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Abstract: In this paper, we address 3D inverse Cauchy issues of highly nonlin-
ear elliptic equations in large cuboids by utilizing the new 3D homogenization
functions of different orders to adapt all the specified boundary data. We also
add the average classification as an approximate solution to the nonlinear
operator part, without requiring to cope with nonlinear equations to resolve
the weighting coefficients because these constructions are owned many con-
ditions about the true solution. The unknown boundary conditions and the
result can be retrieved straightway by coping with a small-scale linear system
when the outcome is described by a new 3D homogenization function, which
is right to find the numerical solutions with the errors smaller than the level
of noise being put on the over-specified Neumann conditions on the bottom
of the cuboid. Besides, note that the new homogenization functions method
(HFM) does not require dealing with the regularization and highly nonlinear
equations. The robustness and accuracy of the HFM are verified by comparing
the recovered results of several numerical experiments to the exact solutions
in the entire region, even though a very large level of noise 50% is imposed on
the over specified Neumann conditions. The numerical errors of our scheme
are in the order of O(10~1)-0(10~%).

Keywords: Inverse cauchy problems; homogenization functions method
(HFM); 3D highly nonlinear elliptic equations; 3D homogenization functions

1 Introduction

In several past decades, lots of researchers utilized mesh methods and meshless approaches to
tackle inverse Cauchy issues of linear elliptic equations; however, a few researchers can cope with
inverse Cauchy issues of nonlinear elliptic equations. As we all known, inverse Cauchy issues of
nonlinear elliptic equations play very pivotal roles in several engineering and scientific domains. These
equations occur in the vibration of a structure, the acoustic cavity issue, the radiation wave, the
scattering of a wave, heat conduction in fins, semiconductor structures, electrostatic analysis, neutron
diffusion problems, advection—diffusion problems, steady-state groundwater flow and so forth.
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For inverse Cauchy issues of linear elliptic equations, Marin et al. [!] proposed the numerical
implementation of the conjugate gradient method (CGM) was accomplished by employing the
boundary element method (BEM), which needs the discretisation of the boundary merely. They also
claimed that Cauchy issues for two-dimensional (2D) Helmholtz-type equation were inverse boundary
value issues and therefore the BEM was a very suitable approach for solving such improperly posed
issues. However, the numerical results with noisy data are not good. Later, Marin et al. [2] addressed
an iterative method on the basis of the Landweber algorithm in combination with the BEM for
dealing with the Cauchy issue for 2D Helmholtz-type equations; nevertheless, the drawbacks of the
Landweber scheme consisted of the relatively large numbers of iterations required to resolve the issue in
comparison with the other regularization approaches. After that, the method of fundamental solutions
(MEFS) was utilized to solve the Cauchy issue associated with 2D Helmholtz-type equations [3]. Their
numerical results showed that the present approach was convergent with respect to increasing the
number of source points. Wei et al. [4] combined the MFS with three regularization techniques to
resolve Cauchy issues of elliptic differential operators. Note that the use of more Cauchy conditions
greatly improved the accuracy of the approximate solution; however, their strategy was complex. Qin
et al. [5] tackled the highly ill-posed Cauchy issue for the modified Helmholtz equation was firstly
transformed into a moment problem by using the Green’s formula. From the numerical verifications,
note that their proposed method was stable and efficient. Then, Qin et al. [6] utilized the quasi-
reversibility and the truncation methods to solve a Cauchy issue for the modified Helmholtz equation
in a rectangular domain and obtained stable convergence estimates. However, they did not compare
with other available techniques, such as the regularized BEM, MFS, CGM. After that, Fan et al.
[7] adopted the generalized finite difference method (GFDM) for solving inverse Cauchy issues. In
Cauchy issues, part of the boundary data was missing and the numerical simulation may become very
unstable. Besides, different levels of noise were added into the boundary conditions to demonstrate
the stability of the GFDM; nevertheless, they used small noises to test those examples. Of late,
Liu [8] has addressed a homogenized function skill by including the initial condition/boundary
conditions/supplementary condition to simplify the governing equations for the recovery of a space-
time—dependent heat source. Then, he employed the Pascal polynomials or the eigenfunctions to
expanded the trial solutions. Besides, he also mentioned that the eigenfunction method was slightly
better than the polynomial method. Later, Liu[9] proposed a multiple/scale/direction Trefftz expansion
method (MSDTM) to solve the 3D Helmholtz equation in an arbitrary domain with an irregular
boundary, and the solutions obtained were quite accurate. Later, Liu [10] also utilized a homogenized
function technique to solve the initial condition/boundary conditions and supplementary data for the
recovery of time/space-dependent heat sources. Although the supplementary data were contaminated
by a large noise 20%, their methods are quite simple, stable and accurate. Liu et al. [11] the original
multi-quadric radial basis function (MQ-RBF) was modified by introducing the multiple-scale method
in the expansion of trial solution, of which the multiple-scale is determined a priori by the collocation
points and source points, such that the column norms of the coefficient matrix are equal. Note that
the accuracy in the solution of the inverse Cauchy issue in a doubly-connected domain was not as
good as that for the simply-connected inverse Cauchy issues. Wang et al. [12] applied a regularized
indirect BEM formulation for the solution of 3D inverse heat conduction issues. They claimed that
the present method is computationally efficient, robust, accurate, stable with the decreasing noisy
level in the input data. Liu et al. [13] developed a quite simple MSDTM to solve the inverse Cauchy
issues of 3D modified Helmholtz equation in an arbitrary bounded area, which offered quite accurate
solution. Although for the highly ill-posed inverse Cauchy issues in the 3D irregular area, the MSDTM
performed well to retrieve the unknown boundary conditions despite a high level of noise. Liu et al. [14]
resolved an inverse geometry problem (IGP) of the Poisson equation in an arbitrary doubly-connected
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plane area to retrieve an unknown inner boundary. However, the proposed homogenization/boundary
function algorithm was limited to tackle the IGP with analytic boundary value functions, which
were given explicitly. Later, Liu et al. [15] solved the highly ill-posed inverse Cauchy problems of the
steady-state diffusion-convection-reaction equation by using the energy RBF. They also mentioned the
weighting factors played the regularization role as the right pre-conditioner to diminish the ill-posed
behavior of the inverse Cauchy issue against large noises being imposed on the data.

For inverse Cauchy issues of nonlinear elliptic equations, Essaouini et al. [16] utilized a numerical
iterative boundary element approach to solve a class of nonlinear elliptic inverse issue. The scheme
was implemented with various relaxation parameters. After that, Liu et al. [17] employed a variable
transformation and the mixed group-preserving scheme (MGPS) to retrieve the missing information
on the top side very well for a nonlinear inverse Cauchy issue. Later, Yeih et al. [18] proposed the
double iteration process to cope with the Cauchy inverse issue of a nonlinear heat conduction equation.
Numerical results show that this scheme is efficient and can acquire accurate enough results for a
nonlinear ill-posed inverse issue. Liu [19] solved the nonlinear inverse Cauchy issue defined in an
arbitrary doubly connected domain with a simple direct integration algorithm without requiring of any
iteration. Apart from that, Zhang et al. [20] used a filtering function method to solve a Cauchy problem
for semi-linear elliptic equation. Finally, they computed the regularization solution by constructing
an iterative algorithm and obtained some stable and feasible results; however, this approach was
complicated. Then, Tran et al. [21] addressed a regularization scheme to a quasi-linear elliptic Cauchy
issue. They stressed that the regularized problem is well-posed, and its solution converged to the
exact solution strongly in L, where some a priori assumptions were pondered. Nevertheless, they did
not show how to choose the optimal regularization parameter. After that, Liu et al. [22] tackled the
nonlinear inverse Cauchy issue of the nonlinear elliptic type equation in an arbitrary doubly-connected
plane area to retrieve the unknown inner boundary data. Liu et al. [23] tackled the Cauchy issues of
the 3D nonlinear elliptic equations in cuboids by employing the superposition of homogenization
functions method (SHFM). Upon comparing with the MGPS, they revealed that the SHFM can
tackle the Cauchy issue in a large size of the cuboid, and furthermore, the SHFM was more accurate
than the MGPS. Later, Liu et al. [24] addressed a simple and effective numerical skill, which aims to
accurately and quickly deal with the thin plate bending issues. On the basis of the given boundary
data, they established the thin plate homogenization function and derived a family of two-parameter
homogenization functions. Liu et al. [25] solved the 3D inverse Cauchy problems of the elliptic type
linear PDEs in the closed walled shells to retrieve the unknown inner boundary conditions. Several
examples of the Laplace equation, the Helmholtz equation, the modified Helmholtz equation, the
Poisson equation, a strong convection diffusion equation and a varying coefficient elliptic equation,
confirmed the efficiency and accuracy of the presented numerical scheme. Liu et al. [26] coped with two
Stefan problems. The first problem retrieved an unknown moving boundary by specifying the Cauchy
boundary conditions on a fixed left-end. The second problem revealed a time-dependent heat flux on
the left-end, such that a desired moving boundary can be achieved. Numerical instances, including
non-smooth ones, confirm that the new approaches were simple and robust against large noise. Lin et
al. [27] resolved the parameters identification issue in a nonlinear heat equation with homogenization
functions as the bases. The proposed methods did not require iteration and solving nonlinear equations
because the unknown heat conductivities were recovered from the solutions of linear systems. About
the recent developments in the field of numerical simulation and stability as well as its applications,
Mahdy and his coworkers have used many new methods to deal with those problems, such as the time-
fractional Fokker—Planck equation [2§], the isoperimetric variational problems [29], the nonlinear
biochemical reaction model and nonlinear Emden-Fowler system [30], the fractional-order biological
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systems [31], the dynamical behaviors of nonlinear Coronavirus (COVID-19) model [32], a nonlinear
fractional tumor-immune model [33], the fractional order Klein-Gordon equation [34], the Rubella
ailment disease model [35], and the fractional nonlinear rubella ailment disease model [36]. After that,
Igbal and his coworkers have utilized three approaches to tackle three issues, such as the second order
coupled nonlinear Schrodinger equations [37], nonlinear waves propagation and stability analysis for
planar waves [38], and time fractional Black—Scholes model [39].

The current study owns a novelty by establishing a new 3D homogenization functions to demolish
the boundary conditions on a partial portion of the cuboid, which is not published in the literature.
In addition, the new homogenization functions scheme does not require to tackle the highly nonlinear
equations and regularization. This article is organized as follows. Section 2 illustrates a formation
skill from the low-dimensional homogenization function to the high-dimensional homogenization
function. Then, in Section 3 we display the shape functions into the 3D homogenization function so
that we can produce a family of 3D homogenization functions as the foundations of the solution of the
3D highly nonlinear Cauchy issue. Four numerical experiments of the Cauchy issues of the 3D highly
nonlinear elliptic equations are shown in Section 4. At last, some conclusions are drawn in Section 5.

2 A New Homogenization Function

One kind Cauchy issue of the non-homogeneous and nonlinear elliptic equation is addressed in
a 3D cuboid Q := {(x,y,2) € (0,d) x (0,¢e) x (0,f)} by utilizing the 3D homogenization functions of
varied orders as the foundations, which is described as

Ve (5, 1,2) + vy, (5, 0,2) + v (5,0, 2) + Fv(x,y,2)] = 0 (x,y,2) + H[v(x,y,2)], (D

V(anaz):gl(_y,z)a V(d7y,z):g2(,yzz)z

V(X,O,Z):g3 (X’Z)a V(.x,e,Z) =44 (-X)Z)a

V(Xay50)=g5(an7)a v:(xay50)=g7(xay)a (2)
where F is a first-order nonlinear operator, and H is another first-order nonlinear operator.

Nevertheless, the Neumann data v. (x,y,0) = g,(x,y) is over-specified in order to retrieve
g (x,) := v(x,y,[f) so that the total boundary data are entire in Eqgs. (1) and (2) the data v (x, y, f)
are not defined. It is one kind of the Cauchy issues for the cuboid.

To establish the 3D homogenization function, we employ a sequential formation skill by beginning
from the 1D boundary value problem (BVP):

Fiv(0]=0(), xe€(0,4), (3)
V(O) =g1a V(d) =g2a (4)
where F'is a second-order nonlinear differential operator.
Let
X X
D(x) =g (1 - 2) + Egb (5

where g, and g, are constants and note that

D) =g, D) =g. (6)
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Indicate

wx)=v(x) — D), (7

The BVP with homogeneous boundary data are shown as follows:

Flw®)]=Q(x) —F[Dx)], x€(0,d), ®)

w(0)=0, w(d =0. 9)
Then, we ponder the 2D BVP:

Flve,n]=0x.p), (x,p €(0,d) x(0,¢), (10)

v(0,) =80, v(d,y)) =81, v(x0) =g(x), v(x,e) =gi(x). (11)
Letting

Dy =g (1-3)+ 580, (12)

which supersedes the constants g, and g, in D (x) above by the functions g, (y) and g, (). After that,

D'0.»)=g0), D'Wd,»)=8®. (13)
Denote

Dy =D+ (1-2) &0 =D @0 [+2| g0 - D' (x.0)] (14)

and in accordance with the following compatibility conditions:
g:(0) = D"(0,0) = g, (0), g,(0)=D"(0,¢e) =g (e),

g (d)=D"(d,0)=¢(0), g (d)=D"d,e)=gle, (15)
we can certify
D(an)=g1 (y)a D(day)ng(y)’ D(X,O)=g3(X), D(X,€)=g4(X). (16)

Hence, we can generate the 2D homogenization function for the 2D BVP:
D(x,y)=(1-%)[g0)—(1-1%) g 0) —Lg (0]

+ g [g2 - (1 y) g (d) — J;’g4 (d)] + (1 - g) g (x) + Jz’g4 (%) . (17)

e
Because of D (x, y), we can convert the primordial 2D BVP with non-homogenecous boundary
data to a one with the homogeneous boundary data:

F[‘V(xay)]:Q(x:y)_F[D(xay)]a (xay)e(oad)x(oae)y (18)
w(0,y) =w(a,y) =w(x,0 =w(x,e) =0, (19)

with the aid of the variable conversion from v (x, y) to w (x,y) = v(x,y) — D (x, ).
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3 A New Scheme

As well, we can establish the 3D homogenization function by beginning from the 2D homoge-
nization function. We present a new scheme of the 3D highly nonlinear Cauchy issues by utilizing the
superposition of the 3D homogenization functions.

Note that the given functions g;, i = 1,...,51in Eq. (6) gratify the consistent data as follows:
gl (V: O) = gS (0,)’) s g2 (ya O) = gS (d7y) s gl (O,Z) = g3 (072) ) gl (e,Z) = g4 (O,Z) )
g2 (Oa Z) = g3 (d> Z) ’ gz (ea Z) = g4 (da Z) b} g3 (xa O) = gS (X, O) ’ g4 (X, O) = gS (xa 6') . (20)

The first four boundary data are functions of (y,z) and (x,z) as demonstrated in Eq. (2).
Therefore, we can present the partial homogenization function as follows by superseding g, (), g, (»),
gy (x)and g, (x) in Eq. (17) by g, (1, 2), & (1, 2), &; (x, z) and g, (x, z) and employing D° in place of D

D'y =(1-5)[&0:9 - (1-2) & 0.2 - 2g.0.)]

e

oo (-2

2 (d,2) —2g.(d,2)
) :

+(1-2) g 0+ 2g (2, @D
e e
which gratifies the first four boundary data in Eq. (2):
DO(anaZ)=gl (y:Z)a Do(dayaz)=g2(yaz)a
DO (x5 O’Z) =g3 (va)a DO (X, e>Z) =g4 (x>Z)5 (22)

in which the compatible conditions g, (0,z) = g5 (0,2), g, (e,z) = £, (0,2), 2,(0,2) = g;(d, z) and we
also utilized g, (e, z) = g, (d, z) in Eq. (20).

We employ the normalized coordinates to obtain a generalization of Eq. (21):

£=2, 5=1, z:jf,, (23)
and the pth order shape functions:

7, (X) to replace g, 7. () to replace );j, (24)
in which the minimal prerequisites of 7, are

7,(0)=0, 7,(1) =1 (25)
we use the simplest ones:

L (X =¥, 1,0) =7 (26)

Hence, the k th order partial homogenization function can be shown as follows:
D’ (p,x,y,2) =[1 -7, ™M)]{& 0,2 = [1 = 5,(3)] & 0,2) — 7, () £ (0,2)}
+5®{e02) - [1-50]& .2 —7,() &2}
+[1 =75, (] g (2 +15,() g (x.2). 27
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Utilizing the characters in Eq. (25), we can verify that the above D°(p,x,y,z) gratifies the
boundary data in Eq. (22).

We can produce the p th order 3D homogenization function to fit the last two Cauchy data
v(x,,0) =g5(x, 1), v. (x,,0) = g (x,p) in Eq. (2) by

D(p,x,p,2) =D (p,%,5,2) + [1 = 5, @] [g5 (x,») = D’ (p, x,»,0)]
+f 2= 50 @] [g ) = DL, x,»,0)], (28)
and we can justify
D(p,0,y,2) =g (»,2), Dp,d,y,2) =g (,2), D(p,x,0,2) =g (x,2),
D(p,x,e,z) =g (x,2), D(p,x,»,0)=gs(x,»), D.(p,x,»,0) =g (x,)). (29)

The first four properties can be verified employing other consistent data in Eq. (20) and the
following consistent data when the last two properties forthright track from Eq. (28):

3g (v, 2) 98 (. 2)
600 =D (00,00 = BN gy = 0 pdy,0) = D)
z z=0 82 z=0
0 0
& (60 =D (p.x,0,0) = SEEDN g o) = D (pxe,0) = FEED| (30)
: 0z 0 - dz 0
Hence, assuming that
v(x,y.2) = > d,D(p,x,p.7), (31)
p=1
we can acquire the simplest solution of the 3D highly nonlinear Cauchy issue in the cuboid, of
which v (x, y, z) completely gratifies all the boundary data in Eq. (2). d,,p = 1,..., ¢ are c unknown
coefficients to be decided
>d, =1 (32)
p=1

Eq. (32) is accustomed to promise that v (x, y, z) can gratify the given data.

We can inquire Eq. (31) to gratify the governing Eq. (1) and assume at the ¢ interior points of
(x,-, Vi zk) . Then, we can cope with an over-determined linear system and Eq. (32), to decide d,:

Z d, {AD (K, Xi, Vjs zk) + F [D (Z, Xi, Vjs zk)]} =0 (x,-,y_,-, Zk) + H [vd (x,-,y,-, zk)] , (33)

=1

where in the nonlinear portion, we can use the average

1 <
Vd(x>y>Z)=ZZD(paxayaz) (34)
=1
as its argument. c is the highest order of the homogenization functions and ¢ = ¢, x ¢, X ¢g; with
x,=1id/(q.+1),y, = je/ (¢, + 1) and z, = kf/ (¢; + 1). Therefore, we obtain ¢ coefficients d, to be
dealt with from the above ¢ + 1 linear equations.
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Advantages of this proposed algorithm are no iteration, against large noise, for large domain
and no need of regularization to deal with the 3D highly nonlinear Cauchy issue. In addition, the
computational complications of the current approach are about O (n).

4 Numerical Experiments of Highly Nonlinear Cauchy Problems

Since the Neumann data v. (x, y,0) = g; (x, y) are over-specified to retrieve v (x, y,f) 1= g (x, »).
Suppose that the given information is contaminated by a random noise:

g (x[s J/j) =& (x,-,yj) +rK (i), (35)
where r denotes the intensity of noise and K (7, /) € [—1, 1] indicate random numbers.

In addition, the often utilized absolute error and relative error, we ponder a root-mean-square-
error defined by

1 L& 2
RMSE = E Z Z[g(, (X,-,J/,-) _gg] (x,-,y,-)] P (36)

=1 j=1

to estimate the accuracy of numerically retrieved boundary datum g/’ (x, y) on the plane z = f, in which
we compare the exact one g and the numerically retrieved g at H x H grid points (x,-, y,-) , L,j=
I,....,H.

Let (x,, y), i=1,...,N,, j=1,...,N, be the points on the plane z = f, where we compare the
exact solution g (x;, ;) to the numerical solution g (x;, ;) at the nth iteration. Then, we define the
root-mean-square-error (RMSE,) as follows:

1 Ny N
RMSE, = | -3 > [ (%) — & (x.2)] (37)
14¥2

=1 j=1

The numerically computed order of convergence (COC) is approximated by

In[RMSE,, /RMSE,

coc = |l 11/ l, (38)
In[RMSE,/ RMSE, ]

All the computational schemes were implemented to the Fortran code on the Microsoft Developer

Studio platform in OS Windows 10 (64 bit) with i3-4160 3.60 GHz CPU and 16 GB memory.

4.1 Example 1
We ponder a highly nonlinear one with
Ver (06, 1,2) + vy, (%, 1,2) + V.. (X, 9,2) =V (X, 3,2) + V0 (X, 3,2) + V2 (X, ), 2)
+0x,y,2), (x,y,2) € (0,1) x (0,1) x (0,12), (39)
where the exact solution is
v (x,y,z) = sinx + cosy + sinz + x* + x* + y* + 227, (40)

and thus, Q (x, y, z) is computed by inserting Eq. (40) into Eq. (39). For this highly nonlinear Cauchy
issue F[v] = 0and H [v] =V (x,,2) + v (x,»,2) + v° (x, », 2).

We utilize H x H grid points (x,,y,) = (di/H,ej/H) i,j=1,...,H with H = 50 to compare the
numerically recovered g/ (x,,y,) and the exact one g (x;, y;) to evaluate the maximum error.
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We draw the maximum errors of the numerical results of v (x, y, z) on the plane z = 12 by utilizing
the proposed method in Fig. 1a, where we use ¢ = 3, ¢ = 1 and r = 0.99. The new scheme shows an
accurate result with the maximum error being 0.112, which is smaller than the maximum value 291.85
of v on the plane z = 12 with the large domain. Note that the numerical result is very close to the exact
one in Figs. 1b and 1c. For this example, the CPU time is less than 0.2 s.

o — (a) (b) = (c)

01120 — I

3 01 = I

; ' | h
oo |

6 i

5
-4
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12)

&z
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‘::_’__
- -—h:——"
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2 1 E i
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1100 5 \ | A |
J | ! 2 "
105 T 7 < ¢ o T e
02 o o LE! e ¢
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Figure 1: For example 1 of the 3D Cauchy issue of highly nonlinear equation, (a) displaying maximum
errors with large noise effect, (b) exact solution and (¢) numerical solution with large noise effect

In Tab. I, When we use ¢ = 1 and r = 0.99, the maximum error (ME), the maximum relative
error (MRE), and the RMSE are listed for various values of ¢. Note that when ¢ chooses a suitable
value, for example ¢ = 3, the accuracy is the best.

Table 1: For example 1 the accuracy comparison for various values of ¢

c 2 3 4

ME 5.56 1.12 x 107! 7511273.69
MRE 1.91 x 1072 3.86 x 10~ 25737.18
RMSE 5.48 1.09 x 107! 7456486.81
COC (r=0) 1

4.2 Example 2

We deliberate another highly nonlinear one with
5[vee (5, 0,2) + v, (x,3,2) + v (x, 3, 2) | + 10exp [V (x, 3, 2)] =V (X, 3, 2) + V. (x, ), 2)

+0(x,»,2), (x,y,2) € (0,1) x (0,1) x (0,2.5), 41)
where the exact solution is assumed to be
v(x,y,z) = coshzcos (ﬁx) sinhy + sinhzsin (ﬁx) coshy, (42)

and hence, Q (x, y, z) is estimated by inserting Fq. (42) into Eq. (41). For this highly nonlinear Cauchy
issue F [v] = 10exp [V’ (x,y,z)] and H [v] =V’ (x,»,2) +V’ (x,,2).

We sketch the maximum errors of the numerical results of v (x, y,z) on the plane z = 2.5 by
employing the HFM under the following parameters ¢ = 3,4 = 1 and r = 0.9in Fig. 2a. The approach
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demonstrates an accurate result with the maximum error being 1.89 x 107", which is smaller than the
maximum value 11.79 of v on the plane z = 2.5. Note that the numerical solution is very close to the
exact one in Figs. 2b and 2c. For this instance, the CPU time is also less than 0.2 s.

w- (a) (b)

2.5)

F ey, z
=2.5)

Numerical uix,y

Maximuum error of
= 1
e

Figure 2: For example 2 of the 3D Cauchy issue of highly nonlinear equation, (a) displaying maximum
errors with large noise effect, (b) exact solution and (¢) numerical solution with large noise effect

In Tab. 2, the ME, the MRE and the RMSE are listed for various values of ¢, when we take ¢ = 3
and r = 0.9. When we take ¢ = 1, note that the HFM is the best.

Table 2: For example 2 the accuracy comparison for various values of ¢

q 1 2’

ME 1.89 x 107! 4.46 x 10’
MRE 2.77 x 102 3817797.78
RMSE 9.31 x 102 2.70 x 107
COC (r=0) 1

4.3 Example 3

We consider a highly nonlinear one with
10[v., (X, 9,2) + v, (X, 3, 2) + v.. (X, »,2)] — 15V} (x, p,2) = expv* (x,p,2) —v? (X, p,2) — v (X, ), 2)

- V}lyz (xayaz) + Q(xaysz)a (X,y,z) € (071) X (0,05) X (074)a (43)
where the exact solution is
1
= 44
v (x, Y, Z) e+ e + e > ( )

and therefore, Q (x, y, z) is calculated by introducing Eq. (44) into Eq. (43). For this highly nonlinear
Cauchy issue F [v] = —15v* (x, y,2) and H [v] = expy* (x,,2) — v (x,p,2) = v (X,3,2) — v (xX,),2).

Under the following parameters ¢ = 3, ¢ = 1 and r = 1.0, we draw the maximum errors of the
numerical results of v (x, y, z) on the plane z = 4 in Fig. 3a by utilizing the HFM, which displays an
accurate result with the maximum error being 1.99 x 1072, which is much smaller than the maximum
value 2.01 of v on the plane z = 4 with the moderate domain. Note that the numerical solution is very
close to the exact one in Figs. 3b and 3c.
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Figure 3: For example 3 of the 3D Cauchy issue of highly nonlinear equation, (a) displaying maximum
errors with large noise effect, (b) exact solution and (¢) numerical solution with large noise effect

In Tab. 3, the ME, the MRE and the RMSE are listed for various values of ¢, when we take ¢ = 1
and r = 1.0. Note that the HFM can provide accurate solution for all values of c.

Table 3: For example 3 the accuracy comparison for various values of ¢

¢ 2 3 4 5

ME 3.73 1.99 x 102 8.46 x 102 437 x 102
MRE 2.64 1.35 x 10 5.89 x 102 2.80 x 10
RMSE 1.99 1.03 x 102 447 x 107 2.15 % 10
COC (r=0) 1

4.4 Example 4
Finally, we contemplate another highly nonlinear one with
Ve (X, 3, 2) 4+ vy, (X, ,2) + V.. (X,,2) + 30V (x, 9, 2) = ¥ (X, ,2) +v,* (x,,2) +v* (x,,2)
+ " (x,3,2) =20V (x, 0, 2) V' (X, 0, 2) + Q (X, p,2), (x,p,2) € (0,1) x (0,1) x (0, 10), (45)
where the exact solution is
v (x,y,z) = sinxsinycosz + xysinhz, (46)

and Q (x,y,z) is estimated by introducing Eq. (46) into Eq. (45). For this highly nonlinear Cauchy
issue F[v] = 30v*(x,y,z) and H[y] = v*(x,»,2) + v;g (X, 3,2) + V¥ (x,p,2) + V¥ (x,p,2) —
20v (x, p,2) v (x, 3, 2).

Under the following parameters ¢ = 1, ¢ = 1 and the large intensity of noise r = 1101.0, we find
that the HFM shows a quite accurate solution with the maximum error is 3.02 x 107, the MRE is
1.91 x 10-® and the RMSE is 1.55 x 1073, which is smaller than the maximum value 11012.64 of v on
the plane z = 10 with the large area. Note that the numerical solution is very close to the exact one in
Figs. 4b and 4c.
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Figure 4: For example 4 of the 3D Cauchy issue of highly nonlinear equation, (a) displaying maximum
errors with large noise effect, (b) exact solution and (¢) numerical solution with large noise effect
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Figure 5: Frame work of 3D fourth-order highly nonlinear steady state PDEs by using the new HFM

5 Conclusions

We have addressed a new meshless approach to tackle the Cauchy issues of the 3D nonlinear
elliptic equations in cuboids in this article. In the presently proposed homogenization functions
method, we could construct the different-order 3D homogenization functions to fit all the specified
boundary data, including the Neumann one in the whole area. We put in the average assortment as
an approximate solution to the nonlinear operator section, without requiring to deal with nonlinear
equations to decide the weighting coefficients since these establishments are owned many data about
the true solution. The current scheme merely solving a small scale linear system is the simplest method
to tackle the 3D highly nonlinear Cauchy issues, which is correct to reveal the numerical solutions
with the errors smaller than the level of noise being placed on the over-specified Neumann data on the
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bottom of the cuboid. On the basis of those numerical experiments, we demonstrate that the proposed
algorithm is applicable to the Cauchy issues of the 3D highly nonlinear elliptic equations in cuboids
and very good computational efficient, and even for adding the large random noise up to 50%. The
numerical errors of our method are in the order of O(10~")-0O(10~*). Furthermore, to the author’s best
knowledge, there has no report in the literature that the numerical methods for above-mentioned four
issues can offer more accurate results than the present one. The present scheme can be extended to cope
with the 3D fourth-order highly nonlinear steady state PDEs as shown in Fig. 5 and will be worked
out in the future.
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