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Abstract: Many businesses have experienced difficulties in selecting a cloud
service provider (CSP) due to the rapid advancement of cloud computing
services and the proliferation of CSPs. Many independent criteria should
be considered when evaluating the services provided by different CSPs. It is
a case of multi-criteria decision-making (MCDM). This paper presents an
integrated MCDM cloud service selection framework for determining the
most appropriate service provider based on the best only method (BOM) and
technique for order of preference by similarity to ideal solution (TOPSIS).
To obtain the weights of criteria and the relative importance of CSPs based
on each criterion, BOM performs pairwise comparisons of criteria and also
for alternatives on each criterion, and TOPSIS uses these weights to rank
cloud alternatives. An evaluation and validation of the proposed framework
have been carried out through a use-case model to prove its efficiency and
accuracy. Moreover, the developed framework was compared with the ana-
lytical hierarchical process (AHP), a popular MCDM approach, based on
two perspectives: efficiency and consistency. According to the research results,
the proposed framework only requires 25% of the comparisons needed for
the AHP approach. Furthermore, the proposed framework has a CR of 0%,
whereas AHP has 38%. Thus, the proposed framework performs better than
AHP when it comes to computation complexity and consistency, implying that
it is more efficient and trustworthy.

Keywords: Cloud computing (CC); multiple-criteria decision-making (MCDM);
cloud service providers (CSPs); analytical hierarchical process (AHP); the best
only method (BOM); technique for order of preference by similarity to ideal
solution (TOPSIS)

1 Introduction

Cloud computing [1] is critical for start-ups and small businesses that want to launch a low-cost
business model. The concept describes a novel utility computing type for providing customers with
storage, computing resources, platforms, software, etc., on a pay-per-use basis through the Internet
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[2]. Its primary goal is to deliver services ranging from computing resources to applications through
the Internet that is accessible at any time and from any location. The advantages of cloud hosting, such
as scalability, flexibility, and dependability, have driven businesses to rely on it for their enterprises,
resulting in an exponential increase in cloud customers [3]. Cloud computing consists of three parts:
(i) cloud service providers (CSPs), (ii) data owners, and (iii) users. CSP acts as the central authority
in a cloud environment by controlling all operations. The cloud server holds data stored by data
owners, while users can access this data and services [4,5]. Numerous CSPs have made it challenging
for customers to the most appropriate CSP that meets their functional and non-functional needs [6].
CSPs should be assessed against a set of quality-of-service (QoS) metrics, along with a method for
ranking them based on those metrics to select the best provider [7]. Consequently, the world’s largest
organizations have formed the cloud services measurement initiative consortium (CSMIC) [8], which
aims to standardize the QoS metrics used to evaluate the quality of service offered by CSPs. The
CSMIC developed a model known as the service measurement index (SMI), which includes seven
primary criteria such as usability and security. Each criterion was subdivided into several sub-criteria.
Cloud customers use these criteria to evaluate different CSPs. Thus, choosing a cloud service provider
requires multiple-criteria decision-making (MCDM). The goal of MCDM is to evaluate and rank
alternatives (CSPs) based on the selected criteria [9]. Cloud customers will find it incredibly challenging
to select the most appropriate CSP based on their preferences due to many existing CSPs and the wide
range of evaluating criteria. The selection of cloud services has been the subject of several recent studies
[10–12]. Even though these studies have been validated thoroughly, they still have flaws, including
low comparison consistency and increased processing complexity, which remain major issues in the
selection of cloud services. A consistent, robust, and computationally efficient MCDM framework
is presented in this paper. In order to rank the available CSPs, the proposed framework combines
the TOPSIS technique and our developed BOM method. The BOM is used to determine the relative
weights of alternatives and the weights of criteria. These weights are used by TOPSIS to rank cloud
alternatives. Fig. 1 shows the structure of the proposed integrated framework and its interaction with
cloud customers and decision-makers.

The proposed integrated framework was validated using a use-case model, demonstrating its
efficiency and consistency. In addition, it was compared with the AHP method. Results clearly
demonstrate that the proposed framework is robust, efficient, and entirely consistent compared to
the AHP method.

The rest of the paper is organized as follows: AHP and TOPSIS methods are discussed in Section 2,
and related work is presented in Section 3. A detailed description of the proposed integrated framework
is provided in Section 4. In Section 5, experimental results using a use-case model are presented. Section
6 provides an evaluation of our proposed framework and compares it to AHP. Section 7 concludes the
paper.
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Figure 1: The proposed framework

2 Background
2.1 AHP

For solving complex decisions, Saaty’s AHP is one of the most commonly used methods [13–15].
Specifically, it identifies the goals, the criteria, the subcriteria, and the alternatives for solving a
problem. In choosing the best alternative, the AHP allows both objective and subjective factors
to be considered, mainly when the subjective preferences of decision-makers play a significant role
[16,17]. Three components underlie the AHP method: decomposition, comparative judgments, and
prioritization. Based on the principle of decomposition, a problem may be viewed as a hierarchical
system. The first level represents the overall objective, while the subsequent levels represent the criteria
and alternatives. A comparative judgment is made by comparing elements at each level relative to one
element at the next upper level, beginning at the first level of the hierarchy and proceeding downward.
A set of preference matrices are produced due to comparing elements at each level [18]. Saaty’s scale
of relative preference provides the decision-maker with the basis for their judgments [19].

Let us suppose that we have n criteria c1, c2, · · · , cn. Matrix “A” represents the relative preference
of the criteria based on n × n pairwise comparisons as in Eq. (1).

A =

⎛
⎜⎜⎝

a11 a12

a21 a22

· · · a1n

· · · a2n

...
...

an1 an2

. . .
...

· · · ann

⎞
⎟⎟⎠ (1)
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aij indicates the relative preference (importance) of criterion ai over aj, and i, j = 1, 2, 3, . . . , n.

where:

aij = 1, indicates that criteria i and j are equally important.

aij > 1, indicates that the importance of criterion i is more significant than criterion j.

aij < 1, indicates that the importance of criterion i is less than criterion j.

The decision-maker is presumed to be consistent in his/her judgments concerning any pair of
alternatives. Furthermore, when compared with themselves, all alternatives are ranked equally. Thus,
we have aij = 1/aji (the property of reciprocal) and aii = 1 [17]. Thus, matrix “A” may only need
n × (n − 1)/2 comparisons.

As demonstrated in [13], if matrix “A” is perfectly consistent, Eq. (1) can be rewritten as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w1

w1

w1

w2w2

w1

w2

w2

· · · w1

wn

· · · w2

wn
...

...
wn

w1

wn
w2

. . .
...

· · · wn
wn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2)

where w1, w2, · · · , wn represent the corresponding weight of each criterion c1, c2, · · · , cn, respectively.
Each criterion’s weight value may be calculated using Eq. (3) as follows:
⎛
⎜⎜⎝

a11 a12

a21 a22

· · · a1n

· · · a2n

...
...

an1 an2

. . .
...

· · · ann

⎞
⎟⎟⎠

⎛
⎜⎜⎝

w1

w2

...
wn

⎞
⎟⎟⎠ = n

⎛
⎜⎜⎝

w1

w2

...
wn

⎞
⎟⎟⎠ (3)

Accordingly, n is referred to as the principal eigenvalue of matrix “A”, and its eigenvector is w =
(w1w2 · · · wn)

T [13].

When making real-world decisions, we are unable to specify the precise values of wi/wj; only
estimated values may be stated. It is essential to consider the possible errors of judgment that a
decision-maker might make when providing estimates of these values. The theory of eigenvalue states
that a relatively minor alteration in a simple eigenvalue will lead to an eigenvalue issue as follows [13]:

Aw = λmaxw (4)

w1 + w2 + · · · + wn = 1 (5)

Here, matrix “A” is inconsistent although still reciprocal, and its principal eigenvalue is λmax.

The weight values of the criteria may now be determined by solving Eqs. (4) and (5). After
calculating the overall score value for each alternative, the next step is to determine the ranking of
these alternatives according to this score. Based on the following formula on (6), final alternative
scores were obtained:

Ri =
n∑

j=1

wjVij (6)
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where Ri represents the weight of alternative i, wj represents the weight of criterion j, Vij represents the
weight of alternative i relative to criterion j , and n is the number of criteria.

The consistency index (CI) is calculated as the negative average of the other roots of the
characteristic polynomial of matrix “A” using the following formula [13]:

CI = λmax − n
n − 1

(7)

A random index (RI) is similar to CI, except it is calculated as an average over many matrices of
the same order that are reciprocal and constructed with random entries. The RI values corresponding
to each value of n are given in Tab. 1 [20].

Table 1: Values of RI

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

According to the AHP method, consistency ratio (CR), a measure of the reliability of an MCDM
method’s output, can be computed as follows:

CR = CI
RI

(8)

According to [13], if the consistency ratio of matrix “A” is less than or equal to 10%, the estimate
is considered valid. Otherwise, consistency should be improved. If CR = 0, then values in matrix “A”
are entirely consistent, and the following property is met for all of its elements [21]:

aik × akj = aij∀i, k, j (9)

Compared with other multi-criteria approaches, AHP provides flexibility, simplicity, and the
capability to detect inconsistencies. However, the disadvantage of AHP is that it requires a substantial
number of pairwise comparisons equal to (n(n−1)/2), which dramatically leads to complex computa-
tion [22]. Furthermore, there will likely be inconsistencies in pairwise comparisons, which often occur
in practice [23].

2.2 TOPSIS

TOPSIS [24] is commonly regarded as one of the popular techniques used to solve MCDM
problems. A basic idea of TOPSIS is that the optimal solution should be at the shortest Euclidian
distance from the ideal positive solution. At the same time, it needs to be at the longest Euclidian
distance from the ideal negative solution [25]. Accordingly, the best alternative is determined based on
the Euclidian distance between each alternative and the ideal and the worst alternatives. The TOPSIS
steps are outlined below.

Step 1: Construct the decision matrix “D” of size m × n where m and n are the numbers of
alternatives and criteria, respectively. It is represented in Eq. (10).

D =

⎛
⎜⎜⎝

d11 d12

d21 d22

· · · d1n

· · · d2n

...
...

dm1 dm2

. . .
...

· · · dmn

⎞
⎟⎟⎠ (10)
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where dij is the weight of alternative i relative to criterion j.

Step 2: As each criterion is of a different type and thus has a different scale, calculate the
normalized decision matrix “K” using Eq. (11) as shown below.

kij = dij√∑m

i=1 dij
2
, i = 1, 2, 3, . . . , m and j = 1, 2, 3, . . . , n. (11)

where kij is the normalized weight of alternative i relative to criterion j.

Step 3: Calculate the weighted matrix “H” based on Eq. (12) by multiplying the wjvalues of the
criteria by the corresponding normalized decision matrix elements kij.

hij = wj ∗ kij (12)

where i = 1, 2, 3, . . . , m and j = 1, 2, 3, . . . , n.

Step 4: Utilize the following equations to determine the positive ideal solution (PIS) and the
negative ideal solution (NIS):

for beneficial criterion:

x+
j = max

(
h1j, h2j, . . . ., hmj

)
(13)

x−
j = min

(
h1j, h2j, . . . ., hmj

)
(14)

and for non-beneficial criterion:

x+
j = min

(
h1j, h2j, . . . ., hmj

)
(15)

x−
j = max

(
h1j, h2j, . . . ., hmj

)
(16)

Then:

PIS = {
x+

1 , x+
2 , . . . , x+

n

}
(17)

NIS = {
x−

1 , x−
2 , . . . , x−

n

}
(18)

Step 5: For each alternative, calculate the Euclidian distance E+
i and E−

i using Eqs. (19)–(20).

E+
i =

√√√√
n∑

j=1

(
hij − x+

j

)2
(19)

E−
i =

√√√√
n∑

j=1

(
hij − x−

j

)2
(20)

Step 6: Calculate the closeness value for each alternative (CVi) using Eq. (21):

CVi = E−
i

E−
i + E+

i

(21)

Step 7: Rank the alternatives according to the closeness value. The best alternative is the one with
the highest closeness value, which will be the first in the ranked list.
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3 Related Work

A significant challenge associated with cloud computing has been selecting cloud services due
to the large number of providers who offer similar services. For selecting cloud services, MCDM-
based methods are the most straightforward and effective. In the literature, there are various MCDM-
based cloud service selection frameworks. TOPSIS [25], AHP [26], ANP [27], MAUT [28], ELECTRE
[29], SAW [30], and rank voting method [31] are the most common MCDM approaches for cloud
service selection in the literature. Kumar et al. [25] developed a cloud service selection framework
based on AHP and TOPSIS. They adopted a real-time dataset from CloudHarmony and made
extensive sensitivity analyses to validate the model’s efficacy. They conclude that the proposed model
is effective when compared to other MCDM techniques. Garg et al. [26] created an AHP-based
framework to evaluate cloud services based on various applications depending on QoS requirements.
Such a framework can create healthy competition among Cloud providers to satisfy their Service
Level Agreement (SLA) and improve their QoS. Tripathi et al. [27] incorporated the analytic network
process (ANP) into the ranking component of the SMI framework. The interactions among the
criteria in this method are used to rank cloud services. The proposed model’s limitation is the number
of selection criteria; if this number grows too large, it becomes difficult to keep track of all the
interactions between them. Dyer [28] presents a summary of multiattribute utility theory and discusses
the problem of multiattribute decisions. Dyer explores the use of multiattribute preference functions
under uncertain and risky conditions to decompose them into additive and multiplicative forms.
Various forms of multi-attribute preference functions are studied in relation to one another. The
relationships between these various types of multi-attribute preference functions are investigated.
Govindan et al. [29] thoroughly reviewed English scholarly articles on ELECTRE and ELECTRE-
based approaches. This comprises application areas, method modifications, comparisons with other
methods, and general research of the ELECTRE methods. The review includes 686 publications in
all. Afshari et al. [30] presented an MCDM methodology for Personnel selection. It considers a real
application of personnel selection with using the opinion of an expert by one of the decision-making
models; it is called the SAW method. The limitation is that it ignores the fuzziness of the executive’s
judgment during the decision-making process. Baranwal et al. [31] identified several new QoS measures
and described them to allow both the user and the provider to quantify their expectations and offers.
They also proposed a dynamic and adaptable methodology that uses a form of the ranked voting
method to analyze customers’ needs and recommend the best cloud service provider. Case studies
validate the suggested model’s validity and effectiveness. Recent studies have used AHP to evaluate
a variety of SaaS services [32,33], IaaS services [34,35], and general cloud services [36,37]. Saaty’s
basic 1-9 scale is commonly used to aid users in comparing and evaluating cloud service alternatives.
The SMICLOUD framework was developed by Garg et al. [26] to compare and rank three IaaS cloud
services using the SMI criteria [38]. According to this paper, the Cloud Service Measurement Initiative
Consortium (CSMIC) has determined a set of metrics for measuring the QoS criteria, using which
several CSPs are compared. Based on user preferences values, AHP is utilized to compute the weights
for criteria, and then these weights are used to compare the three IaaS cloud services. CSPs were
only selected based on the quantitative CSMIC criteria without recognizing the non-quantifiable QoS
trustworthiness. Godse et al. [39] developed an AHP methodology to rank SaaS services, considering
functionality, architecture, usability, vendor reputation, and pricing. Despite the usefulness of AHP,
it fails to account for uncertainty in decisions when determining pairwise comparisons. A fuzzy
AHP was developed to handle this issue, allowing decision-makers to use fuzzy ranking instead of
precise ranking [40]. TOPSIS was used to rank alternatives according to the weights of criteria and
alternatives determined by pairwise comparisons applied by AHP. They used the proposed method to
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assess the trustworthiness of 15 CSPs from several perspectives based on 9 QoS criteria (cost, speed,
storage capacity, availability, response time, features, technical support, and ease of use). As a result
of our analysis of these papers, we discovered that CSPs were evaluated based on several criteria,
which led to more complex pairwise comparisons. Furthermore, most of these criteria are qualitative,
resulting in inconsistent results in comparisons and, therefore, less reliable conclusions. This paper
proposes a cloud service selection framework based on integrating BOM and TOPSIS methods for
selecting the best CSP. In terms of computational complexity and consistency, the proposed framework
outperformed AHP, making it more computationally efficient and perfectly consistent.

4 The Proposed Approach

This paper presents an integrated MCDM framework for selecting cloud computing services. The
proposed framework incorporates the BOM method, which is used to calculate criteria weights and
the relative weights of alternatives relative to each criterion, and TOPSIS, which uses these weights to
produce the ranking for cloud alternatives (CSPs). Using the BOM approach, the decision-maker only
determines the best criterion before evaluating that criterion against other criteria through pairwise
comparisons. By doing so, all of the matrix’s elements meet the property in (9), and all of its judgments
are perfectly consistent. Fig. 2 depicts a flow chart summarizing the steps of the integrated framework.

Figure 2: A flowchart showing the stages of the proposed framework

Step 1: (Identify criteria that meet the business needs): Assume that the set of criteria considered is
C = {c1, c2, · · · , cn}. The number n represents the number of criteria.

Step 2: (Identify the appropriate set of CSPs): Assume that the set of CSPs considered is SP =
{sp1, sp2, · · · , spm}. The number m represents the number of CSPs.
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Step 3: (Identify the best criterion in the set of criteria): Assume that the best criterion selected by
the decision-maker is CB where CB ∈ C.

Step 4: (Estimate the values of the pairwise comparison of the best criterion to the others): Assume
that the vector CriB represents the comparison values of the best criterion with the remaining criteria
in C.

Step 5: (Calculate the appropriate weights for each criterion): Assume that C_W is the vector of size
n that contains the weight values of each criterion in C. Obtaining the weight values requires solving
the following problem:
wB

wj

= aBj for all j �= B and aBj ∈ CriB, j = 1, 2, 3, . . . , n. (22)

n∑
j=1

wj = 1 (23)

Step 6: (Determine the first criterion): Suppose that the first criterion is c1 where c1 ∈ C.

Step 7: (Select the best CSP relative to c1): Suppose the best CSP is SPB the SPB ∈ SP.

Step 8: (Set the values of pairwise comparisons of the best CSP relative to c1): Assume that the
vector CSPB represents the pairwise comparison values of the best CSP to other providers in the set
SP w.r.t. c1.

Step 9: (Calculate the weight values of the CSPs w.r.t. c1): To obtain the weight values of the CSPs,
the following problem should be solved:
wB

wi

= aBi for alli �= B and aBi ∈ CSPB, i = 1, 2, 3, . . . , m. (24)

m∑
i=1

wi = 1 (25)

Step 10: (Calculate the weights of CSPs concerning all other remaining criteria): For all remaining
criteria, repeat steps 7 through 9.

Step 11: (Develop the matrix of CSP weights): The matrix SP_W of size m × n represents the
CSP weights. In this matrix, each column represents the weight values of the CSPs based on the
criterion that corresponds to that column. This matrix represents the normalized decision matrix used
by TOPSIS.

Step 12: (Compute the weighted normalized decision matrix H): H is calculated using Eq. (12) by
multiplying the weight values of the criteria C_Wj by the corresponding columns in the normalized
decision matrix (SP_W ).

Step 13: (Calculate the positive ideal solution (PIS) and negative ideal solution (NIS)): For every
criterion cj, find the positive ideal solution x+

j and the negative ideal solution x−
j , where:

x+
j = max

(
h1j, h2j, . . . ., hmj

)
(26)

x−
j = min

(
h1j, h2j, . . . ., hmj

)
(27)

Then, compute the PIS and NIS values using Eqs. (17) and (18).

Step 14: (Calculate the Euclidian distance E+
i and E−

i of each alternative from PIS and NIS): The
Euclidian distance E+

i and E−
i for each criterion is calculated using Eqs. (19) and (20), respectively.
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Step 15: (Calculate the closeness value for each alternative (CVi)): The closeness value for each
alternative CVi is calculated using Eq. (21).

Step 16: (Rank the alternatives in descending order of the closeness value). The best alternative is
the one with the highest closeness value.

5 Experimental Results

A use-case model was employed to analyze and validate the proposed framework, which proved
its validity and efficacy.

Step 1. (Identify criteria that meet the business needs): Nine criteria were selected based on the SMI
model, where C = {c1, c2, c3, c4, c5, c6, c7, c8, c9} and n = 9. Tab. 2 shows the set of selected criteria.

Table 2: The selected criteria in this paper

Symbol Criterion

c1 Adaptability
c2 Scalability
c3 Sustainability
c4 Cost
c5 Reliability
c6 Accessibility
c7 Accuracy
c8 Security Management
c9 Data Integrity

Step 2. (Identify the appropriate set of CSPs): For our use-case model, eight hypothetical CSPs
were chosen, where SP = {sp1, sp2, sp3, sp4, sp5, sp6, sp7, sp8} and m = 8.

Step 3. (Identify the best criterion in the set of criteria): Assume that the best criterion chosen by
the decision-maker is the cost. So, CB = C4.

Step 4. (Estimate the values of the pairwise comparison of the best criterion to the others): It is the
responsibility of the decision-maker to determine the pairwise comparison values between each of the
criteria in the set and the selected best criterion (CB − to − others), shown in Tab. 3.

Table 3: The values of (CB − to − others) comparisons

CB − to − others Comparison value

c4 − to − c1 9
c4 − to − c2 3
c4 − to − c3 5
c4 − to − c4 1
c4 − to − c5 4
c4 − to − c6 7

(Continued)
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Table 3: Continued
CB − to − others Comparison value

c4 − to − c7 6
c4 − to − c8 2
c4 − to − c9 8

Step 5. (Calculate the appropriate weights for each criterion). Tab. 4 shows the weight values of the
set of criteria, which are computed using Eqs. (22) and (23), respectively.

Table 4: The weight values of the set of criteria

Criterion Weight

c1 0.0393
c2 0.1178
c3 0.0707
c4 0.3535
c5 0.0884
c6 0.0505
c7 0.0589
c8 0.1767
c9 0.0442

The values from Tab. 4 are stored in the vector (C_W ) as follows:

C_W = (
0.0393 0.1178 0.0707 0.3535 0.0884 0.0505 0.0589 0.1767 0.0442

)

Step 6. (Determine the first criterion).

Step 7. (Select the best CSPrelative to c1): Assume that SP5 was chosen by the decision-maker.

Step 8. (Set the values of pairwise comparisons of the best CSP relative to c1): The comparison
values of SP5 relative to c1 (SP5 − to − others) is stated by the decision-maker and shown in Tab. 5.

Table 5: The values of (SP5 − to − others) comparisons w.r.t. c1

SP5 − to − others Comparison value

SP5 − to − SP1 3
SP5 − to − SP2 4
SP5 − to − SP3 7
SP5 − to − SP4 2
SP5 − to − SP5 1
SP5 − to − SP6 8

(Continued)
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Table 5: Continued
SP5 − to − others Comparison value

SP5 − to − SP7 9
SP5 − to − SP8 6

Step 9. (Calculate the weight values of the CSPs w.r.t. c1):

Tab. 6 shows the weight values of the CSPs w.r.t. c1 computed using Eqs. (24) and (25).

Table 6: The weight values of the CSPs w.r.t. c1

CSP Weight

SP1 0.1268
SP2 0.0951
SP3 0.0543
SP4 0.1902
SP5 0.3804
SP6 0.0475
SP7 0.0423
SP8 0.0634

Step 10. (Calculate the weights of CSPs concerning all other remaining criteria): For all remaining
criteria, repeat steps 7 through 9. In Tab. 7, the The (SPB − to − others) comparison values w.r.t. each
criterion are presented in tabular format. In our use-case model, there are nine criteria (columns) and
eight CSPs (rows). The decision-maker determines which CSP is the best for each of the criteria and
estimates the values of pairwise comparisons of each CSP relative to the others. In Tab. 7, Each shaded
cell represents the optimal CSP based on the criterion.

Table 7: The (SPB − to − others) values for all criteria

c1 c2 c3 c4 c5 c6 c7 c8 c9

SP1 3 1 4 9 8 5 6 9 4
SP2 4 5 3 8 7 1 4 2 5
SP3 7 8 4 6 5 7 1 5 3
SP4 2 2 6 4 4 6 5 8 1
SP5 1 3 7 2 1 9 8 6 2
SP6 8 7 5 1 2 4 7 4 6
SP7 9 8 4 3 2 8 9 1 7
SP8 6 9 1 7 6 2 2 3 8
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Step 11. (Develop the matrix of CSP weights): In Tab. 8, each column contains the CSPs weights
for each criterion.

Table 8: The CSPs weight matrix

c1 c2 c3 c4 c5 c6 c7 c8 c9

SP1 0.1268 0.3941 0.0964 0.0423 0.0433 0.0801 0.0668 0.0414 0.0920
SP2 0.0951 0.0788 0.1286 0.0475 0.0495 0.4007 0.1002 0.1861 0.0736
SP3 0.0543 0.0493 0.0964 0.0634 0.0693 0.0572 0.4007 0.0745 0.1226
SP4 0.1902 0.1971 0.0643 0.0951 0.0867 0.0668 0.0801 0.0465 0.3679
SP5 0.3804 0.1314 0.0551 0.1902 0.3467 0.0445 0.0501 0.0620 0.1840
SP6 0.0475 0.0563 0.0771 0.3804 0.1733 0.1002 0.0572 0.0931 0.0613
SP7 0.0423 0.0493 0.0964 0.1268 0.1733 0.0501 0.0445 0.3723 0.0526
SP8 0.0634 0.0438 0.3857 0.0543 0.0578 0.2003 0.2003 0.1241 0.0460

The values from Tab. 8 are represented in the normalized decision matrix (SP_W ) as follows:

SP_W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1268 0.3941 0.0964
0.0951 0.0788 0.1286
0.0543 0.0493 0.0964

0.0423 0.0433 0.0801
0.0475 0.0495 0.4007
0.0634 0.0693 0.0572

0.0668 0.0414 0.0920
0.1002 0.1861 0.0736
0.4007 0.0745 0.1226

0.1902 0.1971 0.0643
0.3804 0.1314 0.0551
0.0475 0.0563 0.0771

0.0951 0.0867 0.0668
0.1902 0.3467 0.0445
0.3804 0.1733 0.1002

0.0801 0.0465 0.3679
0.0501 0.0620 0.1840
0.0572 0.0931 0.0613

0.0423
0.0634

0.0493
0.0438

0.0964
0.3857

0.1268
0.0543

0.1733
0.0578

0.0501
0.2003

0.0445
0.2003

0.3723
0.1241

0.0526
0.0460

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Step 12: (Compute the weighted normalized decision matrix H ): H is calculated using Eq. (12) by
multiplying the weight values of the criteria C_Wj by the corresponding columns in the normalized
decision matrix (SP_W ).

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0050 0.464 0.0068
0.0037 0.0093 0.0091
0.0021 0.0058 0.0068

0.0149 0.0038 0.0040
0.0168 0.0044 0.0202
0.0224 0.0061 0.0029

0.0039 0.0073 0.0041
0.0059 0.0329 0.0033
0.0236 0.0132 0.0054

0.0075 0.0232 0.0045
0.0149 0.0155 0.0039
0.0019 0.0066 0.0055

0.0336 0.0077 0.0034
0.0672 0.0306 0.0022
0.1345 0.0153 0.0051

0.0047 0.0082 0.0163
0.0030 0.0110 0.0081
0.0034 0.0164 0.0027

0.0017
0.0025

0.0058
0.0052

0.0068
0.0273

0.0448
0.0192

0.0153
0.0051

0.0025
0.0101

0.0026
0.0118

0.0658
0.0219

0.0023
0.0020

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Step 13: (Calculate the positive ideal solution (PIS) and negative ideal solution (NIS)): The vectors
PIS and MIS are calculated using equations 13 through 18, and the results are as follow:

PIS = (
0.0149 0.0464 0.0273 0.1345 0.0306 0.0202 0.0236 0.0658 0.0163

)

NIS = (
0.0017 0.0052 0.0039 0.0149 0.0038 0.0022 0.0026 0.0073 0.0020

)

Step 14: (Calculate the Euclidian distance E+
i and E−

i of each alternative from PIS and NIS): The
Euclidian distance E+

i and E−
i of each criterion is calculated and shown in Tab. 9.
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Step 15: (Calculate the closeness value for each alternative (CVi)): The closeness value for each
alternative CVi is calculated and shown in Tab. 9.

Step 16: (Rank the alternatives in descending order of the closeness value). Tab. 9 shows the final
CSP ranking.

Table 9: Values of Euclidian distances and final ranked list of CSPs

E+
i E−

i CVi Ranking

SP1 0.1405 0.0416 0.2286 4
SP2 0.1339 0.0323 0.1943 6
SP3 0.1363 0.0236 0.1476 8
SP4 0.1256 0.0305 0.1956 5
SP5 0.0992 0.0615 0.3827 3
SP6 0.0757 0.1205 0.6142 1
SP7 0.1071 0.0667 0.3840 2
SP8 0.1348 0.0304 0.1843 7

6 Evaluation

Several measures of the viability of the proposed framework have been considered: computing
efficiency (In terms of the number of comparisons made between all pairs) and consistency ratio
(CR). Validation was achieved by comparing it with the AHP technique. The exact configuration was
used in our comparison experiments for the developed framework and the AHP technique. The AHP
computations were carried out using the method presented in [41].

6.1 Computation Efficiency

We calculated the number of pairwise comparisons given by the decision-maker to assess the
efficiency of the proposed framework. Nine criteria and eight CSPs were used in all of our experiments.
In Tab. 10, we compare the number of comparisons in AHP with those in the developed framework.
In contrast with AHP, our proposed framework does not require as many comparisons, thus making it
more efficient. It is in part because the proposed framework uses a vector-based approach rather than
a matrix-based approach such as AHP, which requires fewer comparisons. For AHP, n × (n − 1)/2
comparisons are needed, while for the developed framework, only n−1 comparisons are needed. Fig. 3
illustrates the computational complexity of AHP in contrast to the developed framework. Compared
with AHP, the proposed framework requires fewer pairwise comparisons, which implies a reduction
in computational effort.
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Table 10: Comparisons between AHP and the proposed framework as measured by the number of
pairwise comparisons

Pairwise Vector/Matrix No. of Comparisons

AHP The proposed framework

Criteria 36 8
CSPs-C1 28 7
CSPs-C2 28 7
CSPs-C3 28 7
CSPs-C4 28 7
CSPs-C5 28 7
CSPs-C6 28 7
CSPs-C7 28 7
CSPs-C8 28 7
CSPs-C9 28 7
Total 288 71
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Figure 3: Computational complexity of AHP, BWM, and BOM

6.2 Consistency Ratio (CR)

The reliability of MCDM results is based on the value of the consistency ratio. In our experiment,
the CR is calculated using the AHP technique and the proposed framework to evaluate consistency.
Tab. 11 compares the CR results of the proposed framework and the AHP technique. For AHP, CR is
calculated using Eq. (8). According to the AHP technique, if the comparisons have consistency ratio
values greater than or equal to 0.1, they are considered inconsistent.

Based on the eigenvalue theory, if the value of λmax = n, then the pairwise comparison matrix (or
vector) is considered entirely consistent. This means that the developed framework is always entirely
consistent (CR = 0). Therefore, it is a more reliable and consistent framework in comparison to AHP.



4140 CMC, 2022, vol.72, no.2

Table 11: Comparative analysis of the proposed framework to AHP based on consistency

Pairwise Matrix/Vector Consistency Ratio (CR%)

AHP The proposed framework

Criteria 30.20% 0.00%
CSPs-C1 33.25% 0.00%
CSPs-C2 28.31% 0.00%
CSPs-C3 34.57% 0.00%
CSPs-C4 41.03% 0.00%
CSPs-C5 60.92% 0.00%
CSPs-C6 29.87% 0.00%
CSPs-C7 52.01% 0.00%
CSPs-C8 37.37% 0.00%
CSPs-C9 31.68% 0.00%
Average 37.92% 0.00%

6.3 Analysis and Discussion

We have evaluated and ranked eight CSPs (m = 8) based on nine criteria (n = 9), driven by
the decision-makers preferences. The proposed framework was compared to a well-known MCDM
method, AHP, using the same configurations to validate the proposed framework’s efficiency and
consistency. AHP requires ten matrices: one of size 9x9 determines the weight values of criteria, and
nine other matrices of size 8x8 determine the weight values of CSPs relative to each of the criteria.
According to the AHP method, the decision-maker should estimate 9×(9 − 1) /2+9×8×(8 − 1) /2 =
288 comparisons. The proposed framework requires only ten vectors: one vector of size 1x9 to
calculate the weight values of criteria and nine vectors of size 1x8 to calculate the weight values of
CSPs w.r.t.each criterion. According to our developed framework, the decision-maker should estimate
(9 − 1) + 9 × (8 − 1) = 71 comparisons. Thus, the proposed framework only requires 25% of the
comparisons required by the AHP approach. Moreover, the proposed framework is fully consistent
since the decision-maker only uses the best criterion (or best CSP) to estimate the values of pairwise
comparisons. According to the obtained results, the proposed framework has a CR of 0%, whereas
AHP has a CR of 38%. As with AHP, one limitation of the proposed framework is that the accuracy
of the decision depends on the estimations done by the decision-maker for the values of the pairwise
comparisons of qualitative criteria.

7 Conclusion

This paper proposed an integrated MCDM framework to enable cloud service customers to select
the most appropriate CSP by utilizing the BOM and the TOPSIS methods. A formal evaluation
and verification of the proposed framework were conducted utilizing a use-case model to validate
its effectiveness and consistency. A comparison was made between the proposed framework and AHP.
In terms of computing complexity and consistency, our proposed framework performs superior to
AHP. Similar to AHP, the proposed framework has the drawback that it relies on decision-makers’
judgments of the pairwise comparison values for qualitative criteria to reach the final ranking list of
CSPs. In the future, this work can be extended to include group decision-making.
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