
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.024613

Article

Optimized Generative Adversarial Networks for Adversarial Sample
Generation

Daniyal M. Alghazzawi1, Syed Hamid Hasan1,* and Surbhi Bhatia2

1Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
2Department of Information Systems, College of Computer Sciences and Information Technology, King Faisal University,

Saudi Arabia
*Corresponding Author: Syed Hamid Hasan. Email: shhasan@kau.edu.sa

Received: 24 October 2021; Accepted: 15 February 2022

Abstract: Detecting the anomalous entity in real-time network traffic is a
popular area of research in recent times. Very few researches have focused
on creating malware that fools the intrusion detection system and this paper
focuses on this topic. We are using Deep Convolutional Generative Adver-
sarial Networks (DCGAN) to trick the malware classifier to believe it is a
normal entity. In this work, a new dataset is created to fool the Artificial
Intelligence (AI) based malware detectors, and it consists of different types of
attacks such as Denial of Service (DoS), scan 11, scan 44, botnet, spam, User
Datagram Portal (UDP) scan, and ssh scan. The discriminator used in the
DCGAN discriminates two different attack classes (anomaly and synthetic)
and one normal class. The model collapse, instability, and vanishing gradient
issues associated with the DCGAN are overcome using the proposed hybrid
Aquila optimizer-based Mine blast harmony search algorithm (AO-MBHS).
This algorithm helps the generator to create realistic malware samples to be
undetected by the discriminator. The performance of the proposed methodol-
ogy is evaluated using different performance metrics such as training time,
detection rate, F-Score, loss function, Accuracy, False alarm rate, etc. The
superiority of the hybrid AO-MBHS based DCGAN model is noticed when
the detection rate is changed to 0 after the retraining method to make the
defensive technique hard to be noticed by the malware detection system. The
support vector machines (SVM) is used as the malicious traffic detection
application and its True positive rate (TPR) goes from 80% to 0% after
retraining the proposed model which shows the efficiency of the proposed
model in hiding the samples.

Keywords: Aquila optimizer; convolutional generative adversarial networks;
mine blast harmony search algorithm; network traffic dataset; adversarial
artificial intelligence techniques

http://dx.doi.org/10.32604/cmc.2022.024613
mailto:shhasan@kau.edu.sa

3878 CMC, 2022, vol.72, no.2

1 Introduction

The increase in the size and complexity of network host improves the chances of vulnerability
attacks [1]. To estimate the vulnerability of the host’s networks it is necessary to generate local
vulnerabilities to analyze the global vulnerabilities. In the data mining [2] field the attack detection
within network-based traffic has become a passionate field for the last few decades. There are several
open data sets are available for network-based intrusion detection. However, those data become
outdated sometimes and include several demerits. The network traffic [3] can be analyzed by using
packet-based [4] or flow-based format [5]. Our work concentrates on flow-based and for analyzing
uses labeled datasets [6]. Since the real flow-based traffic includes some issues like missing ground
truth and consists of many flow structures. The labeling of the real network is arduous even for the
experts and also includes time complexity. The sharing of the aforementioned traffic details is not
possible due to the privacy settings. In contradiction to this, the labeled datasets only need a machine
learning approach and can be easy to estimate the supervised and unsupervised anomaly intrusion
detection.

The effectiveness of anomaly-based intrusion detection [7,8] can be enhanced with the inclusion of
large datasets that has a maximum variance. Hence it is ineluctable to construct a generative method
that can create realistic traffic flow-based network traffic. Those datasets can be utilized to enrich
the training of anomaly-based intrusion detection. The features of the collected network traffic have
to be analyzed and to create the new flow-based network traffic on the basis of the collected one we
have to approach a new method. To accomplish this we proposed a novel Deep convolutional-based
Generative Adversarial Networks (DCGAN) to produce the synthetic data by performing learning
from the given set of input data. These two neural networks in the proposed Generative Adversarial
Networks (GAN) are the generator network G and the D the discriminator network. G will create the
synthetic data and D can distinguish the synthetic as well as real-time network traffic. The complete
flow of the network-based traffic can be generated by the proposed DCGAN approach. However, this
exhibits several issues that include continuous and categorical features. To overcome those issues we
have adopted an Aquila optimization-based Mind blast Harmony search (AO-MBHS) algorithm. The
major contributions of the proposed work are listed below:

A new network traffic dataset is generated using a real-time attack scenario and the data is labeled
as normal, synthetic, and anomaly.

The adversarial samples are generated via the hybrid AO-MBHS algorithm which makes the
samples hard to be detected by other AI-based malware detection models.

The AO and MBHS algorithm is used to optimize the hyperparameters of the DCGAN model
to overcome the issues such as instability, vanishing gradients, and model collapse. The single type of
output or a small set of outputs are produced via generator thereby occurring model collapse. A system
itself is said to be unstable if at least one of its state variables is unstable. The multiple the gradients of
later layers obtains a gradient of early layers in which the reason for vanishing gradient is that during
backpropagation.

In this way, a tradeoff between the exploration and exploitation phase is achieved which helps to
generate malicious instances very similar to the real instances.

The rest of the work is organized as follows, in Section 2 the relevant works of the proposed
work are reviewed. In Section 3 the proposed methodology along with the adopted algorithms are
explained in a wider context. The experimental analyses are illustrated in Section 4. Finally, the work
is summarized in Section 5.

CMC, 2022, vol.72, no.2 3879

2 Related Work

The realistic flow-based network traffic was generated using a novel methodology, which was
proposed by Ring et al. [9]. For image generation, excellent results are obtained using GANs). The
categorical attributes including port numbers or IP addresses present in the flow-based data inevitably.
According to the CIDDS-001 dataset, the flow-based network traffic was generated. The high-quality
data is generated based on the experimental investigations. The synthetic data realistic was inadequate.

The learning cleanware features avoid malware detectors, which was introduced by Kawai et al.
[10]. According to the Generative Adversarial Network (GAN), malware avoidance detection is mainly
focused. The learning methods were affected in which the previous learning models utilize multiple
malware. Only one malware and various feature quantities with the differential learning algorithms
were applied. The MalGAN learning is disturbed by considering the machine learning model.

The adversarial malware was generated using a generative adversarial network (GAN) algorithm,
which was proposed by Hu et al. [11]. The black-box malware detection system was fitted using a
substitute detector of MalGAN. The generated adversarial examples are minimized by training a
generative network. The substitute detector predicts the GAN malicious probabilities, which were
minimized by training the generative network. The zero detection rates were minimized via MalGAN.
The generator weights control the probability distribution. Based on the retraining MalGAN, the
probability distribution is continuously changed. This model is not suitable for machine learning-
oriented malware detection models due to computational complexities.

In liver lesion classification, the GAN-based synthetic medical image augmentation was suggested
by Adar et al. [12]. The deep learning GANs present the generating synthetic medical images. The
synthetic data augmentation utilizes generated medical images in which the Convolutional Neural
Network (CNN) performance is improved. The GAN architectures were exploited to synthesize the
liver lesion ROIs of high quality. While compared to the existing performance, the synthetic data
augmentation, and classic data augmentation via CNN training.

Deep learning-based DGA was proposed by Hyrum et al. [13]. The generator learns to cre-
ate a domain in the sequence of adversarial rounds. In order to harden other machine learning
representations, the augment training sets domains generate a hypothesis of whether adversarially.
The convergence is improved via training strategies by novel neural architectures. The reassembled
competitively are encoder and decoder.

Based on the literature analysis, we have identified few of research gaps such as the synthetic
data realistic was inadequate, the MalGAN learning is disturbed by considering the machine learning
model, the GAN is not suitable for machine learning-oriented malware detection models due to
computational complexities. The synthetic data augmentation and classic data augmentation via CNN
training while compared to the existing performance, the reassembled competitively are encoder and
decoder and etc.

3 Proposed Methodology

Let us take a classifier C trained on a dataset D D ⊆ Rd, where d is the input dimensionality.
Let us assume that

(
aj, bj

)
is the jth instance in the training instance and aj ∈ D is created using an

unknown distribution (U). The ground truth label is represented as bj ∈ B. The classifier C which is
trained on the intrusion detection dataset provides higher accuracy and the main aim of this work is to
generate an adversarial instance aadv that can track the classifier C to predict it as a normal entity that
looks similar to instance a. There are two types of attack and one is a targeted one whereas another

3880 CMC, 2022, vol.72, no.2

is an untargeted attack [14,15]. The classifier C used in the proposed methodology is DCGAN. For a
sample (a, b), the adversary generates a targeted attack which equals f (aadv) �= b and this implies an
untargeted attack. In the target-based attack, a target α is specified and this attack is executed by the
adversary using the function f (aadv) �= α.

3.1 Formulation of the Hybrid AO-MBHS Algorithm
3.1.1 Aquila Optimization Algorithm (AO)

Aquila is the Latin word that is used to represent dark-colored eagles and they are mainly known
for their predatory behavior. The Aquila optimizer [16] mainly comprises of four steps namely vertical
stoop, short glide attack, slow descent attack, and walk and grab prey. Using these four steps, the AO
algorithm moves to the near-optimal or best solutions obtained.

Solution Initialization: The AO algorithm is started with a set of candidate solutions (C) that is
arbitrarily generated in the population and is present between the upper (α) and lower bounds (β).
The solutions are initialized as per Eq. (1).

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1,1 · · · c1,b c1,∂−1 c1,∂

c2,1 · · · c2,b · · · c2,∂

· · · · · · ci,b · · · · · ·
...

...
...

...
...

cT−1,1 · · · cT−1,b · · · cT−1,∂

cT ,1 · · · cT ,b cT ,d−1 cT ,∂

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

The candidate solutions generated at the current iteration are represented as C and they are ran-
domly generated using Eq. (2). The position of the ath solution is represented as Ca, the dimensionality
of the problem is represented as ∂, and the total number of candidate solutions is represented as T .

Cab = rand × (αb − βb) + βb, a = 1, 2, . . . , T ; b = 1, 2, . . . , ∂ (2)

In Eq. (2), rand represents the random number, αb is the bth upper boundary of the given problem,
and βb is the bth lower boundary of the given problem.

Statistical AO model: Using the i ≤ (
2
3

) ∗ I condition, the AO algorithm switches from the
exploration phase to the exploitation phase. The statistical model of the AO algorithm is created using
the following steps:

Expanded Exploration (C1): In this step, the prey area (search space) is selected by the Aquila using
a high soar position with the vertical stoop. The behavior is mathematically modeled as follows:

C1 (i + 1) = Cbest(i) ×
(

1 − i
I

)
+ (

Cμ(i) − Cbest(i) ∗ rand
)

(3)

The solution present in the next iteration (i + 1) is represented as C1 (i + 1) and is created using
the initial search method (C1). The best solution (Cbest) obtained till the xth iterations represent the
accurate location of the prey, i is the current iteration, I is the maximum number of iterations, and
rand is a random number in the interval 0 to 1. The exploration phase is managed by the equation(
1 − i

I

)
through different iterations. The current solutions mean value is represented as Cμ(i) and it is

computed using the equation shown below:

Cμ(i) = 1
T

T∑
a=1

Ca(i), ∀b = 1, 2,, ∂ (4)

CMC, 2022, vol.72, no.2 3881

Narrowed Exploration (C2): Here the Aquila eagle finds the location of the prey from high soar
and circles around it by preparing the attack and then conducting the attack. This way of attack is
called a short glide with contour flight. This behavior is statistically modeled as shown below:

C2 (i + 1) = Cbest(i) × Levy(∂) + Crand(i) + (b − a) ∗ rand (5)

The solution obtained in the next iteration by the narrow exploration is taken as C2 (i + 1) and
the levy flight distribution is represented as and its value is obtained using the below equation. Crand(i)
is the random solution taken in the xth iteration in the interval [1, T].

Levy(d) = l × m × s

|ω|
1
ρ

(6)

where l is a test value that equals 0.01 and m, p is a random number that falls in the interval [0, 1]. The
s value is computed as shown in the equation below:

α =
(

� (1 + ρ) × sin
(

�ρ

2

)
�

(
1+ρ

2

) × ρ × 2
(

ρ−1
2

)
)

(7)

The value of ρ is constant and it is fixed as 1.5. The spiral shape of the attack is formed in the
search space utilizing the values of a and b shown in Eq. (5) and it is computed as shown below:

b = k × cos(θ) (8)

a = k × sin(θ) (9)

At this juncture,

k = k1 + Z × J1 (10)

θ = −σ × J1 + θ1 (11)

θ1 = 3 × �

2
(12)

k1 takes a value among 1 and 20 for a fixed number of iterations, Z is a small value whose value is
0.00565, J1 is the integer number from 1 to ∂, and σ is a small value fixed as 0.005.

Narrowed Exploration (C3): To identify the prey reaction, here the Aquila slide down vertically
with a preliminary attack. This type of attack is known as a low-flight and slow descent attack. The
C3 behavior is mathematically modeled as follows:

C3 (i + 1) = (
Cbest(i) − Cμ (i)

) × ψ − rand + ((α − β) × rand + β) × φ (13)

Here, the solution obtained at the next iteration is represented as C3 (i + 1), ψ , φ is the adjustment
parameters used to control the exploitation phase and they are fixed as 0.1.

Narrowed Exploitation (C4): In this stage, the Aquila optimizer lands near the prey using stochastic
movements. Here the Aquila walks and grabs the prey at its final location. This behavior is statistically
modeled as follows:

C4(i + 1) = V × Cbest(i) − (H1 × A (i) × rand) − H2 × Levy(∂) + rand × H1 (14)

In Eq. (14), the solution obtained at the next iteration is represented as C4(i + 1) generated using
narrow exploitation, and V is the quality function used to achieve the trade-off between the two phases

3882 CMC, 2022, vol.72, no.2

(exploration and exploitation). The value of V is computed using the below equation:

V (i) = i
2×rand−1

(1−I)2 (15)

Eq. (16) describes the different motions (H1) of the AO algorithm in which it captures the prey
when it tries to escape.

H1 = 2 × rand − 1 (16)

The flight slope of the AO algorithm is modeled using Eq. (17) in which the prey capturing phase
of the Aquila eagle is captured from the first location (1) to the last (i). H2 value decreases from 2 to 0.

H2 = 2 ×
(

1 − i
I

)
(17)

3.1.2 MBHS Algorithm

The MBHS algorithm [17,18] is an integration of the Harmony Search (HS) and Mine blast
(MB) algorithm to form a 2-dimensional optimization problem. The HS algorithm offers satisfactory
performance in the local search but its performance deteriorates in the local search. To overcome these
drawbacks, both the concepts of MB and HS algorithms are used to enhance the exploration and
exploitation strategies. In the MBA algorithm, the exploitation phase often offers poor performance
when compared to its exploration phase.

The HS algorithm is memory-based whereas the MBA algorithm is memoryless. The information
extracted by the HS algorithm is stored by it whereas the MBA algorithm does not offer dynamic
information extraction. The search history stored in the memory can be used to help in the generation
and selection of new candidate solutions. In this way, the memory of the previous optimal solutions
helps to improve the efficiency of the algorithm. The hybrid MBHS algorithm consists of two phases
and in the first phase, the exploration is conducted using the MBA algorithm, and the exploitation
phase is conducted using the memory consideration and pitch adjustment operators along with the
MBA operators. In the optimization process, the solutions are generated by the MBA algorithm and
the recombination is done by taking the adjacent structures of the pitch adjustment and memory
into consideration. Thus the MBHS algorithm integrates the benefits of both the local search and
population-based search methodologies to enhance the population diversity of the HS algorithm and
also prevents the MBA algorithm from being trapped in the local minima. The complexity of the
problem increases when finding a solution for more than three variables. The exploitation equation
in the MBHS algorithm is altered to deal with the dimensionality of the search space. To achieve this
objective, the direction is altered to move near the best solution in the search space. The new position
update is shown in the below equation:

Ci = Ci + exp

(
−

√
1

Ed

)
× {rand} ⊗ {Cbest − Cbest−1} , i > e, (18)

where the Euclidean distance is represented as Ed, Ci is the explosion that took place in the location i,
Cbest is the current best solution in the population, Cbest−1 is the previous best solution in the population,
e is the exploration factor, and i is the iteration number index. The second term in Eq. (18) helps to
enhance the explosion point by taking the information obtained from both Cbest and Cbest−1. In the HS
algorithm, we are also using the features obtained from both the Improved Harmony Search Algorithm
(IHSA) [19] and Parameter Search for Harmony search algorithm (PSHA) [20] for improving the

CMC, 2022, vol.72, no.2 3883

user parameters of HS instead of using the conventional HS algorithm. The user parameters of the
HS algorithm are Harmony Memory Consideration Rate (HMCR), Pitch Adjustment Rate (PAR),
and bandwidth. The Dynamic Harmony Memory (DHM) is a new parameter introduced in the HS
algorithm to induce variables of different sizes. The Harmony Memory Size (HMS) value in the
MBHS algorithm is not fixed and it varies. The fixed parameter used in the HS algorithm affected its
performance drastically hence it is altered in this algorithm. A high HMS value results in exploration
and also causes divergence. Here the MHS value is only modified in the initial and final iterations
whereas for other iterations it is constant.

The HMS value is taken as the population size (Psize) to minimize the utilization of the number of
user parameters. A minimized HMS value in the last iteration results in the current best solution for the
exploitation phase. The α parameter is the only user parameter taken from the MBA algorithm. The
distance of shrapnel pieces (Sd) is equivalent to the bandwidth parameter used by the HS algorithm.
Both parameters indicate the standard deviation to be computed. Hence the bandwidth parameter is
integrated with the Sd parameter and is reduced with different iterations as shown below:

Bi = Bi−1

e

(
i
/α

) , i = 1, 2, . . . , imax (19)

The HMCR and PAR parameter values are altered before the exploration phase as follows:

HMCRi =
⎧⎨
⎩HMCRmin + HMCRmax − HMCRmin

imax − e
× i i = 1, 2, . . . , imax − e, i > e

0 i ≤ e
, (20)

PAR(i) =
⎧⎨
⎩PARmin + PARmin − PARmax

imax − e
× i i = 1, 2, . . . , imax − e, i > e

0 i ≤ e
, (21)

The PAR value minimizes from 1 to 0 when the HMCR probability value rises from 0 to 0.99. A
maximum value of 0.99 is allocated to the HMCR algorithm at the last iteration to create the random
solutions. The HMCR and PAR value are altered only when there is no improvement in the objective
function or t > e. The exploration phase is done by the MBHS algorithm when the value of (i ≤ e). If
there is a reduction in the value B(distance between the shrapnel pieces), then the exploitation phase is
conducted only on the smart part of the global search space. The exploration phase of the algorithm
loses relevance as the algorithm evolves, and the exploitation phase takes over (i > e). The local search
is conducted at the end of the MBHS algorithm near the best current solution obtained.

3.2 Proposed AO-MBHS Algorithm

The proposed AO-MBHS algorithm integrates both the benefits (global searchability, fast conver-
gence, etc.) of the AO and MBHS algorithm. To achieve this objective the AO and MBHS population
is divided into two halves depending upon the fitness value of the individual. In the dynamic set
formation, the population is divided into two halves based on the fitness value of each iteration. The
AO algorithm is used to optimize the best half of the population and the MBHS algorithm is used to
optimize the other half. The search operators with the same behavior may lead to the loss of diversity
and this problem is overcome using the MBHS algorithm. Since the AO and MBHS algorithms
parameters are different from each other, the AO-MBHS algorithm can enhance the capability of
these algorithms by preventing them from being trapped in the local optima. In the search phase, the

3884 CMC, 2022, vol.72, no.2

AO algorithm focuses on the local stage and the MBHS algorithm focuses on the global search. In
this way, an efficient balance between the exploration and exploitation operators has been achieved.
The MBHS algorithm uses the AO algorithm to optimize half of its population and to improve the
convergence speed of the AO to lead to an easier convergence of the AO-MBHS algorithm. To the
worst half of the population, the MBHS algorithm is applied to offer excellent exploration. This step
prevents the worst half of the population from being trapped in locally optimal solutions and leads
them to the global optimal solution. The AO-MBHS algorithm is formulated using the steps shown
below:

Initialization Information: The parameters such as the maximum number of function evaluations,
initial iteration i = 1, lower and upper boundaries of both algorithms, population size Psize, fitness
function f(.), and problem dimensionality, etc. are taken as the initial parameters of the AO-MBHS
algorithm. The current number of evaluations is set as 0 and the value of e is set as 1. Based on the
initialized parameters, a random population is generated (Ci).

Population Evaluation: The fitness value of each individual in the population is computed
depending upon the objective function which selects the optimal solution Cbest. The number of current
function evaluations (FEcurrent) is computed using the below function

FEcurrent = FEcurrent + Psize (22)

End Condition: If the FEcurrent value is higher than the maximum number of function evaluations
then the algorithm terminates or else it goes to the next step.

Dynamic Group Formation: The individuals in the population are mainly ranked based on their
fitness values and after ranking the population Ci is marked as Cbest

i . The best half of the population is
labeled as Di and the worst half of the population is labeled as Wi. These both populations can share
their optimal solutions to enhance the convergence speed.

Optimizing the Population: The MBHS algorithm is performed for the population Wi. Initially,
the best solution in the population is replaced with the global solution and the hyperparameters of
the DCGAN architecture are ranked based on the fitness value. In the final step, the new population
Wi+1 is obtained and the current number of function evaluations is updated using the equation shown
below:

FEcurrent = FEcurrent + 0.5 ∗ Psize (23)

The AO algorithm is applied to the best half of the population Di. Every step in the AO algorithm
is executed to get Di+1 population. In the optimization process of the AO algorithm, the fitness value
of each individual is computed twice. Then the current number of function evaluations is obtained
using the below equation:

FEcurrent = FEcurrent + Psize (24)

Population Integration: Both populations (Wi+1 and Di+1) are lastly integrated into Ci+1. The value
of Bi is computed using Eq. (19) and the i value is updated using i = i + 1. Execute the end condition
once. The flowchart of the hybrid AO-MBHS algorithm is presented in Fig. 1. Algorithm 1 explains
the pseudocode of Hybrid AO-MBHS algorithm.

CMC, 2022, vol.72, no.2 3885

Figure 1: Flowchart of the hybrid AO-MBHS algorithm

Algorithm 1: Pseudocode of Hybrid AO-MBHS algorithm
Initialize AO-MBHS algorithm parameters and maximum number of iterations
The objective function evaluate the fitness value of each individual in the population
Mark Cbest

i after ranking the population Ci

Wi labels the worst half of the population
Di labels the best half of the population
Form the dynamic formation
Wi performs MBHS algorithm population
The global solution replaces the best solution in the population
Obtain new population using Wi+1

Integrates both Wi+1 and Di+1 populations
i = i + 1
Obtain best solution
Return

3.3 Optimization of DCGAN Using Hybrid AO-MBHS Algorithm

The hyper parameters of DCGAN [9–12] are optimized in our work using the AO-MHBS
algorithm which achieves a tradeoff between the exploration and exploitation stages. The GAN trains
both the generator and discriminator in a simultaneous manner. The generator mainly takes an attack
instance from the uniform distribution and generates the synthetic data very similar to that. The
discriminator can correctly identify an actual attack and a synthetic attack and outputs the attack
class accordingly. Using this strategy, the generator and discriminator play an adversarial role by
modifying the DCGAN network weight and bias in each iteration. In this way, a synthetic attack
is created which is similar to the actual attack. The AO-MBHS algorithm is mainly used to overcome
different complexities associated with the DCGAN algorithm such as model collapse, instability, and
vanishing gradients by tuning the DCGAN hyperparameters. The training algorithm used for the

3886 CMC, 2022, vol.72, no.2

DCGAN is stochastic gradient descent with adam optimizer and the number of epochs used to train
the adam optimizer is 2000. For a total of 70 epochs, the learning rate was taken as 0.002. The total
number of search agents and iterations is set as 20. The batch size is 64 and the validation frequency
is 1000. A sigmoid activation function is used as the discriminator. Using a zero centralized normal
distribution with a B value of 0.02, the weight is initialized.

3.4 Novel Network Traffic Dataset Creation

The data is obtained from a real-time network which is utilized by different client organizations
of varying sizes and mainly targeted towards different organizations. The network resembles a three-
tier Internet Service Provider (ISP). This implies that the network receives the traffic generated by the
client during network access and the reception of these requests by the conventional servers. Hence
this network traffic generated helps to identify a wide range of user behavior. Many intrusion detection
datasets focus on the traces collected from a certain university, coffee shops, malls, libraries, etc. The
main features of the network are described as follows:

• The internet access is provided via dual border routers namely R1 and R2. To analyze both the
incoming and outgoing connections, a NetFlow probe is used.

• Two different subnetworks are utilized by the ISP in which one is the main network and another
one is an inner network of the organization. The firewall service is only provided to the systems
present inside of the organization.

• The attacker’s network is present in the upper tier of the ISP where the five attacker machines
are installed and they are numbered as X1–X5.

• For dataset creation, we are deploying five victim systems in the core network which is connected
with other clients in another network. This is known as the victim network (B1) and thesystems
in this network are numbered from B11–B15.

• In the internal infrastructure of the organization, an additional 15 victimized systems are placed
and they are also interconnected with three different pre-existing networks. The pre-existing
networks are equipped with five systems each. They are numbered as B2(B21–B25), B3(B31–B35),
and B4(B41–B45).

3.4.1 Generation of Attack Traffic

When labeling real-time traffic we need to consider that the connections that are marked as attacks
are really malicious or not. Hence we have integrated the real-time traffic that has attack traces with
attacks that are generated for this experiment. To achieve this scenario, the victim systems are set
with a similar ISP configuration used for the clients. The victim machines B1–B4 are set up to conduct
attacks in the victim machines (Ba1–Ba5 and the value of a ranges from 1–4 at different time intervals).
To prevent the attack obstruction by other neighboring ISPs and detection of the malicious behavior in
the network both the victims and attackers are placed inside the network. The border router is selected
as the place to deploy the attacker’s network because it is where we can simulate the network traffic
like it is generated from the internet.

3.4.2 Attack Deployment

In our work due to privacy reasons, we are not collecting the payload-related data and hence we
do not include the attacks that are detectable by payload analysis. The two attack classes generated are
synthetic and anomaly. The dos11, dos53s, dos53a, scan 11, scan 44, and botnet belong to the synthetic
class, and the SPAM, UDP scan, and SSH scan belong to the anomaly class [21]. Fig. 2 presents the

CMC, 2022, vol.72, no.2 3887

network topology of the attack generation scenario in detail. The network-related attacks taken in this
work is described as follows:

Figure 2: Attack creation scenario using the three-tier network topology

Low Rate Denial of Service Attacks

The Transmission Control Protocol (TCP) SYN packets are forwarded to the victims via the
hping3 tool to combine the malicious traffic with the real world traffic the destination port is set as
80. Since this is a low-rate attack, the normal operations of the network are not affected. The different
types of one to one DoS attack is delineated as follows:

One to one DoS attack: Here the attacker X1 attacks the victim B21 and the time duration of this
attack is 3 min.

DoS53 synchronous: In this, the five attackers attack a total of three victims with a time period of
3 min. This attack has a specific structure such as (A1, A2) → B21, (A3, A4) → B31, and A5 → B41. The
DOS53 synchronous attacks imply that the attacks are conducted by the attackers at the same time.

DoS53-asynchronous: Here three attacks are conducted with a time period of 3 min sequentially
and an inactivity period of 30 s is present in between three attacks. The total duration of this attack is
10 min.

Port Scanning

A SYN scan is run continuously for 3 min to scan the common ports of the victims for 3 min using
the nmap tool. Scan 11 (one to one scan attack) and scan44 (four to four scan attacks) are the two
types of port scanning attacks conducted. The scan11 attack is carried in sequence while the scan44
attack is conducted in parallel.

3888 CMC, 2022, vol.72, no.2

Botnet Traffic

The botnet attacks are quite popular these days and hence a botnet attack is included in our work.
Since we are not capable of handling the issues caused by the botnet attack in an open network, we are
mixing the botnet traces obtained in a controlled environment with our network traffic. The attack
created in this way is not fully realistic but it somewhat replicates the effect of the botnet attack.

UDP Scan Attack

This attack takes place in a short time with an increase of Acknowledgement (ACK) packets with
the UDP connection. Each victim in the network is scanned with a specific range of 60 ports based on
the source port of the connection.

Secure Socket Shell (SSH) Scan Attack

It originates with an increase in the SSH traffic generated by a single machine hosted in the Internet
Service Provided.

SPAM Attack

To retrieve sensitive information from the users, this attack is conducted by sending a huge amount
of unsolicited messages via instant messaging applications. This type of attack traffic is found in both
the normal and attack sets.

3.5 DCGAN Architecture for Adversarial Malware Generation

Since a large labeled training dataset is needed to train the DCGAN network [22], we generated
new samples using a generative model. The synthetic traffic generated is tested via a black box detector
equipped with AI-based algorithms. We can get the results for our synthetic dataset from the black box
detector. The adversarial instances probability distribution is identified by the weights of the generator.
To enhance the AI-based black box detector’s efficiency, the samples in the test and training set follow
the same probability distribution. The generator makes variations in the probability distribution of the
malware instances present in both the testing and training dataset to confuse the black box detector.
In this way, the generator confuses the AI-based BlackBox classifier’s efficiency. The outline of the
model is shown in Fig. 3.

Figure 3: Outline of the proposed model

CMC, 2022, vol.72, no.2 3889

GAN is a generative model and it implicitly learns the data distribution (A) from a set of
samples y(1), . . . , y(n) to create new samples from the learned distribution. In this paper, we have used
a deep convolutional GAN architecture and both the generator and discriminator follow a DCNN
architecture and it also acts as an AI-based malware detector. This model is formed by concatenating
two neural networks trained concurrently. In this study, the novelty of the discriminator (D) network
is to identify the difference between the real and synthesized network traffic. It is provided an input
a and it outputs D(a) which is termed as the probability of the actual sample. G is the name of the
Generator network, and it creates samples to deceive D into believing it is agenuine sample with a high
probability value. The generator receives samples x(1), . . . , x(n) from a known sample distribution (px).
The main aim of G is to retrieve the value of A. The following loss function needs to be optimized to
create the adversarial network.

min
G

max
D

Ey∼A log D(y) + Ey∼px [log(1 − D(G(x)))] (25)

The discriminator’s main aim is to increase the D(y) value of instances for y ∼ A and to decrease
D(y) for y �= A. The generator generates malicious samples G(y) to fool the detector during the
training process in which D(G(x)) ∼ A. The generator is either trained to minimize D(G(x)) or
maximize 1 − D(G(x)). In the training process, the generator enhances its capability to generate more
realistic samples and the discriminator enhances its capability to identify the difference between the
actual and synthesized samples. The generator changes the malware feature vector into its adversarial
version. It integrates both the noise vector (v) and malware features as input. Every element present in
the vector v describes an absence or presence of the feature. The outline of the proposed methodology
is presented in Fig. 3 and it is self-explanatory. Finally, the discriminator predicts normal, synthetic
and anomalies.

4 Experimental Analysis and Results

The real intrusion network traffics similar to the synthetic intrusion network traffic of high
quality. The detection rate is determined via model measurement as accuracy. The evaluation measures
including accuracy (A), negative predictive value (NPV), positive predictive value (PPV), detection rate
(DR), Recall, Precision, F-Score, and false alarm rate (FAR) are explained in this section. Accuracy
is defined as the total number of correctly classified samples to the total number of samples tested.
Recall can be defined as the total number of correctly classified positive data to the total number of
positive data in the testing samples. Precision is the ratio of correctly classified positive data to the
total number of positive data. F-score is defined as the weighted average of precision and recall.

The proposed method detects the attack instances ratio signified using detection rate (DR).
The misclassified normal instances ratio is signified using a false alarm rate (FAR). The proposed
method performance is superior in terms of decreasing FAR with increasing DR. Tab. 1 express the
hyperparameter settings of proposed method.

Table 1: Hyperparameter settings

Parameters Ranges

Number of epochs 2000
Learning rate 0.002

(Continued)

3890 CMC, 2022, vol.72, no.2

Table 1: Continued
Parameters Ranges

Number of search agents 20
Batch size 64
Validation frequency 1000
Activation function Sigmoid
Centralized normal distribution 0.02

Fig. 4 describes the training progress of the DGCAN based AOA MBHA with respect to accuracy
and loss function as described in Figs. 4a and 4b. The proposed model is trained by using seventy
percentages of data and the remaining 30% is used for the testing process. Fig. 4a describes the training
progress of DGCAN based AOA MBHA accuracy curve. The training progress of DGCAN based
AOA MBHA loss function curve is plotted in Fig. 4a. In all epochs, we discovered minimum loss with
superior accuracy by using the proposed method as shown in Fig. 4.

Figure 4: Training progress of the DGCAN based AOA MBHA, (a) Accuracy and (b) Loss

Fig. 5 describes the Receiver Operating Characteristic (ROC) curve results of the proposed method
in attack generation. After each of four adversarial rounds, the ROC curve of the proposed model is
plotted based on 10 folds cross-validation. After three rounds, the apparent asymptote with the number
of adversarial rounds degrades the performance due to GAN generates confusion. The DGA detector
performance is improved using the proposed method. After three rounds, the adversarial rounds are
based on all the subsequent experiments.

CMC, 2022, vol.72, no.2 3891

Figure 5: ROC curve results of proposed work

The experimental result of cross-validation is described in Fig. 6. The data is divided into k times
for both training and testing in which an important instrument to predicting network performance
is cross-validation. The proposed work performance is validated over ten iterations (k = 10) in the
present work. The k and k- subsets1is are used for both training and testing procedures. Calculate the
error rate.

Figure 6: Experimental result of cross-validation

The different learning rate with loss function value is depicted in Fig. 7. When the learning rate is
0.01, 0.001, and 0.0001 values that compared the loss function in order to validate the effect of epoch
number on the proposed technique. This graph is plotted between the number of iterations and the
resultant dependency of loss functions. The number of iterations is represented in the X coordinate
and the loss function value is represented using the Y coordinate. This investigation consists of 100 to
1000 iterations.

3892 CMC, 2022, vol.72, no.2

Figure 7: Different learning rate with the loss function value

Tab. 2 describes the state-of-art comparison of the meta-heuristic algorithm. This investigation
is carried out among the measures such as accuracy, NPV, and PPV with the pattern search (PS)
[22], genetic algorithm (GA) [23], simulated annealing (SA) [24], particle swarm optimization (PSO)
[25], Grey Wolf Optimization (GWO) [26] and proposed algorithm. The proposed algorithm provides
superior results such as 99.17% accuracy, 99.35% NPV, and 97.67% PPV results.

Table 2: State-of-art comparison of meta-heuristic algorithm

Techniques Accuracy NPV PPV

GWO 96.14% 97.56% 90.34%
SA 97.23% 90.89% 96.40%
PSO 97.01% 95.90% 98.04%
GA 96.23% 96.89% 94.60%
PS 93.22% 97.07% 95.03%
AO 93%, 67% 90%, 37% 92%, 03%
MBHS 92.78% 94.78% 96.78%
AO-MBHS (Proposed) 99.17% 99.35% 97.67%

4.1 Detection Analysis

To analyze the performance of the proposed DCGAN based AO-MBHS based approach we have
deemed a maximum number of ground-truth information. To compare the performance we have taken
the DCGAN approach. The comparative analysis is depicted in Fig. 8.

Fig. 9 shows the attack detection performance of proposed and DCGAN approaches for up to
200 K samples. The proposed method shows a better detection F-score than the DCGAN. For 200 k
samples, the detection F-Score of the proposed method is almost equal to 0.9923 and the DCGAN
shows a 0.5609 F-score. Thus our method performs well for maximum ground-truth information.

CMC, 2022, vol.72, no.2 3893

Figure 8: Detection analysis F-score

Figure 9: Performance analysis of detection of attacks created by various methods along with their
training costs

4.2 Training Loss Analysis

The tradeoff that occurs between the F-score and increasing training time of the attacker are
illustrated in Fig. 9. The F-score has been decreased with the training of larger methods. When the
training size increases from 128 to 256 then the performance dropped greatly. Thus the increase in
method size will increase the computational complexity.

The training loss of six models including 3 plain models and 3 residual models are analyzed and
plotted in Fig. 10. The training loss of residual blocks is small since it will represent the network
degradation issues. From the Fig. 10, it is evident that the training loss values decreased continuously
with the training process increases. From the figure when the epoch reached 20 the training loss
decreases sharply.

3894 CMC, 2022, vol.72, no.2

Figure 10: Performance analysis based on training loss

4.3 Classification of Attacks Analysis

The detection of proposed work can be evaluated by considering the attacks such as DoS11,
DoS53s, DoS53a, Scan11, Scan44, Botnet, IP in Blacklist, UDP Scan, SSH Scan, SPAM with the
existing works such as SVM [27], MLP [28], Faster RCNN [29], CNN [30], and DCGAN approaches
[31]. Fig. 11 shows the recall values of all the classifiers that have been taken. Our proposed method
shows better classification due to the higher recall values. The recall values depend on the type of
attacks and for minor attackers the recall value is low for all types of classifiers and major attacks the
recall value is high and our proposed method exhibits better classification outcomes.

Figure 11: Classification of attacks based on the recall and accuracy

4.4 Performance Evaluation Using Retraining Based Defensive Approach

The performance of the proposed model is evaluated using the retraining-based defensive
approach in this section. Using our new dataset created the SVM classifier [32] is trained using

CMC, 2022, vol.72, no.2 3895

the adversarial samples to detect the presence of a malicious entity. Before retraining the proposed
classifier, the SVM classifier [33] is able to classify 80% of samples but after retraining the proposed
hybrid AO-MBHS optimized DCGAN classifier, the SVM classifier can barely recognize any
adversarial instances. The results obtained are demonstrated using Tab. 3. The TPR of the SVM
classifier is reduced from 80% to 0% in a single epoch of retraining the proposed model. The proposed
model is run a total of ten times and the result is the same for all.

Table 3: Performance evaluation using retraining based defensive approach

TPR of the SVM classifier (%)

Results achieved before retraining the
proposed model

Results achieved after retraining the
proposed model

Training set 80 0
Testing set 82 0

5 Conclusion

The paper presents a hybrid AO-MBHS based DGCA model to generate network traffic instances
that are undetected by the AI-based malware detector algorithms. The AI-based malicious detectors
act as malware detectors. The malware network traffic is generated via the generator equipped with
a DCNN architecture which fools the detector in discriminating the samples. Real-time network
traffic that has attack traces is used in the experiment using an ISP configuration by placing both the
attackers and victims inside the network. To identify the malicious content generated by the dataset, the
intrusion detection system developers need to construct a large dataset with enough adversarial traffic.
But this process is time-consuming and labeling them is a manually intensive task. The SVM is used
as the malicious traffic detection application and its TPR rate goes from 80% to 0% after retraining
the proposed model which shows the efficiency of the proposed model in hiding the samples. When
trained with different performance metrics, the proposed methodology provides efficient F-Score, low
loss rate, higher accuracy, and higher NPV and PPV values. The percentage of error rate is low even
during cross-validation and the proposed methodology also shows high ROC values in generating the
attacks.

Funding Statement: This project was funded by the Deanship of Scientific Research (DSR) at King
Abdulaziz University, Jeddah, under Grant No. RG-91-611-42. The authors, therefore, acknowledge
with thanks to DSR technical and financial support.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Z. Lina, Y. Xiao and W. Chen, “Vulnerability to machine learning attacks of optical encryption based on

diffractive imaging,” Optics and Lasers in Engineering, vol. 125, pp. 105858–105865, 2020.

3896 CMC, 2022, vol.72, no.2

[2] M. Alloghani, A. J. Dhiya, A. Hussain, J. Mustafina, T. Baker et al., “Implementation of machine learning
and data mining to improve cybersecurity and limit vulnerabilities to cyber-attacks,” in Nature-Inspired
Computation in Data Mining and Machine Learning, Cham: Springer, pp. 47–76, 2020.

[3] H. R. Hung, M. C. Peng, C. W. Huang, P. C. Lin, V. L. Nguyen et al., “An unsupervised deep learning
model for early network traffic anomaly detection,” IEEE Access, vol. 8, pp. 30387–30399, 2020.

[4] D. Spiekermann and J. Keller, “Unsupervised packet-based anomaly detection in virtual networks, ”Com-
puter Networks, vol. 192, pp. 108017–108026, 2021.

[5] C. Pontes, M. Souza, J. Gondim, M. Bishop, M. Marotta et al., “A new method for flow-based network
intrusion detection using the inverse potts model,” IEEE Transactions on Network and Service Management,
vol. 18, no. 2, pp. 1125–1136, 2021.

[6] S. Sriram, R. Vinayakumar, M. Alazab and K. P. Soman, “Network flow based IoT botnet attack detection
using deep learning,” in IEEE INFOCOM 2020-IEEE Conf. on Computer Communications Workshops,
Toronto, Canada, IEEE, pp. 189–194, 2020.

[7] S. Zavrak and M. Iskefiyeli, “Anomaly-based intrusion detection from network flow features using
variational autoencoder,” IEEE Access, vol. 8, pp. 108346–108358, 2020.

[8] M. R. Rejeesh, “Interest point based face recognition using adaptive neuro fuzzy inference system,”
Multimedia Tools and Applications, vol. 78, pp. 22691–22710, 2019.

[9] M. Ring, D. Schlör, D. Landes and A. Hotho, “Flow-based network traffic generation using generative
adversarial networks,” Computers & Security, vol. 82, pp. 156–172, 2019.

[10] M. Kawai, K. Ota and M. Dong, “Improved malgan: Avoiding malware detector by leaning cleanware
features,” in 2019 Int. Conf. on Artificial Intelligence in Information and Communication (ICAIIC),
Okinawa, Japan, IEEE, pp. 40–45, 2019.

[11] W. Hu and Y. Tan, “Generating adversarial malware examples for black-box attacks based on GAN,” arXiv
preprint arXiv:1702.05983, pp. 1–7, 2017.

[12] M. F. Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger et al., “GAN-based synthetic medical image
augmentation for increased CNN performance in liver lesion classification,” Neurocomputing, vol. 321, pp.
321–331, 2018.

[13] A. S. Hyrum, J. Woodbridge and B. Filar, “DeepDGA: Adversarially-tuned domain generation and
detection,” in Proc. of the 2016 ACM Workshop on Artificial Intelligence and Security, Vienna Austria,
pp. 13–21, 2016.

[14] M. Mahrishi, S. Morwal, A. W. Muzaffar, S. Bhatia, P. Dadheech et al., “Video index point detection
and extraction framework using custom yolov4 darknet object detection model,” IEEE Access, vol. 9, pp.
143378–143391, 2021.

[15] R. Singla, N. Kaur, D. Koundal, S. A. Lashari, S. Bhatia et al., “Optimized energy efficient secure routing
protocol for wireless body area network,” IEEE Access, vol. 9, pp. 116745–116759, 2021.

[16] L. Abualigah, D. Yousri, M. A. Elaziz, A. A. Ewees, M. A. A. Al-Qaness et al., “Aquila optimizer: A novel
meta-heuristic optimization algorithm,” Computers & Industrial Engineering, vol. 157, pp. 107250–107264,
2021.

[17] A. Sadollah, H. Sayyaadi, H. M. Lee and J. H. Kim, “Mine blast harmony search: A new hybrid
optimization method for improving exploration and exploitation capabilities,” Applied Soft Computing,
vol. 68, pp. 548–564, 2018.

[18] A. Sadollah, H. M. Lee and J. H. Kim, “Mine blast harmony search and its applications,” in Harmony
Search Algorithm, Berlin, Heidelberg: Springer, pp. 155–168, 2016.

[19] D. Markovi and G. Petrovi, “Assessing the performance of improved harmony search algorithm (IHSA)
for the optimization of unconstrained functions using taguchi experimental design,” Scientific Research and
Essays, vol. 7, no. 12, pp. 1312–1318, 2012.

[20] Z. W. Geem and K. B. Sim, “Parameter-setting-free harmony search algorithm,” Applied Mathematics and
Computation, vol. 217, no. 8, pp. 3881–3889, 2010.

CMC, 2022, vol.72, no.2 3897

[21] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. García-Teodoro, R. Therón et al., “UGR ‘16: A
new dataset for the evaluation of cyclostationarity-based network IDSs,” Computers & Security, vol. 73,
pp. 411–424, 2018.

[22] R. Hooke and T. A. Jeeves, “Direct search solution of numerical and statistical problems,” Journal of ACM,
vol. 8, no. 2, pp. 212–29, 1961.

[23] J. H. Holland, “Genetic algorithms, “Scientific American, vol. 267, no. 1, pp. 66–72, 1992.
[24] P. J. V. Laarhoven and E. H. Aarts, “Simulated annealing. In simulated annealing: Theory and applications,”

in Mathematics and its Applications, Reidel, Dordrecht; Boston: D. Reidel; Norwell, MA, U.S.A.: Sold and
distributed in the U.S.A. and Canada by Kluwer Academic Publishers, pp. 7–15, 1987.

[25] M. R. Rejeesh and P. Thejaswini, “Multi-objective optimal trilateral filtering based partial moving frame
algorithm for image denoising,” Multimedia Tools and Applications, vol. 79, pp. 28411–28430, 2020.

[26] S. M. Mirjalili and A. Lewis, “Grey wolf optimizer,” Advances in Engineering Software, vol. 69, pp. 46–61,
2014.

[27] O. Bamasaq, D. Alghazzawi, S. Bhatia, P. Dadheech, F. Arslan et al., “Distance matrix and markov chain
based sensor localization in wsn,” Computers, Materials and Continua, vol. 71, no. 2, pp. 4051–4068, 2022.

[28] R. Pahuja and A. Kumar, “Sound-spectrogram based automatic bird species recognition using MLP
classifier,” Applied Acoustics, vol. 180, pp. 108077–109090, 2020.

[29] X. Mai, H. Zhang, X. Jia and M. Q. H. Meng, “Faster R-CNN with classifier fusion for automatic detection
of small fruits,” IEEE Transactions on Automation Science and Engineering, vol. 17, no. 3, pp. 1555–1569,
2020.

[30] M. Piekarczyk, O. Bar, L. Bibrzycki, M. Niedźwiecki, K. Rzeck et al., “CNN-based classifier as an offline
trigger for the credo experiment,” Sensors, vol. 21, no. 14, pp. 4804–4820, 2021.

[31] D. Alghazzawi, O. Bamasaq, S. Bhatia, A. Kumar, P. Dadheech et al., “Congestion control in cognitive
iot-based wsn network for smart agriculture,” IEEE Access, vol. 9, pp. 151401–151420, 2021.

[32] S. S. Kshatri, D. Singh, B. Narain, S. Bhatia, M. T. Quasim et al., “An empirical analysis of machine learning
algorithms for crime prediction using stacked generalization: An ensemble approach,” IEEE Access, vol.
9, pp. 67488–67500, 2021.

[33] S. H. Kok, A. Abdullah, N. Z. Jhanjhi and M. Supramaniam, “A review of intrusion detection system using
machine learning approach,” International Journal of Engineering Research and Technology, vol. 12, no. 1,
pp. 8–15, 2019.

	Optimized Generative Adversarial Networks for Adversarial Sample Generation
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	4 Experimental Analysis and Results
	5 Conclusion

