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Abstract: Dipper throated optimization (DTO) algorithm is a novel with a
very efficient metaheuristic inspired by the dipper throated bird. DTO has its
unique hunting technique by performing rapid bowing movements. To show
the efficiency of the proposed algorithm, DTO is tested and compared to
the algorithms of Particle Swarm Optimization (PSO), Whale Optimization
Algorithm (WOA), Grey Wolf Optimizer (GWO), and Genetic Algorithm
(GA) based on the seven unimodal benchmark functions. Then, ANOVA
and Wilcoxon rank-sum tests are performed to confirm the effectiveness
of the DTO compared to other optimization techniques. Additionally, to
demonstrate the proposed algorithm’s suitability for solving complex real-
world issues, DTO is used to solve the feature selection problem. The strategy
of using DTOs as feature selection is evaluated using commonly used data
sets from the University of California at Irvine (UCI) repository. The findings
indicate that the DTO outperforms all other algorithms in addressing feature
selection issues, demonstrating the proposed algorithm’s capabilities to solve
complex real-world situations.

Keywords: Metaheuristic optimization; swarm optimization; feature selection;
function optimization

1 Introduction

Optimization is the process of obtaining the greatest or least objective function value for a set
of inputs. It is the subject of various machine techniques that draw on artificial neural networks.
Hundreds of famous optimization algorithms have become accessible, and dozens of technologies are
available in major scientific code libraries. Given the problems of optimization, selecting what methods
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can thus be challenging [1]. Optimization is how a function has the lowest or highest output of input
parameters or arguments. In machines where the input parameters of the tasks like the floating-point
values are numerical, continuous functions optimization frequently arises. The function returns an
evaluation of the parameter of real-life [2].

Continuous function optimization may be used to distinguish between such problems with discrete
variables, known as combined optimization problems [3]. Different techniques may be resolved,
organized, and called to optimize the problems involving continuous functions. The information
about the objective function utilized and used throughout the optimization process depends on
one technique of optimization classification [4]. The more information about the target function
is generally understood, the easier it is to optimize because knowledge can be applied effectively
[5]. Perhaps the significant difference between optimization techniques is identifying the destination
function in one location [6]. It means that the first derivative of the feature may be used to identify
a possible solution (gradient or route). It distinguishes itself from other not-calculated gradient data
[7]. Metaheuristic optimization is the optimization process utilizing metaheuristic techniques. Almost
every area of life is involved, much from engineering to business, holiday preparation to internet travel
[8]. The use of those readily available resources must be maximized due to the continuous scarcity
of money, resources, and time. The vast majority are non-linear, multimodal, and quite restrictive
in real-life problems [9]. Different objectives frequently collide. Even if one goal is set, Optimum
solutions are not always available [10]. Usually, a faultless or failed response is not simple to find. Many
metaheuristic algorithms have been published, including swarm intelligence, anthrax optimization,
optimization of the particulate swarm. In previous articles [11]. The feature selection issue may be seen
as a multi-objective optimization problem in which two conflicting objectives must be met: picking the
fewest possible features while attaining maximum classification accuracy [12]. The solution with the
most distinctive features and the maximum classification accuracy is deemed optimal [13].

2 Literature Review

Meta-heuristics refers to generic methods that normally used to solve complex and challenging
combinatorial search problems. Generally, the problems solved by metaheuristic algorithms are
challenging for computer scientists due to the need to examining a huge number of combinations
that usually exponential with conflicting objectives [14]. Many metaheuristic algorithms have been
proposed to tackle real-world situation such as image segmentation [15], water allocation and crop
planning [16], Nurse Rostering [17], power load dispatch [18], and Parkinson diagnosis [19]. Several
survey papers are available for more information about metaheuristic algorithms [20–23].

Nature-inspired metaheuristic algorithms to solve complex real-world situation have attracted
the attention of the researchers in the scientific community. Many new nature-inspired metaheuristic
algorithms have been developed, including Symbiotic Organisms Search [24], Bat Algorithm (BA) [25],
Bacterial Foraging Opt [26], Gravitational Search Algorithm [27], Firefly Algorithm (FA) [28], Krill
Herd [29], Grey Wolf Optimization (GWO) algorithm [30,31], Cuckoo Search [32], Harmony search
algorithm [33], Whale optimization [34], Social spider optimization [35], and Biogeography-based
Opt [36].

Several research paper can be found in the literature tackling feature selection as in [37–40]. When
it comes to feature selection, metaheuristic algorithms are instrumental because they deal with the
dimensions of the data set to make predictions [38]. However, when the dimensionality of the data sets
is increased, the performance of classification methods suffers because of this. Furthermore, high-
dimensional data sets have several drawbacks, including a long model creation time, redundant data,
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and reduced performance, making data analysis very challenging [40]. The feature selection step is a
major preprocessing step that is used to resolve this problem. Its goal is to select a subset of features
from an extensive data set while also increasing the accuracy of the classification or clustering model,
resulting in the removal of noisy, extraneous, and ambiguous data. The following section present the
proposed DTO optimizer.

3 Proposed Dipper Throated Optimization Algorithm

Dipper Throated bird is a member of the genus Cinclus in the bird family Cinclidae, so-called
because of their bobbing or dipping movements see Fig. 1. They are unique among passerines for their
ability to dive, swim, and hunts underwater. Besides, it can fly rapidly and straight without pauses or
glides because it has short and flexible wings. Dipper Throated bird has its unique hunting technique, it
performs rapid bowing movements, enhanced by the pure white of the breast. Once the prey is detected,
it dives headfirst into the water, even into the turbulent and fast-flowing water. When it became on the
bottom, it turns up stones and pebbles, to disturb aquatic invertebrates, aquatic insects, and small fish.
the Dipper walks on the bottom by grasping stones. It often walks against the current, with the head
downwards to locate prey, it can be stable for a long time with its strong feet, also, it can walk into
the water and deliberately submerge, by using its wings effectively and walk along with the bottom
keeping its head well down and its body oblique to secures its food.

3.1 Mathematical Formulation

Mathematically, the Dipper Throated Optimization (DTO) algorithm assumes the birds are
swimming and flying to search for food resources Nfs available for n birds. The birds’ locations, BP,
and velocities, BV , can be represented by the following matrices:

BP =

⎡
⎢⎢⎢⎢⎣

BP1,1 BP1,2 BP1,3 . . . BP1,d

BP2,1 BP2,2 BP2,3 . . . BP2,d

BP3,1 BP3,2 BP3,3 . . . BP3,d

. . . . . . . . . . . . . . .

BPn,1 BPn,2 BPn,3 . . . BPn,d

⎤
⎥⎥⎥⎥⎦ (1)

BV =

⎡
⎢⎢⎢⎢⎣

BV1,1 BV1,2 BV1,3 . . . BV1,d

BV2,1 BV2,2 BV2,3 . . . BV2,d

BV3,1 BV3,2 BV3,3 . . . BV3,d

. . . . . . . . . . . . . . .

BVn,1 BVn,2 BVn,3 . . . BVn,d

⎤
⎥⎥⎥⎥⎦ (2)

where BPi,j indicates ith bird in the jth dimension for i ∈ 1, 2, 3, . . . , n and j ∈ 1, 2, 3, . . . , d. BVi,j indicates
ith bird velocity in the jth dimension for i ∈ 1, 2, 3, . . . , n and j ∈ 1, 2, 3, . . . , d. The initial locations of
BPi,j are uniform distribution within lower and upper bounds. The fitness values f = f1, f2, f3, . . . , fn

are calculated for each bird as in the following array
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f =

⎡
⎢⎢⎢⎢⎣

f1(BP1,1, BP1,2, BP1,3, . . . , BP1,d)

f2(BP2,1, BP2,2, BP2,3, . . . , BP2,d)

f3(BP3,1, BP3,2, BP3,3, . . . , BP3,d)

. . .

fn(BPn,1, BPn,2, BPn,3, . . . , BPn,d)

⎤
⎥⎥⎥⎥⎦ (3)

where the fitness value indicates the quality of food source searched by each bird. The optimal value
means mother bird. These values are then sorted in ascending order. The first best solution in declared
to be BPbest. The remaining solutions are supposed to be normal birds BPnd for follower birds. The
global best solution in declared to be BPGbest.

First DTO mechanism by this optimizer to update the swimming bird position is based on the
following equation:

BPnd(t + 1) = BPbest(t) − C1.|C2.BPbest(t) − BPnd(t)| (4)

where BPnd(t) is a normal bird position at iteration t and BPbest(t) is the best bird position. The “.” is
pairwise multiplication. BPnd(t + 1) is the updated bird position for the solution.

The C1 and C2 are updated within the iterations by the following

C1 = 2c.r1 − c,
C2 = 2r1,

c = 2

(
1 −

(
t

Tmax

)2
) (5)

where c changes from 2 to 0 exponentially, r1 is a random value in [0, 1] and Tmax in the total number
of iterations.

Second DTO mechanism is based on updating the flying bird position and velocity by the
following equations. The flying birds’ positions are updated as

BPnd(t + 1) = BPnd(t) + BV(t + 1) (6)

where BPnd(t + 1) is the new bird position for normal birds, and the updated velocity of each bird
BV(t + 1) is calculated as

BV(t + 1) = C3BV(t) + C4r2(BPbest(t) − BPnd(t)) + C5r2(BPGbest − BPnd(t)) (7)

where C3 is a weight value, C4 and C5 are constants. BPGbest is the global best position and r2 is a random
number in [0; 1].

The DTO algorithm can be described by this equation

BPnd(t + 1) =
{

BPbest(t) − C1.|M| if R < 0.5
BPnd(t) + BV(t + 1) otherwise (8)

where M = C2.BPbest(t) − BPnd(t) and R is a random value in [0, 1].
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Figure 1: White throated dipper

Algorithm 1: The DTO Algorithm
Initialization positions BPi(i = 1, 2, . . . , n) with size n,
velocities BVi(i = 1, 2, . . . , n), total number of iterations Tmax,
fitness function fn, c, C1, C2, C3, C4, C5, r1, r2, R, t = 1
Calculate objective function fn for each bird BPi

Find best bird BPbest

While t ≤ Tmax do
for (i = 1 : i < n + 1) do

if (R < 0.5) then
Update position of current swimming bird as
BPnd(t + 1) = BPbest(t) − C1.|C2.BPbest(t) − BPnd(t)|

else
Update velocity of current flying bird as
BV(t + 1) = C3BV(t) + C4r2(BPbest(t) − BPnd(t)) + C5r2(BPGbest − BPnd(t))
Update position of current flying bird as
BPnd(t + 1) = BPnd(t) + BV(t + 1)

end if
end for

Calculate objective function fn for each bird BPi

Update c, C1, C2, R
Find best bird BPbest

Set BPGbest = BPbest

Set t = t + 1
Return best bird BPGbest

3.2 Complexity Analysis

The computational complexity of the DTO algorithm can be expressed as follow. For population
n and iterations tmax, the time complexity will be defined as follows:

� Initialization BPi(i = 1, 2, . . . , n), BVi(i = 1, 2, . . . , n), Tmax, c, C1, C2, C3, C4, C5, r1, r2, R,
t = 1: O(1).
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� Calculate objective function fn for each bird BPi: O(n).
� Finding best bird BPbest: O (n).
� Updating position of current swimming bird: O(tmax × n).
� Updating velocity of current flying bird: O(tmax × n).
� Updating position of current flying bird: O(tmax × n).
� Calculating objective function fn for each bird BPi: O(tmax).
� Updating c, C1, C2, R: O(tmax).
� Finding best bird BPbest: O(tmax).
� Setting BPGbest = BPbest: O(tmax).
� Setting t = t + 1: O(tmax).
� Producing the best bird BPGbest: O(1)

From this analysis, the complexity of computations is O(tmax × n) and O(tmax × n × d) with d
dimension.

4 Experimental Results

The experiments in this section are explained in two sets. The first set of experiments is designed to
evaluate the proposed DTO algorithm performance. The proposed DTO algorithm is tested compared
to the algorithms of Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA),
Grey Wolf Optimizer (GWO), and Genetic Algorithm (GA) based on the seven unimodal benchmark
functions [19]. Then, ANOVA and Wilcoxon rank-sum tests are performed to confirm the effectiveness
of the proposed algorithm compared to other optimization techniques. The second is experimental in
feature selection [20].

4.1 Evaluation of DTO Algorithm Unconstrained Function

Tab. 1 shows a list of the unimodal benchmark function tested in the first experiment. Tab. 1 shows
the compared algorithms configuration. To be fair in the comparison, all the algorithms start with 20
agents, same objective function, 100 iterations, same dimensions, and boundaries.

Table 1: Descriptions of unimodal benchmark functions used in our experiments

Benchmark function D Range f min

f01(x) =
n∑

i=1

x2 30 [−100, 100] 0

f02(x) =
n∑

i=1

|xi| +
n∏

i=1

|xi| 30 [−10, 10] 0

f03(x) =
n∑

i=1

(
i∑

j=1

xi

)2

30 [−100, 100] 0

f04(x) = maxi{|xi|, 1 ≤ i ≤ D} 30 [−100, 100] 0

f05(x) =
D−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)
2] 30 [−30, 30] 0

f06(x) =
D∑

i=1

([xi + 0.5])2 30 [−100, 100] 0

(Continued)
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Table 1: Continued
Benchmark function D Range f min

f07(x) =
D∑

i=1

ix4
i + random[0, 1] 30 [−1.28, 1.28] 0

Fig. 2 shows the convergence curves of the proposed DTO algorithm compared to the PSO, WOA,
and GWO algorithms for the benchmark mathematical functions. Note that, the best convergence is
achieved by the DTO algorithm. Tab. 2 shows the mean and the standard deviation results based on
the benchmark function, F1-F7, for different algorithms.

Figure 2: (Continued)
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Figure 2: The sample functions’ graphical representations and convergence curves

Table 2: Mean and standard deviation results based on the benchmark function F1: F7

Function Algorithm DTO PSO WOA GWO GA

F1 Mean 0 0.000136 1.41E−30 6.59E−28 4.6E−172
StDev 0 0.000202 4.91E−30 6.34E−05 0

F2 Mean 0 0.042144 1.06E−21 7.18E−17 3.44E−90
StDev 0 0.045421 2.39E−21 0.029014 6.13E−90

F3 Mean 0 70.12562 5.39E−07 3.29E−06 1.7E−127
StDev 0 22.11924 2.93E−06 79.14958 8.6E−127

F4 Mean 0 1.086481 0.072581 5.61E−07 1.15E−75
StDev 0 0.317039 0.39747 1.315088 2.45E−75

F5 Mean 0 96.71832 27.86558 26.81258 28.37287
StDev 0 60.11559 0.763626 69.90499 0.582802

F6 Mean 0.0001 0.000102 3.116266 0.816579 3.932626
StDev 0.000121 8.28E−05 0.532429 0.000126 0.431755

F7 Mean 0.0009 0.122854 0.001425 0.002213 0.022992
StDev 0.001439 0.044957 0.001149 0.100286 0.021966

To test the statistical difference between the proposed DTO algorithm and the compared algo-
rithms, a one-way analysis of variance (ANOVA) test is applied. In this test, two hypotheses are
considered; the first is null hypothesis (H0: μDTO = μPSO = μWOA = μGWO = μGA) and the alternate
hypothesis (H1: Means are not all equal). The ANOVA test results are shown in Tab. 3. Fig. 3 shows the
ANOVA test for proposed and the compared algorithms vs. the objective function. From the results,
the alternate hypothesis H1 is accepted. The ANOVA test confirms the effectiveness of the proposed
algorithm compared to other optimization techniques.
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Table 3: ANOVA test results based on the benchmark function F1: F7

F1

ANOVA table SS DF MS F (DFn, DFd) P value
Treatment (between
columns)

2.42E−07 4 6.05E−08 F (4, 145) = 12.04 P < 0.0001

Residual (within
columns)

7.29E−07 145 5.03E−09

Total 9.71E−07 149

F2

ANOVA table SS DF MS F (DFn, DFd) P value
Treatment (between
columns)

269.7 4 67.43 F (4, 145) = 7.730 P < 0.0001

Residual (within
columns)

1265 145 8.723

Total 1535 149

F3

ANOVA table SS DF MS F (DFn, DFd) P value
Treatment (between
columns)

4.25E+10 4 1.06E+10 F (4, 145) = 186.8 P < 0.0001

Residual (within
columns)

8.24E+09 145 56830905

Total 5.07E+10 149

F4

ANOVA table SS DF MS F (DFn, DFd) P value
Treatment (between
columns)

61550 4 15387 F (4, 145) = 92.40 P < 0.0001

Residual (within
columns)

24147 145 166.5

Total 85697 149

F5

ANOVA table SS DF MS F (DFn, DFd) P value
Treatment (between
columns)

59376 4 14844 F (4, 145) = 42.46 P < 0.0001

Residual (within
columns)

50691 145 349.6

Total 110067 149

(Continued)
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Table 3: Continued

F6

ANOVA table SS DF MS F (DFn, DFd) P value
Treatment (between
columns)

355.1 4 88.78 F (4, 145) = 1261 P < 0.0001

Residual (within
columns)

10.21 145 0.07039

Total 365.3 149

F7

ANOVA table SS DF MS F (DFn, DFd) P value
Treatment (between
columns)

566.5 4 141.6 F (4, 145) = 16.82 P < 0.0001

Residual (within
columns)

1221 145 8.422

Total 1788 149

Figure 3: (Continued)
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Figure 3: ANOVA test for the proposed DTO and compared algorithms based on the benchmark
functions

Wilcoxon’s rank-sum test is employed between every two algorithms to get the p-values between
the proposed DTO algorithm and other algorithms to show that DTO has a significant difference. The
two hypotheses are the null hypothesis (H0: μDTO = μPSO, μDTO = μGWO, μDTO = μWOA, and μDTO = μGA)
and the alternate hypothesis (H1: Means are not all equal). Tab. 4 shows that the p-values are less than
0.05 between the proposed algorithm and other algorithms. This confirms the superiority of the DTO
algorithm and that it is statistically significant. Thus, the alternate hypothesis H1 is accepted.

Table 4: Wilcoxon’s rank-sum test results based on the benchmark function F1: F7

DTO vs. PSO DTO vs. GWO DTO vs. WOA DTO vs. GA

F1 1.12E−05 1.12E−05 1.12E−05 1.12E−05
F2 1.12E−05 1.12E−05 1.12E−05 1.12E−05
F3 1.12E−05 1.12E−05 1.12E−05 1.12E−05
F4 1.12E−05 1.32E−05 1.12E−05 1.42E−05
F5 1.12E−05 1.12E−05 1.12E−05 1.12E−05
F6 1.12E−05 1.12E−05 1.22E−05 1.12E−05
F7 1.12E−05 1.12E−05 1.12E−05 1.12E−05

4.2 Evaluation of DTO Algorithm on Feature Selection Problem

In the case of the feature selection issue, the output solution should be modified from a continuous
solution to a binary solution utilizing the numbers 0 or 1. This function is often used to convert the
continuous solution of an optimizer to a binary solution in an optimization problem.

X (t+1)

d =
{

0 if Sigmoid(XBest) < 0.5
1 otherwise ,

Sigmoid(XBest) = 1
1 + e−10(XBest−0.5)

(9)
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4.2.1 Fitness Function

The quality of an optimizer’s solutions is determined by the fitness function that has been given to
it. The error rate of classification and regression, as well as the features that have been picked from the
input dataset, are the primary determinants of the function. It is advisable to choose a solution based
on the collection of characteristics that can provide the bare minimum of features with the lowest
classification error rate. The following equation is used in this study to evaluate the quality of the
solutions provided.

Fn = αErr(O) + β
|s|
|f | (10)

As part of the experiments and comparative findings, the DTO evaluated our proposed algorithm
against six datasets from the UCI machine learning library to determine its effectiveness. The datasets
were chosen because they had a diverse range of features and occurrences that were reflective of the
many types of problems that the proposed approach would be evaluated against. For more details
about the UCI datasets, refer to Tab. 5.

Algorithm 2: The bDTO Algorithm
Initialization DTO Algorithm configuration, including population and parameters
Change solutions to binary (0 or 1)
Evaluate fitness function
While t ≤ iters max do

Calculate objective function fn for each bird BPi

Find best bird BPbest

While t ≤ Tmax do
Apply DTO Algorithm
Convert solutions to binary (0 or 1) using Eq. (9)
Update parameters and best solution

end while
Return best solution

Table 5: Datasets description

Data-set name Number of rows Number of columns (Features)

Australian 690 14
Breast_Cancer 699 8
WaveformEW 5000 21
Towonorm 7400 20
Seeds 210 7
Ring 7400 20

4.2.2 Evaluation Metrics

The evaluation metrics used in this research are presented in Tab. 6 as follows:
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Table 6: Evaluation metrics

Metrics

Average error AvgPref = 1
M

M∑
j=1

1
N

N∑
i=1

mse(Ci, Li )

Best fitness best = minM
i=1 gi

∗
Worst fitness worst = MaxM

i=1 gi
∗

Average fitness size AVG Selection Size = 1
M

M∑
i=1

size (gi
∗)

D

Mean Mean = 1
M

1∑
M

gi
∗

Std (standard deviation) Std =
√

1
M − 1

∑
(gi

1 − Mean)
2

The average error of several algorithms is shown in Tab. 7. Due to the decreased error, the
optimizer has identified the optimal collection of features that can train the classifier while also
producing a smaller error on the concealed test data. Tab. 8 bellow shows the average features selected.
Tab. 9 for average fitness, Tab. 10 for standard deviation fitness, Tab. 11 for best fitness, and Tab. 12
for worst fitness. The DTO has been able to find the superiority fitness for all datasets.

Table 7: Average error

Datasets bDTO bGWO bGA bWOA bPSO

Australian 0.152173913 0.155072464 0.157971014 0.168115942 0.156521739
Breast cancer 0.025751073 0.028612303 0.027181688 0.025751073 0.027181688
WaveformEW 0.116809117 0.131054131 0.122507123 0.131054131 0.11965812
Twonorm 0.0324412 0.044201135 0.057853474 0.0324412 0.062719654
Seeds 0.2 0.2 0.2 0.2 0.2
Ring 0.15963774 0.16044877 0.162341173 0.163557718 0.161665315

Table 8: Average select size

Datasets bDTO bGWO bGA bWOA bPSO

Australian 0.452380952 0.619047619 0.571428571 0.523809524 0.5
Breast cancer 0.75 0.708333333 0.791666667 0.75 0.625
WaveformEW 0.343434343 0.454545455 0.444444444 0.606060606 0.404040404
Twonorm 0.7 0.85 0.766666667 1 1
Seeds 0.428571429 0.571428571 0.523809524 0.619047619 0.571428571
Ring 0.316666667 0.35 0.316666667 0.333333333 0.316666667
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Table 9: Average fitness

Datasets bDTO bGWO bGA bWOA bPSO

Australian 0.152173913 0.155072464 0.157971014 0.168115942 0.156521739
Breast cancer 0.025751073 0.028612303 0.027181688 0.025751073 0.027181688
WaveformEW 0.116809117 0.131054131 0.122507123 0.131054131 0.11965812
Twonorm 0.0324412 0.044201135 0.057853474 0.0324412 0.062719654
Seeds 0.2 0.2 0.2 0.2 0.2
Ring 0.15963774 0.16044877 0.162341173 0.163557718 0.161665315

Table 10: Standard deviation fitness

Datasets bDTO bGWO bGA bWOA bPSO

Australian 0.006641414 0.018101443 0.008695652 0.010040874 0.011503267
Breast cancer 0.002477898 0.004291845 0.002477898 0.004291845 0.006555902
WaveformEW 0.004934618 0.0215095 0.027474788 0.013055771 0.022613259
Twonorm 0 0.003535198 0.00529245 0 0.014424787
Seeds 0 0 0 0 0
Ring 0.004102187 0.010800208 0.011769254 0.007611737 0.008567154

Table 11: Best fitness

Datasets bDTO bGWO bGA bWOA bPSO

Australian 0.134782609 0.152173913 0.143478261 0.156521739 0.147826087
Breast cancer 0.021459227 0.025751073 0.025751073 0.021459227 0.021459227
WaveformEW 0.085470085 0.111111111 0.11965812 0.11965812 0.094017094
Twonorm 0.0324412 0.040145985 0.051905921 0.0324412 0.04703974
Seeds 0.2 0.2 0.2 0.2 0.2
Ring 0.151257097 0.156934307 0.152068127 0.158961882 0.154095702

Table 12: Worst fitness

Datasets bDTO bGWO bGA bWOA bPSO

Australian 0.165217391 0.169565217 0.160869565 0.173913043 0.169565217
Breast cancer 0.030042918 0.030042918 0.030042918 0.030042918 0.034334764
WaveformEW 0.136752137 0.153846154 0.128205128 0.145299145 0.136752137
Twonorm 0.0324412 0.046634225 0.062043796 0.0324412 0.075425791
Seeds 0.1982 0.2 0.2 0.2 0.2
Ring 0.164233577 0.172343877 0.175182482 0.172343877 0.169505272
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5 Conclusion

In this paper, a novel Dipper Throated Optimization (DTO) is introduced which is inspired by
the throated dipper bird. Six UCI machine learning database datasets and unconstrained function are
used to prove the consistency of the suggested optimizer and guarantee that the proposed solution
is dependable and stable to evaluate its quality and effectiveness. ANOVA and Wilcoxon rank-sum
tests are used to compare the proposed algorithm to different optimization methods. The results
showed clearly that, DTO outperformed all other compared methods. For future work, DTO needs
more investigation by applying it to solve other well-known real-world combinatorial optimization
problems. Based on the great success of DTO, the researchers can investigate the hybridizations
between DTO and other metaheuristic optimization algorithms as it is proved that hyper metaheuristic
algorithms perform well compared to single metaheuristic algorithms.
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