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Abstract: Image classification always has open challenges for computer vision
research. Nowadays, deep learning has promoted the development of this
field, especially in Convolutional Neural Networks (CNNs). This article
proposes the development of efficiently scaled dilation of DropBlock opti-
mization in CNNs for the fungus classification, which there are five species
in this experiment. The proposed technique adjusts the convolution size at
35, 45, and 60 with the max-polling size 2 × 2. The CNNs models are also
designed in 12 models with the different BlockSizes and KeepProp. The
proposed techniques provide maximum accuracy of 98.30% for the training
set. Moreover, three accurate models, called Precision, Recall, and F1-score,
are employed to measure the testing set. The experiment results expose that
the proposed models achieve to classify the fungus and provide an excellent
accuracy compared with the previous techniques. Furthermore, the proposed
techniques can reduce the CNNs structure layer, directly affecting resource
and time computation.

Keywords: DropBlock; convolutional neural network; deep learning; fungus
classification

1 Introduction

Fungus is one type of microorganism that plays an essential role in ecology and currently has more
than 100,000 species [1,2]. Its growth exists, maintains, and spreads in the terrible weather, causing
diseases to plants, animals, and humans. Infection from fungus is named “mycoses.” There are two
types of mycoses in humans: superficial mycoses infected from various species [3–6] and systemic
mycoses [7–10]. There are primary process methods to classify the mycoses species, such as matrix-
assisted laser desorption/ionization time-of-flight mass spectrometry and polymerase chain reaction
to assess the presence of other candida albicans and aspergillus under aerobic conditions [11], open-
ended coaxial probe in couple with the microwave analysis to identify the fungus electrical properties
[12]. Though such approaches give reliable and precise results, they need special devices that are costly
and require well-trained practitioners to operate. Thus, this is the medical limitation to analyzing and
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identifying the disease’s causing the spreading and growth are speedy. Therefore, computer vision
and deep learning techniques are the alternative solutions to get quick and efficient results. The
development of computer vision in couple with deep learning comprises many processes, such as
data access via a microscope and mathematical methods to explain the structure and identification of
species. From such processes, some studies and development, as shown in [13], presented the Bottom-
hat and Otsu’ Threshold technique to enhance the sharpness and separate the material on the image
and artificial neural networks (ANNs) with a total of 30 nodes that were classified fungus spores.
The experiment results indicated 93.6% of the efficiency. Those researches were exciting because the
development aimed to resolve the problem of identifying the fungus species. From the guidelines, the
development has been continued. As shown in [14], the Support Vector Machine (SVM) technique to
detect the fundus was proposed. The research set two dominant features of fungus, Hand-crafted, and
Histogram of Oriented Gradients. The experiment compared the feature map, size [2 × 2], [4 × 4], and
[8 × 8], which were the images used in the learning with the SVM technique. The experiment results
showed that the accuracy efficiency was 88% and 70%. The Convolutional Neural Network model
consisted of 10 layers, with the 2 × 2 convolution windows and the 3 × 3 kennel [2]. The softmax
function was the final part of the network, which was to receive the neurons. The experiment is
based on the learning rate (LR) at 0.1 to 0.00001. The fungus spore database used for the training
and experiment comprised 5 species, 40,800 images, of which 30,000 images were for the training set
and 10,800 images for the experiment set. The image size was adjusted to 76 × 76 pixels to increase
the training speed. The experiment results showed 94.8% of accuracy efficiency. The [15] presented
a web application. The research emphasized the dominant feature of the chemical culture color,
whereas the experiment technique focused on transferring the ResNet 50 model. In training, the
determination of learning rate was 0.0001, Adam optimizer (β1) was 0.9, Adam optimizer (β2) was
0.999, Adam minibatch size was 128, and Max epoch was 1000 rounds. The accuracy efficiency of
the results was 96.5%. Moreover, in [16], the research proposed enhancing CNNs model efficiency
and the morphology technique. The accuracy efficiency of the experiment was 93.26%. In [17], the
research proposed comparing new CNNs, including RCNN, VGG-19, Le-Net, and Inception-V3.
Such a model utilized 36,486 images in the training and experiment. The efficiency of the experiment
was 93.6% (R-CNN), 91.2% (VGG-19), 81.0% (Le-Net) and 93.1% (Inception-V3). Furthermore,
the [18] was experimented by transferring the learning by emphasizing the Resnet-C-SVM training
model with 1,204 images. The accuracy efficiency of training results was 96.5%. [19] showed the
efficiency comparison of GoolgeNet and AlexNet model, which were tested with the database of
Aspergillus, 40,000 images. The accuracy efficiency of the experiment results was 95% and 96%.
Moreover, [20] illustrated the fungus classification using the parameter of SVM (Kernel, C, RBF)
in couple with AlexNet, InceptionV3, and ResNet 18. The database was divided into 2 sets involving
2-fold cross-validation and 5-fold cross-validation. The efficiency of experiment results was 82.4% ±
0.2% and 93.9 ± 3.9% (AlexNet FV SVM), 41.3% ± 1.9% and 55.0% ± 5.6% (InceptionV3 FV SVM),
71.3% ± 1.5% and 88.3% ± 2.7% (ResNet18 FV SVM). The feature extraction and classification
network expansion with 16 layers consisting of convolution, kernel, pooling, and the full connection
is presented [21]. The training included 1,500 images of fungus. The efficiency of the experiment
results was 98.03% (accuracy). In [22], the research proposed fine-grained multi-instance-based deep
attention. The model utilized 2,000 images in the training and experiment. The efficiency of the
experiment was 94.3% (accuracy). The results were concluded in Tab. 1.
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Table 1: Studies of fungus detection and classification used images processing and deep learning model

Paper/year Data set
(images)

Species Method Research focus
on:

Results

[2] /2018 40,800 images. -Penicillioides.
-Restrictions.
-Versicolor.
-Cladosporium.
-Eurotium.

-CNNs -Fungus
dataset.
-Learning rate.

-Acc = 94.8%

[13]/2015 1,903 fungus
form 1,000
images.

-Fungus in fecal
images.

-Bottom-hat,
Otsu’s, ANN

-Layer of
A-NN.

-Acc = 93.6%

[14] /2017 1,928 spores
images.

-Airborne
fungus.

-Hand-crafted.
-HOG.
-SVM.

-Two different
kinds of feature
vectors.

-Acc = 88%
-AUC = 70%

[15]/2018 1,204 images. -Dye
decolourisation
in fungus strains.

-ResNet 50 -Web
application.

-Acc = 96.5%

[16] /2019 30,000 images. -Fungus in
leucorrhea
images.

-Morphology.
-CNNs.

-Improve
recognition
accuracy.

-Acc = 93.26%

[17]/2019 36,486 images. -Fungus in
leucorrhea
images.

-R-CNN.
-VGG-19.
-LeNet.
-Inception-V3.

-Compare
algorithms.

-Pre = 93.6%
-Pre = 91.2%
-Pre = 81.0%
-Pre = 93.1%

[18]/2019 1,204 images. -Dye
decolorization in
fungus strains.

-Resnet-C-
SVM.

-Compare
algorithms.

-Acc = 96.5%

[19]/2019 40,000 images. -Aspergillus. -GoogleNet.
-AlexNet.

-Compare
algorithms.

-Acc = 95%
-Acc = 96%

(Continued)
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Table 1: Continued
Paper/year Data set

(images)
Species Method Research focus

on:
Results

[20]/2020 DIFaS
database
contains 180
images.

-Candida
albicans
-Candida
glabrata
-Candida
lustianiae
-Cryptococcus
neoformans
-Candida
parapsilosis
-Candida
tropicalis
-Maalasezia
furfur
-Saccharomyces
boulardii
-Saccharomyces
cerevisae.

-AlexNet FV
SVM.
-InceptionV3
FV SVM.
-ResNet18 FV
SVM.

-Features
extraction.
-Deep fisher
vector.
-Compare
algorithms.
-Parameter of
SVM.

-Acc = 82.4%
± 0.2% &
93.9% ± 3.9%
-Acc = 41.3%
± 1.9% &
55.0% ± 5.6%
-Acc = 71.3%
± 1.5% &
88.3% ± 2.7%

[21]/2020 1,500 images. -Chaetomium.
-Aspergillus.

-HSV and
Ycbcr,
-CNNs

-Layer of
CNNs.

-Acc = 98.03%

[22]/2020 2,000 images. -Aspergillus. -ResNet 50.
-MxNet.

-Multiple
instances
fine-grained.
-Deep
attention.

-Acc = 94.3%

∗Note: Acc = Accuracy, Rec = Recall, Pre = Precision, AUC = Area under the ROC curve.

It can notice in Tab. 1 that most of the previous deep learning techniques for fungus classification
adjusted parameters and kernel size of the convolutional layers, which were the significant factors
of the feature extraction. Thus, this research aims to improve the efficiency of the CNNs models
by adjusting the convolutional net with adjusting the BZ and KP of DropBlock parameter for
fungus classification that can apply to the biotechnical. Those fungi consist of Aspergillus, Absidia,
Fusarium, Penicillium, Rhizopus with metula, phialide, conidium, sporangium as physical features.
The performance of the proposed models is measured using precision, recall, f1-score, and confusion
matrix. The rest of this paper is organized as follows: Section 2 experimental method setup and fungus
datasets are presented; the result in Section 3; the discussion in Section 4; Section 5 conclusion our
findings and future work.
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2 Experimental Method

As shown in Fig. 1, the overview of the research was divided into three parts. Firstly, it was the
access to fungus images. It involved sample collection, microscope observation, and data synthesis
(rotation, contrast, refection, and gaussian noise). Secondly, the convolution structure extracted the
network components into three parts; the first was feature extraction. This research included the
Convolution, max-pooling, and DropBlock, respectively, as shown in Tab. 2. This research modified
the stack to maximize the capability to feature extraction (shape, line, and colors). The second part was
the activation function that decides the final value of a layer, which replaces all negative values to zero
and remains the same with the positive values. Finally, in the third part, the researcher modified the
wholly connected layers to increase the network’s learning. Such layers were standardized by applying
the dropout to improve the solution’s efficiency. This network was trained with the learning function
to enhance the capability of feature learning, which the learning rate was not modified during the
training and the training number. However, it focuses on the efficiently scaled dilation of BZ and KP,
which were the crucial part of the features extraction and the experimental method to determine the
optimal efficiency of the model. Finally, the accuracy, recall, precision, and f1-score are also used to
evaluate the classification performance.

Figure 1: The proposed method for fungus classification

Table 2: Fungus image distribution in train, validation, and test datasets

Fungus types Training (71.38%) Validation (14.28%) Test (14.33%) Total

Aspergillus: Asp 602 122 122 846
Absidia: Abs 468 95 96 659
Fusarium: Fus 460 91 91 642
Penicillium: Pen 781 160 160 1,101
Rhizopus: Rhi 632 121 122 875
Total 2,943 589 591 4,123
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2.1 Preprocessing Data

This research collected the sample using the settle plate method (SPM). The 36 petri plates with
the culture medium, potato dextrose ager (PDA), were placed at 9 spots around the swine and poultry
farms without disturbing activity, 4 replicating each area. Left the plates for 30 min and incubated
at room temperature for 4 days. After using the slide culture method (SCM) for preparing fungus
colonies for examination and identification, incubation temperature at 25°C–28°C, 4 or more days.
The colonies were collected from such an approach, as shown in Fig. 2.

Figure 2: The colonies of fungus on petri plates

The explanation of each colony was introduced in [23–26]. Then, it raked the colony with
Lactophenol Cotton Blue (LPCB), as shown in Fig. 3a. The images were collected via the XENON
SME-F1L microscope with the magnification 4x, 10x, and 40x, as shown in Fig. 3b. Then, it cropped
only the fungus area, which was 359 images in total, including 84 images of Aspergillus (Asp), 77
images of Absidia (Abs), 72 images of Fusarium (Fus), 61 images of Penicillium (Pen), and 65 images
of Rhizopus (Rhi). The number of such images was limited when counting as the image for training
deep learning.

Figure 3: Local fungus images in microscopic and data synthesis
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The images are converted with the rotation, refection, histogram balance adjustment or contrast,
and gaussian noise in the data synthesis step in [27], as shown in Fig. 3c. It was proved that such an
approach was reliable and straightforward, which could be applied to the variable image and the top
view vision. The number of images was concluded in Tab. 2.

An amount number of five fungus species images is shown in Tab. 2. It can create a category to be
training set, validation set, and testing set approximately 72%, 14%, and 14%, respectively.

2.2 Convolutional Neural Network

The convolutional neural network (CNNs) architecture had been developed to recognize the form
and classify the data [28]. The neural network with the order of feature extraction functioned with the
classification to resolve the traditional technique; setting the extent of pixel movement on the image as
desired resulted in the inefficient outcome. On the other hand, the CNNs technique applied the feature
extraction from the convolution and connected layers, which functioned as the encoder. Currently, it
could be used widely, such as image division or object detection. As mentioned earlier, CNNs proved
that it provided efficient results for medical research. For example, CNNs was applied to classify lung
disease, identify cancer on CT [29], detect malaria parasites [30], fecal examination, and COVID-19
test [31].

Moreover, the model structure of CNNs had been developed to be compatible with the various
data, such as ResNet [15], VGG Net [17], and GoogleLeNet [19]. However, such a model had a limited
size, structure, filtration layer, parameter, and input layer size to the database dimension. The large-
sized model required time to train and learn with the specific data which the transfer learning (TL)
[18] was one of the exciting approaches to resolve such problems.

The critical components of CNNs consisted of the 3 parts:

2.2.1 Convolutional Stage

The first part was the convolutional stage which classified the data components, such as the edge
of object, shape, and color. The filter was created to verify such components, which could be calculated
with Eq. (1), where Z was the kernel of the image I.

(Z × I) (i, j) =
∑

a,b

Z (a, b) I (i + a, j + b) (1)

2.2.2 Detector Stage

The second part was the detector stage, which was necessary for the network extraction. Rectified
Linear Unit (ReLU) was the popular function because of its ability to change the negative component
of the matrix to 0 while maintaining other values. The researcher added it to the feature extraction and
classification stage, calculated with Eq. (2), where x was the output activation. From the component
equation for feature filtration, ReLU was the popular activation function due to its ability to change
the negative component of the matrix to 0 while maintaining other positive values.

∅ (x) = max (0, x) (2)

From (1)-(2), the kernel’s weight was used with the input image, so it extracted the high quality of
the specific position depending on the size of the kernel. ReLU left the gap for feature classification,
and the output from the convolution was always higher than the input. Finally, the pooling stage
determined the maximum value at the position where the filter overlapped, and it cooperated with the
determined stride. Then, the data would be sent to the classification layer.
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In addition, the efficiency of convolutional layers is continuously increased by the Dropout (DO)
[32] or Spatial Dropout (SDO) [33], which had been proved that they could enhance the model
efficiency. However, the results were unsatisfactory when applied to the image data because the feature
extraction randomized the image with a high relationship. Therefore, such an approach extracted the
area components inefficiently. Consequently, it could not send the features to the next layer. Thus, this
proposed technique exploits the DropBlock [34] to solve these problems. The BlockSize (BZ) and γ

are two crucial parameters in which BZ is the drop area, and γ is the unit controller of dropping. Also,
the KeepProp (KP) is the unit operation probability during dropout state, as shown in Eq. (3).

γ = 1 − KP
BZ2

× feat_size2

(feat_size − BZ + 1)
2 (3)

2.2.3 Classification Stage

The third part was the classification stage, which received the input from the convolution layer.
The input changed to vector and calculated using the Eq. (4) that the neuron’s information was x =
(x1, 1, . . . , xn) and wj = (

wj, 1, . . . , wjn

)
was the weight function of the node and by a function (bj).

yi = fi (x) = ∅ ((
wjx

) + bj

)
(4)

Anyhow, the Softmax function was the function to receive the total of classification layers. This
research put it at the last layer of the network to make the output in the probability to calculate the
negative probability for the loss of cross-entropy where the total value was 1 or 1 approaches value, as
shown in Eq. (5):

softmax(z)i = exp (zi)∑
j exp

(
zj

) (5)

This research presented the CNNs in couple with the DB optimized. The details of the network
are shown in Tab. 3. The total proposed structure consisted of 32 layers, divided into 15 convolutional
layers, 5 DB layers, 5 max-pooling layers, 1 flatten layer, and 4 fully connected layers (4 dense layers, 2
dropout layers, 1 softmax activation). The ReLu activation function was used in this setup. Regarding
the feature extraction, the kernel was different at each layer; max-pooling was in the size of 2 × 2 with
SAME and Padding to move the filter’s position and increase the gap for the extraction. All layers had
the ReLu activation to minimize the vanishing gradient problem, so quickly processing the training.
The DB layer was behind the feature extraction layer to emphasize the image quality. Regarding the
classification, ReLu activation was the total result function with the dropout (0.20) to screen the node.
The softmax function was in the last layer to receive the complete results of the classification.

Table 3: Detail of convolutional neural networks architecture for fungus classification

Layers
No.

Layers
type.

Strid Filter
size

Activation Fc-
unit

Layers
No.

Layers
type.

Strid Filter
size

Activation Fc-
unit

Layer 1 ConV 1∗1 35, 2∗2 ReLU - Layer 17 ConV 1∗1 60, 2∗2 ReLU -
Layer 2 ConV 1∗1 35, 2∗2 ReLU - Layer 18 ConV 1∗1 60, 2∗2 ReLU -
Layer 3 ConV 1∗1 35, 2∗2 ReLU - Layer 19 MaxP - 2∗2 ReLU -
Layer 4 MaxP - 2∗2 ReLU - Layer 20 DB - BZ, KP - -
Layer 5 DB - BZ, KP - - Layer 21 ConV 1∗1 60, 2∗2 ReLU -
Layer 6 ConV 1∗1 45, 2∗2 ReLU - Layer 22 ConV 1∗1 60, 2∗2 ReLU -
Layer 7 ConV 1∗1 45, 2∗2 ReLU - Layer 23 ConV 1∗1 60, 2∗2 ReLU -

(Continued)
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Table 3: Continued
Layers
No.

Layers
type.

Strid Filter
size

Activation Fc-
unit

Layers
No.

Layers
type.

Strid Filter
size

Activation Fc-
unit

Layer 8 ConV 1∗1 45, 2∗2 ReLU - Layer 24 MaxP - 2∗2 ReLU -
Layer 9 MaxP - 2∗2 ReLU - Layer 25 DB - BZ, KP - -
Layer 10 DB - BZ, KP - - Layer 26 Flatten - - - -
Layer 11 ConV 1∗1 45, 2∗2 ReLU - Layer 27 FC1 - - ReLU 1028
Layer 12 ConV 1∗1 45, 2∗2 ReLU - Layer 28 DO 0.20
Layer 13 ConV 1∗1 45, 2∗2 ReLU - Layer 29 FC2 - - ReLU 512
Layer 14 MaxP - 2∗2 ReLU - Layer 30 DO 0.20
Layer 15 DB - BZ, KP - - Layer 31 FC3 - - ReLU 64
Layer 16 ConV 1∗1 60, 2∗2 ReLU - Layer 32 FC4 - - Softmax Class

The VGG Net inspired the proposed components. The model included the convolution layers to
classify the features at different levels, emphasizing feature extraction to obtain the utmost data. The
experiment applied the convolutional sizes 35, 45, and 60 with the max-pooling sized 2 × 2 and the
DB, which significantly enhanced the model efficiency. All factors were connected, so the calculation
was reasonable.

The proposed architecture was tested with the image sized 100 × 100 × 3 pixel and trained with
the model 50 times. During the training, the learning rate was adjusted to 0.0001 while the Adam
Optimizer was set at 0.9 (β1) and 0.0009 (β2). The learning function binary cross-entropy model
used the ReLU function to compile a feature where the softmax function was in the last layer of the
classification. The batch size for classifying the data in training was set at 256, with the epsilon set at
1e-8. The detail of the parameter was concluded in Tab. 4.

Table 4: Hyperparameter for train model

Parameter Value

Input size 100 × 100 × 3
Max epochs 50
β1 Adam Optimizer 0.9
β2 Adam Optimizer 0.0009
Function Binary cross entropy
Epsilon 1e-8
Dropout 0.2
Batch size 256
Learning rate 0.0001

This experiment was performed on Windows 10 and the graphic processing on NVidia GeForce
RTX 2070 Super Gaming OC 8 GB with the memory at 32 GB to accelerate the calculation speed.
For the DL technique, the researcher applied the library of Tensorflow and Keras. The fungus image
retrieval from OpenCV depended on Python 3.6.

2.3 Evaluation

The research on DL was divided into 2 main groups to resolve the regression and classification
problems. This research presented a CNNs model to classify the fungus image. The model’s efficiency
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was measured from the variable y with the value from 0 to 1. The research results were calculated
from the accuracy as the Eq. (6) to evaluate model performance. In fungus types, precision, recall, and
f1-score as the Eqs. (7)-(9) are considered evaluation metrics for classifier performance.

Accuracy = (Tp + Tn) / (Tp + Tn + Fp + Fn) (6)

Precision = (Tp) / (Tp + Fp) (7)

Recall = (Tp) / (Fp + Fn) (8)

F1 − score = 2 × (precision × recall) / (precision + recall) (9)

3 Results

In the experiment, the BZ and KP are modified to investigate the suitable feature map in the
decision function. The modification can be divided into 2 types. Firstly, in the term of vary BZ, the
parameter of BZ adjusted to 1, 4, 6, 8, 10, and 12, respectively, and the parameter of KP was the
static value at 0.99. The accuracy efficiency of training results was 95.56%, 97.13%, 96.48%, 98.30%,
97.04%, and 97.60%, as shown in Fig. 4a. The val_accuracy efficiency was 99.22, 99.89, 97.32, 99.89,
99.78, and 100.0, as shown in Fig. 4b. Secondly, in the term, vary BZ and KP, the parameter of BZ was
random as 4, 3, 2, 7, 1, and 11, and the parameter of KP was also random 0.61, 0.72, 0.58, 0.70, 0.65,
and 0.81, respectively. The accuracy efficiency of training results was 94.36, 87.05, 87.75, 96 .01, 91.66,
and 96.99, as shown in Fig. 4c. The val_accuracy efficiency was 48.83, 66.69, 47.94, 66.89, 70.01, and
94.54, as shown in Fig. 4d. Finally, this research model was performed with the test set. The fungus
classification results and the confusion matrix were shown in Tab. 5 and Fig. 5, respectively.

Figure 4: The performance of accuracy and validation of CNNs model
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Table 5: Result of fungus classification

Fungus type Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

BZ = 1, KP = 0.99 BZ = 4, KP = 0.99 BZ = 6, KP = 0.99

Aspergillus 0.85 0.70 0.77 0.81 0.86 0.84 0.90 0.89 0.90
Absidia 0.86 0.71 0.78 0.85 0.69 0.76 0.74 0.75 0.74
Fusarium 0.88 0.94 0.91 0.91 0.99 0.95 0.78 1.00 0.88
Penicillium 0.91 0.90 0.91 0.93 0.91 0.92 0.92 0.60 0.73
Rhizopus 0.85 1.00 0.92 0.94 1.00 0.97 0.95 1.00 0.98

BZ = 8, KP = 0.99 BZ = 10, KP = 0.99 BZ = 12, KP = 0.99

Aspergillus 0.82 0.86 0.84 0.93 0.86 0.89 0.87 0.88 0.88
Absidia 0.81 0.62 0.70 0.92 0.65 0.76 0.81 0.65 0.72
Fusarium 0.91 0.97 0.94 0.86 1.00 0.93 0.88 0.93 0.90
Penicillium 0.88 0.87 0.87 0.82 0.88 0.85 0.96 0.85 0.90
Rhizopus 0.92 1.00 0.96 0.93 1.00 0.97 0.84 1.00 0.91

BZ = 4, KP = 0.61 BZ = 3, KP = 0.72 BZ = 2, KP = 0.58

Aspergillus 0.37 0.64 0.47 0.42 0.82 0.56 0.54 0.82 0.65
Absidia 0.42 0.52 0.47 0.56 0.48 0.52 0.62 0.34 0.44
Fusarium 0.49 0.67 0.56 0.77 0.58 0.67 0.41 1.00 0.58
Penicillium 0.82 0.47 0.60 0.95 0.56 0.71 0.72 0.08 0.14
Rhizopus 1.00 0.09 0.17 0.95 0.43 0.60 0.93 0.22 0.35

BZ = 7, KP = 0.70 BZ = 1, KP = 0.65 BZ = 11, KP = 0.81

Aspergillus 0.50 0.78 0.61 0.31 0.88 0.46 0.83 0.86 0.84
Absidia 0.60 0.39 0.47 0.24 0.28 0.26 0.78 0.38 0.51
Fusarium 0.57 0.91 0.70 0.39 0.19 0.25 0.56 1.00 0.74
Penicillium 0.86 0.60 0.71 0.91 0.19 0.32 0.78 0.58 0.67
Rhizopus 1.00 0.50 0.66 1.00 0.13 0.23 0.96 1.00 0.98

The measurement results in Tab. 5 provided the best overall recall efficiency and F1-score when
BZ = 6 with KP = 0.99. The recall effectiveness provided 0.89%, 0.75%, 1.00%, and 1.00% to Asp, Fus,
Abs, and Rhi. Also, the F1-score significance provided 0.90% and 0.98% to Asp and Rhi. The Recall
and F1-score effectiveness, which BZ = 4 with KP = 0.99, provided 0.91% and 0.92%, respectively,
for Pen.

According to the classification results by confusion matrix, the test set comparison in the column
and row of each class to describe the rate of classification accuracy. The observed color diffusion of
the matrix implied classification efficiency. The dark blue area represented an accuracy of 0.800 (80%)
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Figure 5: Normalized confusion matrix comparison

to 1.000 (100%). The light blue and green represented predicted data, with errors with an accuracy rate
of 0.500 (50%) to 0.790 (79%). The results of Tests 1 and 2 were displayed in Figs. 5a–5c to Fig. 5l.

According to Fig. 5, Asp, Fus, Abs provided the best accuracy efficiency, tested by BZ = 6 and
KP = 0.99. Pen had the best efficiency, tested by BZ = 4, 8 with KP = 0.99, conforming to Tab. 5, Rhi
had equal efficiency of 1.00 (100%) tested by BZ = 1, 4, 6, 8, 10 and 12 with KP = 0.99.

4 Discussion

This research presented the CNN network modified with the 3 different sizes of input filters,
i.e., 35 × 35 × 3, 45 × 45 × 3, and 60 × 60 × 3. The advantages also include efficiency enhancement
by hyperparameter per round (of practice). On the other hand, small patches of the previous network
caused the improper number of patches, failing to gather good data patches for transfer to the next
layers [30,35].

According to Test 1, as in Fig. 4a, the test efficiency revealed that the parameter of DB brought
high accuracy efficiency to the model, by BZ = 8 with KP = 0.99. The results also revealed the
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lowest accuracy efficiency, by BZ = 1 with KP = 0.99. The difference between both accuracy effi-
ciency = 2.78%. The enhanced efficiency was also revealed, varying with the sizes of blocks. In this
regard, verification revealed the results at the same levels, although BZ = 6 with KP = 0.99 had the
efficiency of 97.32% (val_accuracy). The results could be furthered as in Fig. 4b

According to Fig. 4c, the test efficiency revealed that the parameter of DB brought high accuracy
efficiency to the model, by BZ = 11 with KP = 0.81. The results also revealed the lowest accuracy
efficiency, by BZ = 3 with KP = 0.72. The difference between both accuracy efficiency = 9.94%.
According to the results of evaluating accuracy efficiency in Fig. 4d, the best efficiency was found
by BZ = 11 with KP = 0.81. The results also revealed the lowest accuracy efficiency, by BZ = 2 with
KP = 0.58. The difference between both efficiency = 46.6% (val_accuracy). However, the character-
istics of the graphs revealed discontinued learning of the model, resulting in overfitting [33,36]. This
problem was analyzed from the test results by BZ = 11 with KP = 0.81 as in Tab. 5. The efficiency of
Fus and Rhi = 1.00 (100%), tested by Recall or in Fig. 5l. The test results revealed 1.00 (100%) accuracy
of Fus and Rhi.

The fungus database was analyzed for characteristics and data variance through decomposition
by PCA in Fig. 6. PC1, PC2, and PC3 were set as the eigenvectors of linear transformation. The key
components were displayed in 3D and analyzed by diffusion of color intensity. The relationship of
the training set is displayed in Fig. 6a. The relationship of the testing set is displayed in Fig. 6b. Each
cluster or species label was written on the axis of its image, i.e., Asp, Abs, Fus, Pen, and Rhi. The data
set of training and tests of each species revealed data dispersion without classification.

Figure 6: Different color scatters represent different fungus datasets by PCA

The proposed researcher compared with the previous techniques, shown in Tab. 6, i.e., KNN,
SVM, and ANNs. The ANNs contained the number of 2-layer nerve cells, i.e., 30 nodes (Layer 1)
and 10 nodes (Layer 2) with dropout (0.2), respectively. The comparison also included dropout (0.2)
and SpatialDropout (rate = 0.2), the additional techniques to enhance model efficiency. Furthermore,
the suggested technique used more time than KNN (on CPU), SVM (on CPU), and ANNs (on GPU)
by 2.96% (n), 2.93% (n), and 3.09% (n). However, its accuracy efficiency was better by 15.62%, 14.42%,
and 8.64% because the old methods failed to separate data attributes independently. Even so, the
suggested technique contained further steps in terms of extraction, characteristics, and practice. As
a result, its efficiency in terms of time was inferior to the old ones. When comparing with LeNet-5 (on
GPU), CNNs (modified) with DO (0.2) (on GPU), and CNNs (modified) with SDO (rate = 0.2) (on
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GPU), the results of the wasted time on training were similar. However, the efficiency of the suggested
technique was better by 1.19%, 2.20%, and 0.43% (accuracy) because DB could spread out the net
to set areas for extracting data attributes, which could enhance the effectiveness of the model. Also,
ResNet50 [15], VGG16 and VGG19 [17], DenseNet121 and Xception [36], InceptionResNetV2 and
InceptionV3 [37], are trained with TL method [18] using two layers of fully connected, which each
layer consisted of 500 nodes. The results show that the ResNet 50 provides the maximum efficiency at
99.98%, better than the CNNs (modified) with DB (BZ = 8, KP = 0.99) at 1.68%. However, the CNNs
(modified) with DB (BZ = 8, KP = 0.99) uses timeless than the ResNet 50 at 7.14 times. It is expressed
in Tab. 6.

Table 6: Performance comparison of classification techniques and CNNs model

Method Learning
rate

GPU or
CPU

Epoch Input size Accuracy
(training)

Training
time (m)

KNN
(n-neighbors = 5)

- CPU 100 100x100x3 82.68 (%) 0.45 (m)

SVM (kernel-poly) - CPU 100 100x100x3 83.88 (%) 0.48 (m)
ANNs-dropout
(0.2)

0.0001 GPU 100 100x100x3 89.66 (%) 0.32 (m)

LeNet-5 0.0001 GPU 100 100x100x3 97.11 (%) 1.28 (m)
VGG16 (TL) 0.000001 GPU 100 200x220x3 97.54 (%) 31.68 (m)
VGG19 (TL) 0.000001 GPU 100 200x200x3 94.47 (%) 48.23 (m)
DenseNet121 (TL) 0.000001 GPU 100 200x200x3 97.88 (%) 77.16 (m)
Xception (TL) 0.000001 GPU 100 150x150x3 73.83 (%) 9.91 (m)
ResNet50 (TL) 0.000001 GPU 100 200x200x3 99.98 (%) 24.36 (m)
InceptionResNetV2
(TL)

0.00001 GPU 100 150x150x3 99.41 (%) 34.28 (m)

InceptionV3 (TL) 0.00001 GPU 100 150x150x3 99.25 (%) 11.49 (m)
CNNs (modified)
with DO (0.2)

0.0001 GPU 100 100x100x3 96.22 (%) 4.08 (m)

CNNs (modified)
with SDO
(rate = 0.2)

0.0001 GPU 100 100x100x3 97.87 (%) 3.35 (m)

CNNs (modified)
with DB (BZ = 8,
KP = 0.99)

0.0001 GPU 100 100x100x3 98.30 (%) 3.41 (m)

According to the aims of this research, the modified CNNs models can succeed in identifying
each fungus in the data set. It provides reasonable accuracy and timeless computation. However, these
results also depend on the training resource and adjusting the parameters in models.

5 Conclusion

Convolutional Neural Networks (CNNs) have been challenged to image classification with large
image datasets applied to biotechnology. This article presents the fungus classification based on
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efficiently scaled dilation of DropBlock optimization in CNNs. The proposed method can be divided
into three parts. Firstly, the preprocessing process is introduced to collect image data from the fives
fungus species, including Aspergillus, Absidia, Fusarium, Penicillium, and Rhizopus. Then those
image is prepared with image processing technique such as rotation, reflection, images contrast, and
Gaussian noise techniques. Secondly, the modified CNNs models are investigated to operate and
compared with the previous works by adjusting BlockSize and KeepProp. Finally, the accuracy of the
proposed method is measured using Precision, Recall, and F1-score. The experiment results illustrate
that the modified CNNs models achieved classify the five fungus species.
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