as follows:

g(XAB) = g(XA)+
∑

Pk∈dP(XAB)

Pk.Val (7)

In Eq. (7), g(XA) is the gain of XA while Pk.Val is the profit of product Pk in the product dataset.

Example 5. For the example dataset in Tab. 1, we know that the pidsets of A5, A3, and A6 are

p(A5) = {2, 3, 4, 5, 6}, p(A3) = {3, 5}, and p(A6) = {4, 6, 8}, respectively. We also have g(A5) = $700,

g(A3)= $250, and g(A6)= $350. Since dP(A5A3)=Ø, we have g(A5A3)= g(A5)+
∑

Pk∈dP(A5A3)Pk.Val =

$700. Then, since dP(A5A6)= {8}, we have g(A5A6)= g(A5)+
∑

Pk∈dP(A5A6)Pk.Val = $800. Finally, since

dP(A5A3A6) = {8}, we have g(A5A3A6) = g(A5A3) +
∑

Pk∈dP(A5A3A6)Pk.Val = $800.

3 TRK-ECP: A New Algorithm for Mining Top-Rank-k ECPs

3.1 The Problem of Mining Top-Rank-k ECPs

Definition 3. A pattern X is in the top-rank-k ECPs if and only if r(X) ≤ k, where the rank of an

ECP X is determined by the following equation:

r(X) = |{g(Y) | Y ∈ ECP ∧ g(Y) ≤ g(X)}| (8)

The problem of mining the top-rank-k ECPs is therefore the task of finding the complete set of ECPs

for which the rank is no greater than k, where k is input by the user.

Example 5. For the dataset in Tab. 1, let k be five. Tab. 3 below shows all ECPs belonging to the

top-5 ECPs from our dataset. We call these the top-rank-5 ECPs.

Table 3: Top-rank-5 ECPs

No ECPs Gain

1 A3 250

2 A6 350

3 A7 450

4 A7A6 500

5 A6A3, A4A7A6 600
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3.2 TRK-ECP Algorithm

In this section, we present a virtual-threshold-based pruning strategy to accelerate the runtime

for mining top-rank-k ECPs. We first consider a top-rank-k table structure called TR, which is used

to store the current top-rank-k ECPs. In this table, ranking is done based on ascending order of gain,

meaning that the last rank in TR is the largest gain. Hence, when TR receives k ranks (i.e., there are

k ranks in TR), the virtual threshold (ξ ) will be updated based on the gain of the last rank in TR.

During the candidate generation procedure, the algorithm will not create a candidate from two ECPs

if either of them has a gain greater than the virtual threshold. This strategy helps to reduce the search

space and accelerates the runtime, and we refer to this as our virtual-threshold-based pruning strategy.

Secondly, we develop the TRK-ECP algorithm based on this strategy, as shown in Algorithm 1.

Example 6. To illustrate the operation of the TRK-ECP algorithm, we apply it to the example

dataset in Tab. 1, with k= 5. In Lines 1–3, the proposed algorithm scans the example dataset to

determine the gain and dPidset for each 1-item stored in E1, as shown in Tab. 4. Note that E1 is the set

of all items in the dataset, without a threshold.

Algorithm 1: TRK-ECP algorithm

Input: A product dataset DB and a threshold k

Output: TR (the top-rank-k ECPs)

1. Let TR← Ø and Ck← Ø

2. Scan DB to determine the gain and dPidset for each item, and store them in E1

3. Sort E1 in ascending order of gain

4. Initialize TR from E1

5. Let ξ be g(TR.last_entry) // update ξ based on the gain of the last entry

6. While Ck.count> 1 do

7. C← Candidate_Generation(Ck)

8. Sort C in ascending order of gain

9. Ck← Ø

10. For each c in C do

11. Let ECPs be all the ECPs with rank c in TR

12. For each e in ECPs do

13. If e is a subset of c then

14. Remove ECP from ECPs

15. Insert c into ECPs and update ECPs in TR

16. Insert c into Ck

17. If TR.count> k then

18. Remove the last tuple from TR

19. Let ξ be g(TR.last_tuple) // update ξ based on the gain of the last entry

Procedure Candidate_Generation(Ck)

1. Let Cnext← Ø

2. For each cu ∈ Ck do

3. For each cv ∈ Ck with u< v do

4. If g(cu) > ξ or g(cv) > ξ then

5. Continue; // using the pruning strategy based on a virtual threshold

(Continued)
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Algorithm 1: Continued

6. If cu and cv are in an equivalence class then

7. c.dPidset = cv.dPidset \ cu.dPidset

8. g(c) = g(cu) +
∑

Pj ∈ cv .dPidset

Pj.Val

9. If g(c) <= ξ then

10 c = cu ∪ cv
11. Add c to Cnext

12. Return Cnext

Table 4: Gains and dPidsets for E1 in the example dataset

No Items dPidset Gain

1 A3 3, 5 250

2 A6 4, 6, 8 350

3 A7 6, 7, 8 450

4 A4 4, 5, 6, 7, 8 600

5 A5 2, 3, 4, 5, 6 700

6 A1 1, 2 1200

7 A2 1, 2, 4 1250

In Lines 4–10, the TRK-ECP algorithm inserts the first five items of E1--, {A3, A6, A7, A4, A5}, into

the results for the top-rank-k ECPs, denoted by TR, and the next-level candidates Ck (which are used

to create the next-level candidates). Note that A1 and A2 are eliminated, since the results have already

k= 5 elements. The number of ranks in the results (TR) is five, and the threshold for this step ξ is set

to 700. The results after the first step are presented in Tab. 5.

Table 5: Top five ranked ECPs after the first step

No Items Gain

1 A3 250

2 A6 350

3 A7 450

4 A4 600

5 A5 700

In the next step (Lines 11–24), TRK-ECP utilizes Ck to create the next-level candidates {〈A3A6,

600〉, 〈A6A7, 500〉, 〈A6A4, 600〉, 〈A7A4, 600〉}, using the Candidate_Generation procedure. Note that

{〈A3A7, 700〉, 〈A3A4, 750〉, 〈A3A5, 700〉, 〈A6A5, 800〉, 〈A7A5, 950〉, 〈A4A5, 950〉} are not generated by

the virtual-threshold-based pruning strategy. The TRK-ECP algorithm then sorts the candidates in

ascending order of gain, and thus we have the list of candidates {〈A6A7, 500〉, 〈A3A6, 600〉, 〈A6A4, 600〉,

〈A7A4, 600〉}. Next, these candidates will be inserted into TR and Ck. This step also removes any non-

ECPs that have been added to the results. In our example, this step inserts a new rank with a gain of
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500, which includes an ECP {〈A6A7, 500〉}, while the rank for a gain of 700 is removed from TR. At a

rank of 600, this algorithm removes {A4} from the result, as it is not an ECP. The virtual threshold ξ

is set to 600. The results of this step are presented in Tab. 6.

Table 6: Top five ranked ECPs after the second step

No Items Gain

1 A3 250

2 A6 350

3 A7 450

4 A6A7 500

5 A3A6, A6A4,

A7A6

600

In the third step, the TRK-ECP algorithm usesCk = {〈A6A7, 500〉, 〈A3A6, 600〉, 〈A6A4, 600〉, 〈A7A4,

600〉} to create 〈A6A7A4, 600〉, and inserts 〈A6A7A4, 600〉 into TR and Ck. In this step, {A6A4, A7A4} is

a subset of A6A7A4 and has the same gain of 600. The algorithm therefore removes {A6A4, A7A4} from

the results. Tab. 7 presents the results after this step.

Table 7: Top five ranked ECPs after the third step

No Items Gain

1 A3 250

2 A6 350

3 A7 450

4 A6A7 500

5 A3A6,

A6A7A4

600

In the next step, the set of candidatesCk = {〈A6A7A4, 600〉} contains only one item; the TRK-ECP

algorithm therefore stops, and the final results are as shown in Tab. 7.

4 Experiments

The experiments described in this section were conducted on a computer with an Intel Core i5-

7200U 2.5GHz CPU and 16 GBs of RAM. All the experimental algorithms were implemented in C#

and were run in the same environment with the .Net Framework Version 4.5. Four public datasets

(Chess, Connect, Mushroom, and T10I4D100K) were used to test the effectiveness of the proposed

approach. These datasets are frequently used to evaluate pattern mining algorithms in relation to data

mining tasks. To create the product datasets, a column generated using a random function was added

to store the profit for each product. The features of these datasets are given in Tab. 8.

To verify the effectiveness of the TRK-ECP approach, we compare its runtime with those of

TEPUS [27] and dVM [26] for the problem of mining the top-rank-k ECPs (denoted as TEPUS4ECP

and dVM4ECP). Note that there are currently no alternative algorithms for mining the top-rank-k
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ECPs, and we therefore had to modify TEPUS and dVM accordingly. TEPUS4ECP and dVM4ECP

were created in two stages, as follows. In the first step, we used TEPUS and dVM to mine the top-

rank-k EPs. The top-rank-k ECPs were obtained in the second step, based on the top-rank-k EPs. The

runtimes for TEPUS4ECP and dVM4ECP consist of the sums of the runtimes for the first and second

steps.

Table 8: Features of the experimental datasets

No Dataset # of products # of items

1 Chess 3,196 76

2 Connect 67,557 130

3 Mushroom 8,124 120

4 T10I4D100K 100,000 870

In Fig. 1, we compare the runtimes of TKR-ECP, TEPUS4ECP and dVM4ECP on the Chess

dataset. The results show that TKR-ECP is the fastest and dVM4ECP is the slowest. For example,

for k= 400, the runtimes for TKR-ECP, TEPUS4ECP, and dVM4ECP are 0.159, 0.24, and 1.42 s,

respectively. Thus, TKR-ECP is 33.75% times faster than TEPUS4ECP and 88.8% times faster than

dVM4ECP on the Chess dataset, for k= 400. The total times for k= 100, 200, 300, and 400 for TKR-

ECP, TEPUS4ECP, and dVM4ECP are 0.608, 0.84 and 4.15 s.
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Figure 1: Runtimes for three experimental methods on the chess dataset

Fig. 2 compares the runtimes of TKR-ECP, TEPUS4ECP and dVM4ECPon theConnect dataset.

The results show that TKR-ECP is the fastest, and dVM4ECP is the slowest. For example, for k= 300,

the runtimes for TKR-ECP and TEPUS4ECP are 4.16 and 6.28 s, while dVM4ECP cannot run at this

threshold. The total times for k= 100, 200, 300, and 400 for TKR-ECP and TEPUS4ECP are 14.88

and 21.97 s. Hence, TKR-ECP is 33.75% times faster than TEPUS4ECP on this dataset.

Fig. 3 compares the runtimes of TKR-ECP, TEPUS4ECP and dVM4ECP for the Mushroom

dataset. The results show that the times for all three algorithms are the same for all thresholds k.

The total times for k= 100, 200, 300, and 400 for TKR-ECP, TEPUS4ECP, and dVM4ECP on the

Mushroom dataset are 1.55, 1.98 and 10.32 s, respectively.
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Figure 2: Runtimes for three experimental methods on the connect dataset
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Figure 3: Runtimes for three experimental methods on the mushroom dataset

Fig. 4 compares the runtimes of TKR-ECP, TEPUS4ECP and dVM4ECP on the T10I4D100K

dataset. The results show that TKR-ECP is the fastest and dVM4ECP is the slowest in terms of

runtime. For example, for k= 200, the runtimes for TKR-ECP, TEPUS4ECP, and dVM4ECP on the

T10I4D100K dataset are 3.58, 3.64, and 5.36 s, respectively, meaning that TKR-ECP is 1.6% times

faster than TEPUS4ECP and 33% times faster than dVM4ECP for the T10I4D100K dataset with this

threshold. The total times for k= 100, 200, 300, and 400 for TKR-ECP, TEPUS4ECP, and dVM4ECP

for this dataset are 15.6, 16.22 and 29.32 s, respectively.

To test whether our method was the best, we conducted paired t-test statistics for the experimental

methods for all four datasets. As we can see from Tab. 9, most of the p-values for Chess, Connect and

Mushroom were less than 0.05, meaning that our proposed method outperformed dVM4ECP and

TEPUS4ECP on these datasets. For T10I4D100K, the differences between the experimental methods

were not obvious.
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Figure 4: Runtimes for three experimental methods on the T10I4D100K dataset

Table 9: p-values for paired t-test statistics

No Dataset dVM4ECP vs. TRK-ECPs TEPUS4ECP vs. TRK-ECPs

1 Chess 0.0064 0.01

2 Connect - 0.015

3 Mushroom 0.0046 0.0023

4 T10I4D100K 0.1178 0.2697

From the experimental results presented above, we can see that TKR-ECP was the fastest, and

dVM4ECP was the slowest. TKR-ECP was faster than TEPUS4ECP for three databases (Chess,

Connect, and Mushroom), and the performance of these two methods was equal on the remaining

database (T10I4D100K). In addition, thememory usage for TKR-ECP andTEPUS4ECPwas roughly

equivalent on these experimental databases. Overall, the proposed algorithm outperformed the other

experimental approaches for mining top-rank-k ECPs in terms of processing time.

5 Conclusion

In this study, we first introduced the concept of mining the top-rank-k ECPs, and a fast method

for mining top-rank-k ECPs was then presented. Our new algorithm combines the mining and ranking

of ECPs into a single algorithm and can therefore help to improve the processing time of intelligent

systems.We developed a virtual-threshold-based pruning strategy to improve the mining speed for this

task and applied this strategy with the dPidset structure to devise the TRK-ECP algorithm for mining

the top-rank-k ECPs. We have presented detailed, step-by-step examples of how our algorithm works,

and conducted experiments to compare the runtime of the proposed algorithm with two modified

algorithms (dVM4ECP and TEPUS4ECP) for the mining of top-rank-k ECPs. Our experimental

results confirm that the proposed algorithm outperforms the other experimental approaches for the

mining of top-rank-k ECPs in terms of processing time.
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In the future, several topics related to the problem of mining EPs and ECPs in incremental

databases and data streams will be studied. Moreover, we intend to focus on the problem of mining

EPs and ECPs with certain kinds of constraints.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the

present study.

References

[1] M. J. Zaki and C. J. Hsiao, “Efficient algorithms for mining closed itemsets and their lattice structure,”

IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 4, pp. 462–478, 2005.

[2] G. Grahne and J. Zhu, “Fast algorithms for frequent itemset mining using FP-trees,” IEEE Transactions

on Knowledge and Data Engineering, vol. 17, no. 10, pp. 1347–1362, 2005.

[3] B. Vo and B. Le, “Interestingness measures for mining association rules: Combination between lattice and

hash tables,”Expert Systems with Applications, vol. 38, no. 9, pp. 11630–11640, 2011.

[4] B. Vo, T. Le, F. Coenen and T. P. Hong, “Mining frequent itemsets using the N-list and subsume concepts,”

International Journal of Machine Learning and Cybernetics, vol. 7, no. 2, pp. 253–265, 2016.

[5] H. Liu, L. Cui, X.Ma andC.Wu, “Frequent itemset mining of user’s multi-attribute under local differential

privacy,”CMC-Computers, Materials & Continua, vol. 65, no. 1, pp. 369–385, 2020.

[6] T. Le and B. Vo, “An N-list-based algorithm for mining frequent closed patterns,” Expert Systems with

Applications, vol. 42, no. 19, pp. 6648–6657, 2015.

[7] B. Vo, S. Pham, T. Le and Z. H. Deng, “A novel approach for mining maximal frequent patterns,”Expert

Systems with Applications, vol. 73, pp. 178–186, 2017.

[8] H. Bui, T. A. Nguyen-Hoang, B. Vo, H. Nguyen and T. Le, “A sliding window-based approach for mining

frequent weighted patterns over data streams,” IEEE Access, vol. 9, pp. 56318–56329, 2021.

[9] W. Gan, J. C. W. Lin, J. Zhang, P. Fournier-Viger, H. C. Chao et al., “Fast utility mining on sequence data,”

IEEE Transactions on Cybernetics, vol. 51, no. 2, pp. 487–500, 2021.

[10] H. Kim, U. Yun, Y. Baek, J. Kim, B. Vo et al., “Efficient list based mining of high average utility patterns

with maximum average pruning strategies,” Information Sciences, vol. 543, pp. 85–105, 2021.

[11] T. Le, T. L. Nguyen, B. Huynh, H. Nguyen, T. P. Hong et al., “Mining colossal patterns with length

constraints,”Applied Intelligence, vol. 51, no. 12, pp. 8629–8640, 2021.

[12] Z. H. Deng, G. Fang, Z. Wang and X. Xu, “Mining erasable itemsets,” in Proc. of Int. Conf. on Machine

Learning and Cybernetics, Baoding, China, pp. 67–73, 2009.

[13] T. Le, B. Vo, V. N. Huynh, N. T. Nguyen and S. W. Baik, “Mining top-k frequent patterns from uncertain

databases,”Applied Intelligence, vol. 50, no. 5, pp. 1487–1497, 2020.

[14] B. Vo, H. Bui, T. Vo and T. Le, “Mining top-rank-k frequent weighted itemsets using WN-list structures

and an early pruning strategy,”Knowledge-Based Systems, vol. 201–202, pid.106064, 2020.

[15] T. T. Pham, T. Do, A. Nguyen, B. Vo and T. P. Hong, “An efficient method for mining top-K closed

sequential patterns,” IEEE Access, vol. 8, pp. 118156–118163, 2020.

[16] L. T. T. Nguyen, B. Vo, L. T. T. Nguyen, P. Fournier-Viger and A. Selamat, “ETARM: An efficient top-k

association rule mining algorithm,”Applied Intelligence, vol. 48, no. 5, pp. 1148–1160, 2018.

[17] X. Liu, X. Niu and P. Fournier-Viger, “Fast top-K association rule mining using rule generation property

pruning,”Applied Intelligence, vol. 51, no. 4, pp. 2077–2093, 2021.

[18] Y. Long, W. Tang, B. Yang, X. Wang, H. Ma et al., “GTK: A hybrid-search algorithm of top-rank-k

frequent patterns based on greedy strategy,” CMC-Computers, Materials & Continua, vol. 63, no. 3, pp.

1445–1469, 2020.

[19] T. Le and B. Vo, “MEI: An efficient algorithm for mining erasable itemsets,” Engineering Applications of

Artificial Intelligence, vol. 27, pp. 155–166, 2014.



CMC, 2022, vol.72, no.2 3583

[20] G. Nguyen, T. Le, B. Vo and B. Le, “EIFDD: An efficient approach for erasable itemset mining of very

dense datasets,”Applied Intelligence, vol. 43, no. 1, pp. 85–94, 2015.

[21] B. Huynh and B. Vo, “An efficient method for mining erasable itemsets using multicore processor

platform,”Complexity, vol. 2018, Article ID 8487641, 2018.

[22] T. P. Hong, W. M. Huang, G. C. Lan, M. C. Chiang and J. C. W. Lin, “A bitmap approach for mining

erasable itemsets,” IEEE Access, vol. 9, pp. 106029–106038, 2021.

[23] B. Vo, T. Le, W. Pedrycz, G. Nguyen and S. W. Baik, “Mining erasable itemsets with subset and superset

itemset constraints,”Expert Systems with Applications, vol. 69, pp. 50–61, 2017.

[24] B. Vo, T. Le, G. Nguyen and T. P. Hong, “Efficient algorithms for mining erasable patterns from product

datasets,” IEEE Access, vol. 5, no. 1, pp. 3111–3120, 2017.

[25] L. Nguyen, G. Nguyen and B. Le, “Fast algorithms for mining maximal erasable patterns,”Expert Systems

with Applications, vol. 124, pp. 50–66, 2019.

[26] G. Nguyen, T. Le, B. Vo and B. Le, “A new approach for mining top-rank-k erasable itemsets,” in Proc. of

Asian Conf. on Intelligent Information and Database Systems, Bali, Indonesia, pp. 73–82, 2014.

[27] T. Le, B. Vo and S. W. Baik, “Efficient algorithms for mining top-rank-k erasable patterns using pruning

strategies and the subsume concept,” Engineering Applications of Artificial Intelligence, vol. 68, pp. 1–9,

2018.

[28] G. Lee andU.Yun, “Single-pass based efficient erasable patternmining using list data structure on dynamic

incremental databases,” Future Generation Computer Systems, vol. 80, pp. 12–28, 2018.

[29] H. Nam, U. Yun, E. Yoon and J. C. W. Lin, “Efficient approach for incremental weighted erasable pattern

mining with list structure,”Expert Systems with Applications, vol. 143, pid. 113087, 2020.

[30] T. Le, B. Vo, P. Fournier-Viger, M. Y. Lee and S. W. Baik, “SPPC: A new tree structure for mining erasable

patterns in data streams,”Applied Intelligence, vol. 49, no. 2, pp. 478–495, 2019.

[31] Y. Baek, U. Yun, H. Kim, H. Nam, G. Lee et al., “Erasable pattern mining based on tree structures with

damped window over data streams,”Engineering Applications of Artificial Intelligence, vol. 94, pid. 103735,

2020.

[32] Y. Baek, U. Yun, J. C. W. Lin, E. Yoon and H. Fujita, “Efficiently mining erasable stream patterns for

intelligent systems over uncertain data,” International Journal of Intelligent Systems, vol. 35, no. 11, pp.

1699–1734, 2020.

[33] U. Yun, G. Lee and E. Yoon, “Advanced approach of sliding window based erasable pattern mining with

list structure of industrial fields,” Information Sciences, vol. 494, pp. 37–59, 2019.


	
	
	
	
	
	

	
	
	

	
	
	


