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Abstract: Artificial intelligence, which has recently emerged with the rapid
development of information technology, is drawing attention as a tool for
solving various problems demanded by society and industry. In particular,
convolutional neural networks (CNNs), a type of deep learning technology,
are highlighted in computer vision fields, such as image classification and
recognition and object tracking. Training these CNN models requires a large
amount of data, and a lack of data can lead to performance degradation
problems due to overfitting. As CNN architecture development and optimiza-
tion studies become active, ensemble techniques have emerged to perform
image classification by combining features extracted from multiple CNN
models. In this study, data augmentation and contour image extraction were
performed to overcome the data shortage problem. In addition, we propose a
hierarchical ensemble technique to achieve high image classification accuracy,
even if trained from a small amount of data. First, we trained the UC-
Merced land use dataset and the contour images for each image on pretrained
VGGNet, GoogLeNet, ResNet, DenseNet, and EfficientNet. We then apply
a hierarchical ensemble technique to the number of cases in which each
model can be deployed. These experiments were performed in cases where
the proportion of training datasets was 30%, 50%, and 70%, resulting in a
performance improvement of up to 4.68% compared to the average accuracy
of the entire model.
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1 Introduction

Recently, demand and use cases of big data have been increasing in various industries, and owing
to the rapid development of artificial intelligence, it has drawn attention as a tool to solve various
problems demanded by society and industry. In particular, research on land-use classification in remote
sensing fields is actively underway, and related high-resolution spatial image data can be obtained. In
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addition, innovative advances in computer vision field technology create a variety of opportunities to
improve remote sensing image recognition and classification performance, facilitating the development
of new approaches. The classification of land use in remote sensing images is critical for analyzing,
managing, and monitoring the land use areas of people. In addition, deep learning-based classification
techniques are needed to analyze environmental pollution, natural disasters, and land changes caused
by human development in consideration of the complex geographical characteristics and diversity of
images according to the weather.

Traditional image recognition techniques have used methods such as SIFT [1], HOG [2], and
BoVW [3] to extract numerous features from images and search for the location of objects using
extracted features. However, there is a disadvantage in that the classification accuracy for new images
is low because of their sensitivity to shape transformation or brightness conditions.

CNNs, which have recently been studied in various ways, were first introduced in [4] to process
images more effectively by applying filtering techniques to artificial neural networks, and later
proposed CNNs, which are currently being used in the deep learning field in [5]. AlexNet [6], which
won the ImageNet Large Scale Visual Registration (ILSVRC) competition held in 2012, is still widely
used in image recognition and classification, object detection, and tracking and shows excellent
performance [7]. VGGNet [8], GoogLeNet [9], ResNet [10], DenseNet [11], and EfficientNet [12]
recently achieved superior performance in image recognition and classification.

Additionally, in recent years, when image classification is performed to complement the perfor-
mance of a single CNN architecture, ensemble techniques have emerged that harmoniously utilize
predictive results from multiple well-designed deep learning architectures. By training several models,
a combination of the predicted results of these models were used to obtain more accurate predictions.
Recently, research has been actively conducted on the application of deep learning ensemble techniques
in various fields [13–17].

In this study, we used transfer learning strategies to overcome overfitting and improve the
convergence rate of the models. Using a pretrained CNN architecture is the preferred method in several
existing studies [18–21]. The UC-Merced land use dataset [22] was used to evaluate the experimental
performance, and six scenarios were set according to whether the contour image was trained and the
ratio of the training data, and then individually trained on five pretrained CNN architectures with
excellent performance. We then performed hierarchical ensembles on the number of cases in which
the five learning models can be deployed. The method proposed in this study was named hierarchical
ensembles because the output values of the previous layer were used as inputs for the next layer. The
three contributions of this study are summarized as follows.

• We demonstrate that learning contour images to classify remote sensing images using a CNN
architecture is an important factor in performance improvement.

• We propose a hierarchical ensemble technique to complement the poor performance of a single
model and achieve higher image classification accuracy.

• We achieve excellent image classification performance even if we use CNN models with a small
amount of training data through the learning of contour images and hierarchical ensembles.

The remainder of this paper is organized as follows. Section 2 introduces the related work. Section
3 describes the dataset used in this study and the experimental method in detail. Section 4 presents the
experimental results and analyses. Section 5 concludes this paper and suggests directions for future
research.
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2 Convolutional Neural Networks

As shown in Fig. 1, CNN uses convolutional layers to extract feature maps for input images and
pooling layers to convert the local parts of each feature map into one representative scalar value. In
addition, the derived feature maps were utilized to configure the classification operation on the image
to be performed.

Figure 1: Basic architecture of CNNs

CNNs can generally be formulated as shown in Eq. (1). Mj represents the selection of the input
map. If output maps j and k both sum over input map i, then the kernels applied to map i are different
for output maps j and k [23]. The CNNs used in this study are described as follows.

xl
j = f

⎛
⎝∑
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i ∗ kl

ij + bl
j
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2.1 VGGNet

VGGNet is a model developed by the University of Oxford Visual Geometry Group that won
second place in the 2014 ILSVRC competition. The VGG research team proposed six models to
compare the performance of neural networks according to depth. Among them, VGG16 with 13 conv
layers, three FC layers, and VGG19 with 16 conv layers and three FC layers were used. In this work,
we used VGG19, and the architectures of VGG16 and VGG19 are shown in Figs. 2 and 3.

Figure 2: VGG16 architecture

Figure 3: VGG19 architecture

2.2 GoogLeNet

GoogLeNet is a neural network developed by Google that won the 2014 ILSVRC competition
by beating VGGNet. Although it consists of 22 layers, deeper than VGG19, it uses 1 × 1 Conv
layer to dramatically reduce the computation of the feature map. In addition, unlike conventional
neural networks that use fully connected layers for image classification, global average pooling is
used to completely remove the weights that occur during classification. Furthermore, unlike existing
conventional neural networks that perform convolutional operations using the same size kernel in one
layer, GoogLeNet introduces an inception module to transfer convolutional operational results using
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different sizes of kernel to the next layer to derive more different kinds of properties. Fig. 4 shows a
visualization of the structure of the inception module in GoogLeNet.

Figure 4: Inception module in GoogLeNet

2.3 ResNet

ResNet is a neural network developed by Microsoft that won the ILSVRC competition in 2015.
Because it is difficult to expect good performance even with the deep design of neural network models,
ResNet introduced a residual block with added shortcut to the input value of neural networks to the
output value. ResNet, which consists of 18, 34, 50, 101, and 152 layers, has been proposed, and ResNet-
152 with 152 layers has the best performance. In this work, we use a 101-layer ResNet-101 model, which
visualizes the residual block and ResNet architecture as shown in Figs. 5 and 6.

Figure 5: Residual block

Figure 6: ResNet architecture
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2.4 DenseNet

DenseNet does not add input values to the output values, such as residual blocks. Instead, it uses
dense blocks that concatenate the input and output values. Because DenseNet connects the feature
maps of all layers, the information flow is improved, preventing information loss when the feature
map passes through the layers of the neural network, and also reduces the vanishing gradient problem.
DenseNet composed of 121, 169, 201, and 264 layers was proposed, and in this study, DenseNet-121
composed of 121 layers was used. Fig. 7 shows a visualization of the dense block.

Figure 7: Dense block

2.5 EfficientNet

Many of the CNN architectures that have previously emerged have evolved to scale models to
achieve higher accuracy within limited resources. ResNet is a representative model of depth scaling that
increases the number of layers, and representative models of width scaling that increase the number
of kernels include MobileNet [24] and ShuffleNet [25]. Before EfficientNet appeared, there were no
guidelines for selecting an appropriate scaling technique, thus it was difficult to prove it through
experiments. EfficientNet enables efficient and effective model scaling by using the compound scaling
technique that scales the model by adjusting the balance between the depth, width, and resolution of
the CNN. For EfficientNet, eight models were proposed according to the scaling method, in which
EfficientNetB0, the baseline model of EfficientNet, is used. Fig. 8 shows a schematic for comparing
each model scaling technique.

3 Proposed Methodology

In this section, we first describe the dataset obtained for this experiment, and then describe the
scenarios and specific steps of each experiment.

3.1 Dataset and Extraction of Contour Images

The dataset used in this study, the UC-Merced Land Use dataset, is a remote sensing image
dataset for land use. It consists of 21 classes: agricultural, airplane, baseball diamond, beach, buildings,
chaparral, dense residential, forest, freeway, golf course, harbor, intersection, medium residential,
mobile home park, overpass, parking lot, river, runway, sparse residential, storage tank, and tennis
court. It contains a total of 2100 images, including 100 images per class, and most of the images have a
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resolution of 256 × 256 pixels. Therefore, in this study, 44 images with different shapes were converted
to 256 × 256 pixels. Fig. 9 shows the sample images for 21 classes.

Figure 8: Model scaling methods

Figure 9: Sample images of UC-Merced land use dataset for 21 classes

In addition, to obtain more training datasets, each image was rotated, shifted, zoomed, and made
symmetrical, and the contour image for each image was extracted to increase the size of the training
dataset. Algorithms for edge extraction include Sobel [26], Prewitt [27], Roberts [28], and Canny edge
detection [29]. In this study, the Canny edge detection algorithm was used. Fig. 10 shows the five steps
for Canny edge detection, and the images extracted at each step. First, the result of edge detection
on the input image is very sensitive to noise, so the noise is removed using a Gaussian kernel. In the
second step, the intensity and direction of the edge are detected by calculating the gradient to find the
point at which the pixel value changes rapidly. The image extracted at this stage contains non-edge
parts. Therefore, in step 3, non-maximum suppression is performed to remove these non-edge parts.
In step 4, we set the maximum and minimum thresholds to identify strong or weak edge pixels. Finally,
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in step 5, for pixels between the maximum and minimum thresholds, the connection structure of each
pixel determines whether it is an edge.

Figure 10: Detailed steps for extraction of contours using the Canny edge detection

Fig. 11 shows a sample extracted from the original image, and this edge information is efficiently
used for GIS data analysis.

Figure 11: Sample contour images from UC-Merced land use dataset for 21 classes

3.2 Experimental Scenarios and Detailed Steps

The proposed method consists of five steps: First, for the training of VGGNet, GoogLeNet,
ResNet, DenseNet, and EfficientNet, six scenarios were set according to whether the contour image
was trained and the ratio of the training data; detailed information of each scenario is presented in
Tab. 1. When the training of each model was completed for each scenario, the hierarchical ensemble
was performed by appropriately arranging the five models. The number of cases where five models
could be deployed in one scenario was 120, and there were a total of 720 cases for six scenarios. The
steps of the proposed study are presented in Tab. 2.

Table 1: Six scenarios for the proposed method

No Training ratio Test ratio Contour

1 70% 30% True
2 False
3 50% 50% True
4 False
5 30% 70% True
6 False
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Table 2: Five steps of the proposed method

No Step Description

1 Data
collection

Obtaining the original UC-Merced land use dataset
Extracting contour image dataset from UC-Merced land use dataset

2 Model training
with contour
image

Training VGGNet with 70%, 50% and 30% of the contour image dataset
Training GoogLeNet with 70%, 50% and 30% of the contour image
dataset
Training ResNet with 70%, 50% and 30% of the contour image dataset
Training DenseNet with 70%, 50% and 30% of the contour image dataset
Training EfficientNet with 70%, 50% and 30% of the contour image
dataset

3 Model training
with original
image

Training VGGNet with 70%, 50% and 30% of the original image dataset
Training GoogLeNet with 70%, 50% and 30% of the original image
dataset
Training ResNet with 70%, 50% and 30% of the original image dataset
Training DenseNet with 70%, 50% and 30% of the original image dataset
Training EfficientNet with 70%, 50% and 30% of the original image
dataset

4 Hierarchical
ensemble

Hierarchical ensemble for 120 cases in scenario 1
Hierarchical ensemble for 120 cases in scenario 2
Hierarchical ensemble for 120 cases in scenario 3
Hierarchical ensemble for 120 cases in scenario 4
Hierarchical ensemble for 120 cases in scenario 5
Hierarchical ensemble for 120 cases in scenario 6

5 Performance
evaluation

Performance comparison for each model by scenario
Performance comparison of hierarchical ensembles by scenario
Performance comparison of simple and hierarchical ensembles by
scenario

In this study, to overcome overfitting and reduce the training time, a model pretrained with the
ImageNet dataset was used using transfer learning techniques, and each model was trained using a
GPU. In addition, to measure the performance improvement by hierarchical ensembles according to
the ratio of training data, the learning epoch of each model was set to 50, and the learning rate was
fixed at 0.0001. Additionally, the Adam [30] optimizer was used to enable each model to converge
quickly. Fig. 12 schematically shows the method proposed in this study. The performance process of
the hierarchical ensembles is shown in Algorithm 1.

Algorithm 1: Hierarchical ensemble method
1. Input: images in test dataset I , labels in test dataset L, CNN model list M
2. cnt ← Initialize number of tests as 0
3. averageAcc ← Initialize test accuracy as 0

(Continued)
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Algorithm 1: Continued
4. For 0: n − 1 (n = the number of I
5. A ← Average of prediction results for I [i] of M[0] and M[1]
6. B ← Average of prediction results for I [i] of M[1] and M[2]
7. C ← Average of prediction results for I [i] of M[2] and M[3]
8. D ← Average of prediction results for I [i] of M[3] and M[4]
9. E ← Average of A and B
10. F ← Average of B and C
11. G ← Average of C and D
12. H ← Average of E and F
13. I ← Average of F and G
14. J ← Average of H and I
15. averageAcc ← averageAcc + J
16. cnt ← cnt + 1
17. End For
18. averageAcc ← averageAcc

cnt
19. Output: Average accuracy of Hierarchical ensemble

Figure 12: Diagram of the proposed method

4 Experimental Results and Discussion

The experiments performed in this study were performed on a 64-bit Windows 10 Education
Operation system and were implemented using the Python programming language and the Keras
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library. The PC used in the experiment was equipped with an NVIDIA GeForce RTX 2070 SUPER 8
GB GPU, AMD Ryzen 7 3700X 8-Core CPU, and 32 GB RAM.

4.1 Experimental Results and Analysis for Each Model

Fig. 13 shows the classification accuracy of each model that has learned the contour image among
the six scenarios proposed in this study, and Fig. 14 shows the classification accuracy of each model
that does not learn the contour image. As for the classification accuracy of individual models, the
model trained including the contour image had higher accuracy, and the higher the proportion of
training data, the higher the accuracy. Therefore, we confirmed that learning the contour image is
significant for improving the classification performance of the model. In addition, it was confirmed
that the ratio of the training data affected the performance of each model. In the case of learning
contour images, GoogLeNet performed best when the proportion of training data was 70%, whereas
it was third when it was 30%. In the case of ResNet, when the proportion of training data was 70%, it
was the third best, whereas when it was 30%, the performance was the best. In the case of VGGNet,
when the ratio of training data was 70% and 50%, the performance was the worst, whereas when the
ratio of training data was 30%, it was confirmed that the classification accuracy improved slightly
compared to EfficientNet. The performance of the entire model is the best when the ratio of training
data is high, and the performance is not always good, even when the ratio of training data is low.

Figure 13: Classification accuracy for each model trained by datasets containing contour images

4.2 Experimental Results and Analysis of Hierarchical Ensembles

The hierarchical ensemble architecture in Fig. 12 shows that the central model has the greatest
influence. Therefore, the best performance model is centered. We then deploy the second-best
performing model in the second position and the third-best performing model in the fourth position.
Finally, the lower two models with poor performance were placed in the first and fifth places. We
judged that performing hierarchical ensembles in this way would have the best performance. The
results of performing a hierarchical ensemble on the number of cases in which the trained individual
models can be deployed demonstrate the validity of the above hypothesis. The experimental method
for the number of cases is presented in Algorithm 2.
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Figure 14: Classification accuracy for each model trained by original datasets

Algorithm 2: Hierarchical ensembles on the number of all cases
1. Input: Images in test dataset I , labels in test dataset L, CNN model list M
2. While: Permutation of M
3. Hierarchical ensemble(I , L, M) of Algorithm 1
4. End While
5. Sort descending by case-by-case
6. Get one case with the highest accuracy
7. Output: Best case of hierarchical ensemble

Tab. 3 shows the results of the hierarchical ensemble experiment for each scenario, and Fig. 15
shows a visual representation of the results of the hierarchical ensemble experiment. As a result of
performing the hierarchical ensemble, it was confirmed that the performance was improved in all
scenarios, and higher accuracy was achieved when the contour image was learned than when it was
not learned. Comparing the average accuracy of the overall model by scenario with the accuracy of the
hierarchical ensemble, the accuracy improvement was not significant when the ratio of training data
was high; however, the lowest ratio of training data (scenario 6) achieved a performance improvement
of up to 4.68%. Therefore, the data insufficient constraint problem can be solved if the hierarchical
ensemble is used when the data required for deep learning model training is insufficient.

Tab. 4 presents the performance comparison of the basic and hierarchical ensembles. Fig. 16 shows
the performance comparison of the basic ensemble and the hierarchical ensemble when the contour
image is trained, and Fig. 17 shows the visualization of the performance comparison between the
basic ensemble and the hierarchical ensemble when the contour image is not trained. First, a basic
ensemble trains five CNN models, such as a hierarchical ensemble. We derived the predicted values
for each model to perform a basic ensemble. The average of each derived model prediction was used to
calculate the accuracy of the image. Although there were some performance improvements for basic



2660 CMC, 2022, vol.72, no.2

ensembles, we found that hierarchical ensembles had an average performance improvement of 1.84%
over basic ensembles and achieved up to 2.41% when training data had the lowest ratio (Scenario 6).

Table 3: Hierarchical ensemble results
Scenario Train ratio Contour Model deployment Average accuracy

of models
Accuracy of
hierarchical
ensemble

Improved
accuracy

1 70% True VGGNet, ResNet,
GoogLeNet,
DenseNet,
EfficientNet

92.52% 94.76% 2.24%

2 False VGGNet, DenseNet,
GoogLeNet, ResNet,
EfficientNet

92.12% 94.76% 2.64%

3 50% True VGGNet, ResNet,
DenseNet,
GoogLeNet,
EfficientNet

91.74% 94.57% 2.83%

4 False VGGNet, DenseNet,
ResNet, GoogLeNet,
EfficientNet

90.71% 94.44% 3.37%

5 30% True VGGNet, DenseNet,
ResNet, GoogLeNet,
EfficientNet

89.11% 92.79% 3.68%

6 False VGGNet, DenseNet,
ResNet, GoogLeNet,
EfficientNet

87.16% 91.84% 4.68%

Figure 15: Visualization of hierarchical ensemble results
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Table 4: Performance comparison of basic and hierarchical ensembles

Scenario Train ratio Contour Accuracy of
hierarchical
ensemble

Accuracy of simple
ensemble

Improved
accuracy

1 70% True 94.76% 93.86% 0.9%
2 False 94.76% 93.46% 1.3%
3 50% True 94.57% 92.58% 1.99%
4 False 94.44% 92.29% 2.15%
5 30% True 92.79% 90.54% 2.25%
6 False 91.84% 89.43% 2.41%

Figure 16: Performance comparison of basic and hierarchical ensembles trained by datasets containing
contour images

Figure 17: Performance comparison of basic and hierarchical ensembles–trained by original datasets
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5 Conclusion

In this study, six scenarios were set according to the ratio of training data and whether the
contour image was trained, and land use data were individually trained on well-known pretrained
neural networks such as VGGNet, GoogLeNet, ResNet, DenseNet, and EfficientNet. A hierarchical
ensemble was performed for all cases in which each learned model could be deployed. As a result, we
not only confirmed that the contour image was a significant factor in the performance of deep learning
models but also achieved high classification accuracy with small amounts of training data through
hierarchical ensembles. Further studies related to optimization, such as hyperparameter tuning of each
CNN model, are required to achieve the best accuracy, as the purpose of the proposed method is to
demonstrate the importance of contour image learning and improve the classification performance
of the model through hierarchical ensembles. In future studies, we expect to identify and extract
significant features among features extracted from each model and further improve the model training
speed and accuracy through a combination of multiple models.
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