
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.025604

Article

Cyber Security Analysis and Evaluation for Intrusion Detection Systems

Yoosef B. Abushark1, Asif Irshad Khan1,*, Fawaz Alsolami1, Abdulmohsen Almalawi1,
Md Mottahir Alam2, Alka Agrawal3, Rajeev Kumar4 and Raees Ahmad Khan3

1Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University,
Jeddah, 21589, Saudi Arabia

2Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, 21589,
Saudi Arabia

3Department of Information Technology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh,
India

4Department of Computer Science and Engineering, Babu Banarasi Das University, Lucknow, 226028, India
*Corresponding Author: Asif Irshad Khan. Email: aikhan@kau.edu.sa

Received: 29 November 2021; Accepted: 11 January 2022

Abstract: Machine learning is a technique that is widely employed in both the
academic and industrial sectors all over the world. Machine learning algo-
rithms that are intuitive can analyse risks and respond swiftly to breaches and
security issues. It is crucial in offering a proactive security system in the field
of cybersecurity. In real time, cybersecurity protects information, information
systems, and networks from intruders. In the recent decade, several assess-
ments on security and privacy estimates have noted a rapid growth in both
the incidence and quantity of cybersecurity breaches. At an increasing rate,
intruders are breaching information security. Anomaly detection, software
vulnerability diagnosis, phishing page identification, denial of service assaults,
and malware identification are the foremost cyber-security concerns that
require efficient clarifications. Practitioners have tried a variety of approaches
to address the present cybersecurity obstacles and concerns. In a similar vein,
the goal of this research is to assess the idealness of machine learning-based
intrusion detection systems under fuzzy conditions using a Multi-Criteria
Decision Making (MCDM)-based Analytical Hierarchy Process (AHP) and a
Technique for Order of Preference by Similarity to Ideal-Solutions (TOPSIS).
Fuzzy sets are ideal for dealing with decision-making scenarios in which
experts are unsure of the best course of action. The projected work would
support practitioners in identifying, prioritising, and selecting cybersecurity-
related attributes for intrusion detection systems, allowing them to design
more optimal and effective intrusion detection systems.
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1 Introduction

The expansion of Information and Communications Technology (ICT) is one of the most evident
trends in today’s globe. During the previous few decades, the technological revolution has had a major
impact on the world, changing people’s thinking and behaviours. One of the most prominent and
well-known technologies in this industry is machine learning. Machine learning was first established
as a sub-domain of artificial intelligence by Arthur Samuel in 1959 [1,2]. Succeeding that, machine
learning tactics became broadly employed in a variety of fields, and it is now recognised as one of the
most important and rapidly evolving technologies, particularly for addressing issues such as future
event prediction, disease diagnosis, market analysis, email filtering, intrusion detection, image and
speech recognition, and so on [3]. Machine learning algorithms may learn from both structured and
unstructured data, and they can assist in the automation of systems in a variety of scenarios. Machine
learning allows algorithms to learn from earlier (historical) data. We all know that data is at the centre
of the digital world. Scientists and researchers in this scenario use data mining and machine learning
techniques to extract new and helpful insights from the data.

There are several interesting patterns in the existing data that can help us forecast future events,
both normal and aberrant. The data is initially delivered as a dataset as input to the developed
machine learning frameworks, which then train themselves accordingly. These machine learning-based
frameworks learn from the data and enhance their performance as an outcome of machine learning
algorithms. The suggested framework must be evaluated and verified with new yet relevant data
after the training phase is completed in order to determine its efficiency and accuracy. It would thus
be able to use learning behaviour to predict future occurrences and activities with minimal human
participation and explicit programming [4]. The input data programme improves its performance
measure with each accurate judgement. A computer programme is said to learn from experience with
regard to some class of tasks T and a performance measure P if its performance at tasks in T, as
measured by P, improves with experience [2]. The main focus is on these three things: a collection
of tasks defined by T; performance estimation denoted by P; and E, which represents the program’s
source of experience.

In recent years, machine learning has acquired a lot of traction in the field of cyber security [5]. In
general, supervised and unsupervised machine learning approaches are two popular types of machine
learning that researchers utilise to design and build small intrusion detection systems [6]. Intrusion
detection systems detect many sorts of intrusions and provide proactive security solutions. As the
name implies, supervised machine learning-based intrusion detection systems operate in a supervised
environment [7]. It employs labelled historical data to train and test the frameworks it develops.
Frameworks are built using supervised machine learning algorithms that map given inputs to outputs
based on prior information [8]. It infers an input object’s output class based on information gleaned
from tagged samples of training data. In most cases, the input object is a vector of characteristics
from the most perfect class with which it shares common traits. Unsupervised machine learning is
a contrastive study against supervised machine learning in which unsupervised machine learning
algorithms are implemented to build intrusion detection systems. In supervised machine learning,
frameworks are completely subjected to labelled data and the efficiency and accuracy of frameworks
are directly proportional to the quality of data.

In contrast, unsupervised machine learning is a contrastive study against supervised machine
learning, in which the efficiency and accuracy of frameworks are directly proportional to the quality of
data. Frameworks are purely autonomous in their ability to compress internal representations of the
given data based on their common traits [2], and the data is completely unlabeled in this context.
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Unsupervised machine learning frameworks analyse data, and significant insights are discovered
from this data, which is then employed to categorise future data. Deep insights into several real-life
domains are provided by machine learning, and cybersecurity is one of them. Malware training data
sets, spam identification data sets, intuition detention data sets, unified host and network datasets,
malicious Uniform Resource Locators (URLs), and other cybersecurity datasets must be utilised
to train machine learning-based frameworks, which will then be employed to detect future cyber
security risks. Considering the idealness and prioritisation of the ideal features at the first stages of
intrusion, however, detection system development has become a difficult and fascinating subject for
cybersecurity specialists and researchers. Characteristic prioritisation and identification is a decision-
making problem that necessitates the input of specialists and extensive investigation [8]. Furthermore,
testing the proactive security preparation, efficacy, and accuracy of software security systems is a
continual process that must be undertaken by specialists on a regular basis [9].

As an outcome, the goal of this study is to examine the impact of cyber security qualities on
intrusion detection systems and to use MCDM tactics to assess the idealness of machine learning-
based intrusion detection systems owned by Indian hospitals under fuzzy settings. The experts’
opinions are employed to identify and choose the relevant characteristics for this estimation. In the
context of machine learning-based intrusion detection systems, this idealness estimation will assist
researchers and cybersecurity experts in identifying and prioritising the ideal cybersecurity qualities.
Aside from that, the findings of the study will aid in the development of more reliable and optimal
intrusion detection systems. Researchers have employed MCDM tactics in a number of studies for
numerous project estimations and estimations. However, we were unable to locate any research that
employed fuzzy-based MCDM tactics to analyse the idealness of intrusion detection systems. As an
outcome, the purpose of this research is to develop a novel approach to evaluate machine learning-
based intrusion detection systems under fuzzy conditions by employing AHP-TOPSIS approaches.

When it comes to handling hierarchical decision-making difficulties, AHP, an MCDM tactic, has a
lot of promise. T L Saaty first offered the recommended approach in 1990 [9]. Since then, the approach
has seen significant refinements. It provides a mechanism for computing the weight of criteria that
is simple to use (characteristics). Rather than just assigning a value, they specialise in arriving at the
optimum decision for their aim and understanding of the issue [10]. In addition, including fuzzy in this
approach improves its efficiency and leads to more accurate outcomes [11]. When making a decision in
AHP, experts frequently suffer hesitancy and are unable to agree on a single value because they desire
to go beyond or below the values. These values, on the other hand, are inaccessible [12,13]. The fuzzy
sets play a significant role in this scenario. Reluctant fuzzy sets are employed to reflect decision-makers’
preferences. When establishing an element’s membership in a fixed set is difficult, fuzzy logic can be
employed to reduce uncertainty that may develop during the decision-making process. Conventional
fuzzy logic [14] is insufficient to address such situations. The fuzzy collection has gotten a lot of
attention from scholars both at home and abroad since its debut. Furthermore, the TOPSIS tactic is
well-known for its capacity to generate the most alternative rankings imaginable [8]. As a consequence,
combining fuzzy logic with the AHP-TOPSIS tactic increases the study’s efficiency and qualifies it for
evaluating the effectiveness of machine learning-based intrusion detection systems.

AHP-TOPSIS is capable of solving MCDM problems with imprecise and uncertain data [13,14].
AHP gives more accurate characteristic weights in fuzzy situations, outcomeing in more effective
outcomes [15,16]. TOPSIS under fuzzy conditions [13] is a more well-known tactic for ranking
choices in MCDM problem resolution. This study uses eight cybersecurity elements as criteria, with
ten machine learning-based intrusion detection systems as alternatives. Expert opinions and well-
known research studies are employed to identify and select the qualities. Our research team engaged
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domain specialists in this case. Our team has also conducted a number of research studies utilising
numerous MCDM tactics. The experts selected and determined the appropriate characteristic sets for
the described problem that required being solved using MCDM tactics based on their knowledge and
experience in this domain. After consulting with domain experts (characteristic set), we were able to
reduce redundancy, inconsistency, and ambiguity from the data.

The study has also been broken down into the succeeding sections: The second section examines
previous studies that are relevant. Section 3 describes the framework of cybersecurity characteristics
related to machine learning-based intrusion detection systems; Section 4 elaborates on the tactic
employed; Section 5 describes the mathematical calculations and outcomes; Section 6 incorporates
the discussion; and Section 7 concludes the research.

2 Machine Learning in Cybersecurity

Machine learning, being a new technology, provides a lot of flexibility when it comes to extracting
insights from enormous volumes of data. This, in turn, helps in analysing massive amounts of data and
uncovering interesting patterns [17,18]. Machine learning provides huge benefits to current industries
and commercial organisations by gaining insights from previous data. Furthermore, one of the
intriguing features of machine learning approaches is that they provide proactive security measures in
the realm of cybersecurity [19]. Intuition detection systems based on machine learning are an effective
security strategy for tackling cybersecurity challenges, examining risks, and responding instinctively
to intrusions and security incidents. Different machine learning tactics have been employed by
cybersecurity experts and researchers to address numerous cybersecurity concerns [20,21]. Decision
trees, support vector machines, nave Bayes classifier, artificial neural networks, k-means clustering,
convolutional neural networks, k-nearest neighbour, recurrent neural networks, restricted Boltzmann
machines, and fuzzy c-means clustering are the most commonly employed machine learning algo-
rithms for designing and developing intrusion detection systems [22,23]. Researchers employ these
algorithms to address cybersecurity challenges in a variety of working contexts. However, the goal of
this study is to evaluate the idealness of these machine learning-based intrusion detection systems in
terms of their stated cybersecurity qualities.

A case study was carried out on ten machine learning-based intrusion detection systems installed
in hospitals in Uttar Pradesh, India. The identification and selection of characteristics for evaluating
machine learning algorithms is a collaborative choice based on the authors’ expert perspectives
and experience. For this study, eight cybersecurity characteristics related to machine learning were
investigated, along with ten potential options for assessing the idealness of intrusion detection systems.
A−1, A−2, A-3, A-4, A-5, A-6, A-7, and A-8, are the 8 options (intrusion detection systems). The
alternative selection procedure is the outcome of a group decision made by domain experts and
owners of intrusion detection systems from several Indian hospitals for a comparative cyber-security
estimation. The 10 selected intrusion detection systems have been installed in numerous hospitals for
the detection of numerous cyber-security assaults. Different machine learning tactics were applied in
these detection systems, ranging from basic to complicated levels of integration and hybridization. To
detect different sorts of threats, each A employs multiple machine learning algorithms. Furthermore,
each intrusion detection system has been assigned a value between 0 and 1 for each of the detected
characteristics, as the study’s authors employed fuzzy logic to make this determination. Furthermore,
evaluators’ subjective cognition outcomes in language words for each intrusion detection system are
based on the scale and expert opinion stated in the tactic section. The process of estimation and
quantitative outcomes for the 10 distinct intrusion detection systems have been reported in Section 5
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of this study based on the identified characteristic set. The detected features and options are depicted
in Fig. 1. In the diagram below, the subsection descriptions and relevance of the identified features are
discussed.

Figure 1: A characteristic tree that evaluates the idealness of machine learning-based intrusion
detection systems

• Spam Detection: Spam detection is a key aspect of machine learning-based intrusion detection
systems, which are employed to detect spam. Spam is a technical term for unsolicited mass mail that is
largely connected to electronic messages. It is also known by other names, such as junk mail. Spammers
employ several communications platforms to distribute unwanted and undesirable digital content [15].
It usually manifests itself in the form of unwelcome and needless emails sent via the internet. Spams
are frequently employed for commercial objectives and are generally unappealing. Spam messages, on
the other hand, can be disastrous for both the system and the user. Spammers’ goal in this situation is
to send malicious code, carry out phishing scams, and make money.

• Phishing Identification: Cyber intrusions are fairly common these days, and their prevalence
has increased dramatically. Intruders utilise phishing as one of the most popular and fascinating
social engineering attacks to steal personal data. Credit card numbers and login credentials are
frequently included in the targeted data. Cyber fraudsters employ the notion of spoofing in phishing
to impersonate a reputable and well-known source to the victim [14]. They mostly use it to imper-
sonate reputable organisations’ websites so that victims can readily trust and disclose their personal
information. Phishing attacks are also employed to spread malware that steals system cookies and
records keystrokes. As an outcome, detecting phishing assaults has become one of the key capabilities
of machine learning-based intrusion detection systems.

• Malware Identification: Malware is a term employed to describe a collection of harmful software
that includes viruses, spyware, keyloggers, and ransomware. Malware is a type of computer code
created by cyber-criminals with the goal of causing significant damage to the victim’s system or gaining
unauthorised network access. In general, it is a coded file that is distributed by cyber-criminals over
numerous communications tactics, such as e-mail, and needs the victim to run the virus. Intruders
create several forms of malware programmes for numerous goals, and they are frequently employed
to compromise the financial data of businesses and organisations [14]. Researchers have developed
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machine learning tactics for both malware detection and classification into multiple classes or families.
As an outcome, one of the important aspects of machine learning-based intrusion detection systems
is the identification of malware.

• DoS Attacks Detection: Confidentiality, Integrity, And Availability (CIA) are the three essential
components of security or cyber-security. The CIA triad is a set of three components that are deemed
essential for any system or network’s security. One of the most important aspects of all three is
availability. Availability literally refers to the character that is to be employed or gained, but in
the context of information security, it assures that authentic users have fast and reliable access to
information and other resources [16]. Denial of Service (DoS) assaults are employed by cyber intruders
to disrupt the system’s operation and users’ access to system resources. By flooding a server with
traffic, DoS assaults are employed to make online system resources unavailable to its users. Teardrop
attacks, flooding attacks, IP fragmentation attacks, protocol attacks, and application-based attacks are
all examples of DoS attacks [14]. To detect DoS assaults, researchers employed a variety of machine
learning tactics. As an outcome, detection of these attacks is a critical feature of machine learning-
based intrusion detection frameworks.

• Misuse Detection: Misuse detection is a key feature of machine learning-based intrusion
detection systems. Misuse detection ensures that cybersecurity attacks that are known to an intrusion
detection system are identified [17]. The intrusion detection system is already aware of the nature of
these attacks and has signatures for them in its database of support. These existing signatures are
employed to analyse and detect new assaults. As an outcome, detection systems that only have this
feature have a hard time detecting unexpected assaults whose signatures are not in the supporting
database.

• Anomaly Detection: The detection or identification of zero-day attacks (unknown attacks) is a
difficult problem, and one of the key characteristics addressed by machine learning-based tactics. The
framework’s supporting database does not record the behaviour of zero-day attack types. Based on
its expertise and experience, an intelligent machine learning framework analyses numerous types of
assaults and attempts to predict their class [17]. As an outcome, a machine learning-based intrusion
detection system must be able to detect zero-day assaults. It is critical in ensuring that a machine
learning-based intrusion detection framework is suitable for use in an installation scenario.

• Implementation Complexity: As the name implies, it enumerates all of the complexities that
must be considered during a system’s whole implementation process. It defines all of the complexity
parameters that researchers, scientists, and other shareholders take into account when developing a
machine learning-based intrusion detection system. It involves processing power, amount of training
data, framework working complexity, algorithm implementation difficulty, overall framework cost,
and other required resources, among other things. As an outcome, implementation complexity is an
important characteristic to consider when evaluating a machine learning-based intrusion detection
system, and it has been taken into account in our estimation.

• Accuracy: This is the metric for determining the degree of correctness and precision of any
computation or process when compared to the appropriate standard. It is one of the most remarkable
characteristics of machine learning algorithms. The accuracy of proposed machine learning-based
frameworks in machine learning is determined by how successfully they generate the needed outputs
[24]. Precision, sensitivity, specificity, area under the curve, and other metrics are employed to assess
it. When compared to other frameworks or tactics, it describes how accurate a machine learning-based
framework is.
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In some way, all of the aforementioned qualities apply to machine learning-based intrusion
detection systems. Furthermore, all of the observed features play a key influence in the overall idealness
of machine learning-based intrusion detection systems due to their implicit requirements. The study’s
authors first defined a set of 20 traits that were important to the research. The domain experts’ team
was then contacted to complete the characteristic set. Experts undertook a group discussion about all
of the discovered characteristics and eliminated any that were unnecessary or inconsistent. Individual
expert arguments over characteristic selection were reduced, and after this expert group discussion,
a set of eight cyber security characteristics were chosen. As an outcome, each of these characteristics
was examined in this estimation.

3 Proposed Hybrid Tactic

From a cyber-security standpoint, the tactic for our proposed work lays out a sequential strategy
for machine learning-based intrusion detection systems. Under hazy conditions, reluctant AHP and
TOPSIS were employed to complete this task. This tactic assisted us in obtaining more precise
outcomes. Fuzzy logic has gained a lot of momentum as an improved form of classical logic in sectors
where the solution to a problem could be anything from absolutely true to completely false. It could
be completely true, partially true, partially false, or completely false. It includes the ability to deal with
unclear data [25–27]. The AHP is the best tactic for dealing with problems that have several hierarchical
solutions. The problem is analysed in a hierarchical manner. AHP provides accurate estimations for
both subjective and objective values of characteristics [28]. TOPSIS is a well-known alternative ranking
algorithm in the MCDM problem field that looks at the best alternative in a given set of alternatives
[29]. The weights of qualities are computed using AHP under fuzzy conditions, and the alternatives
are then ranked using TOPSIS. Numerical equations are supplied in the next section to aid researchers
in undertaking a numerical analysis of this work.

As an outcome, we believe that the fuzzy AHP-TOPSIS tactic is excellent for dealing with
situations like this. Prior research has found the importance and utility of findings acquired from the
fuzzy AHP tactic. Experts have also pointed out that this review tactic has a number of disadvantages
and repercussions. The authors devised another effective equivalent approach, the fuzzy TOPSIS, to
address these implications and obstacles, which complement the fuzzy AHP and its consequences.

In addition, the fuzzy AHP tactic was employed to generate a systematic tree-like framework
of numerous selected parts as a strategy for analysing the characteristic’s impact on healthcare web
apps. These variables were then subjected to the numerical equations. As a second first step in the
examination, the practitioners converted the original weights of the characteristics supplied by experts
into the Triangular Fuzzy Set Number (TFN). Further, TFN values are routinely demonstrated and
validated to be between 0 and 1 for each characteristic [30]. The succeeding headings are also discussed
to provide a more descriptive knowledge of the tactics employed:

Stage1: Succeeding the successful building of a tree framework, the practitioners established a
function called membership by using the succeeding Eqs. (1) and (2).

μa(x) = a → [0, 1] (1)

μa(x) = { x
mi − l

− l
mi − l

x ∈ [l, mi]
x

mi − u
− u

mi − u
x ∈ [mi, u] (2)

The upper limit is represented by limit 1, the medium is represented by mi, and the lower limit is
represented by ui.
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Stage 2: The practitioners now construct TFN numbers for characteristics using the succeeding
formulas as the next step in the examination.

It is necessary to comprehend the representation mechanism in order to estimate triangular
numbers. Eqs. (3)–(6) now performs the original dialogue for TFN [9].

Φij = (lij, miij, uij) (3)

Where, lij ≤ miij ≤ uij

lij = min(Jijd) (4)

miij = (Jij1, Jij2, Jij3)
1
x (5)

uij = max(Jijd) (6)

In the formulas above, Jijd represents a group of experts designated by the letters I and j.
Furthermore, in the formula employed by the inspectors to estimate the variance between two
particular components, d indicates the geometric mean value. Eqs. (7)-(9) stated the formulas for
operating the intended GM value once it was calculated.

P + Q = (l1 + l2, mi1 + mi2, u2 + u2) (7)

P × Q = (l1 × l2, mi1 × mi2, u1 × u2) (8)

P−1 =
(

1
u1

,
1

mi1

,
1
l1

)
(9)

Stage3: For estimation, the succeeding Eq. (10) is employed:

Ãd = [k̃d
11k̃

d
12 . . . .k̃d

1nk̃
d
21k̃

d
22 . . . .k̃d

2n · · · · · · · · · k̃d
n1k̃

d
n2 . . . k̃d

nn] (10)

where k̃k
ij represents the opinions of experts. When there are numerous experts, the practitioners

use the succeeding Eq. (11) to represent their opinions for estimation.

k̃ij =
d∑

d=1

k̃d
ij (11)

Stage 4: It’s also time to create a choice-based matrix using the succeeding Eq. (12).

Ã = k̃11 . . . k̃1n · · · . . . · · · k̃n1 · · · k̃nn (12)

Stage 5: In a tree-based framework, Eq. (13) is employed to calculate GM, and Eq. (14) provides
an estimation step for specific weights.

p̃i =
(

n∏
j=1

k̃ij

) 1
n

, i = 1, 2, 3 . . . . . . .n (13)

w̃i = p̃i ⊗ (p̃1 ⊕ p̃2 ⊕ p̃3 . . . . ⊕ p̃n)
−1 (14)



CMC, 2022, vol.72, no.1 1773

Stage 6: The practitioners now use Eqs. (15) and (16) to normalise the numbers after determining
the particular weights for each characteristic.

Mi = w̃1 ⊕ w̃2 . . . .. ⊕ w̃n

n
(15)

Nri = Mi

M1 ⊕ M2 ⊕ . . . . . . ⊕ Mn

(16)

Stage 7: The succeeding Eq. (17) is employed to calculate the best characteristic and ranking list
of selected qualities.

BNPwD1 = [(uw1 − lw1 ) + (miw1 − lw1 )]
3

+ lw1 (17)

The estimations that were carried out using the fuzzy AHP tactic are now finished. After defining
the ranking list and the weights of the criteria, the practitioners utilise a fuzzy TOPSIS MCDM tactic
to test the evaluated outcomes. TOPSIS is a tactic for creating a numeric testing plot that resembles
real-life testing [31]. The TOPSIS tactic is a powerful tool for assessing the efficiency and quality of
fuzzy AHP outputs. The approach executes the estimation stages using some applications related to the
field of hierarchy, and then employs them as an alternative in the estimation procedure. The headings
below provide a concise overview of the tactic:

Stage 1: The practitioners assign weights for specific characteristics to the specific options chosen
by the writers as the first step in the estimation process.

Stage 2: Apply Eq. (18) to create a matrix.

C1 . . . . . .Cn

K̃ =
A1

. . .

Am

⎡⎢⎣ x̃11 · · ·x̃1n

· · · . . .· · ·
x̃m1 · · ·x̃mn

⎤⎥⎦ (18)

Stage3: Furthermore, after constructing a systematic matrix using Eq. (18), practitioners must
normalise the values identified in the preceding phase, as shown in Eqs. (19) and (20).

P̃ = [p̃ij]m×n (19)

p̃ij =
(

lij

u+
j

,
miij

u+
j

,
uij

u+
j

)
, u+

j = max{uij, i = 1, 2, 3..n} (20)

The value of j is taken to be between 1 and 0. Furthermore, before the TFN values conversation,
the normalisation tactic is widely employed. Stage 4: The practitioners obtains a numerical matrix for
alternative estimation by applying Eq. (21).

Q̃ = [q̃ij]m×ni = 1, 2, ..m; j = 1, 2, 3 . . . n (21)

where, q̃ij = p̃ij ⊗ w̃ij

It’s worth noting that during the estimation, normalised values are frequently shown to represent
TFN values between 0 and 1.
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Stage 5: To numerically quantify the +ve and –ve ideal solution value by applying Eqs. (22)–(25).

A+ = (q̃∗
1,···.....q̃

∗
j,···.....q̃

∗
n,) (22)

A− = (q̃∗
1,···.....q̃

∗
j,···.....q̃

∗
n,) (23)

Here, q̃∗
1 = (1, 1, 1) ⊗ w̃ij = (Lwj, Mwj, Hwj); and q̃−

ij = (0, 0, 0), j = 1, 2, 3 . . . n

d̃+
i =

n∑
j=1

d(q̃ij, q̃∗
ij), i = 1, 2, ..m; j = 1, 2, 3 . . . n (24)

d̃−
i =

n∑
j=1

d(q̃ij, q̃∗
ij), i = 1, 2, ..m; j = 1, 2, 3 . . . n (25)

Stage 6: The practitioners use Eq. (26) to calculate the optimal gap degree of alternative values in
this final step of the estimation. For ideal alternative testing, the calculation of coefficient gap degree
must be reviewed [32,33].

CC̃i = k̃−
i

k̃+
i + k̃−

i

= 1 − k̃+
i

k̃+
i + k−

i

, i = 1, 2, . . . ., m (26)

where
k̃−

i

k̃+
i + k̃−

i

represents the degree of satisfaction with an alternative and displays the degree of a gap.

Using the above-mentioned systematic step-by-step tactic, this project will undertake a case
study on machine learning-based intrusion detection systems for the idealness estimation from a
cybersecurity aspect. The numerical computations for this examination are detailed in the next section
of this article.

4 Numerical Analysis

Because quantitative estimation of a qualitative characteristic is a challenging procedure, evalu-
ating the quality characteristics of any software-based system, including cybersecurity, is a difficult
process [8]. The numerical analysis presented in this paper will provide a quantitative estimation
of machine learning-based intrusion detection systems. As an outcome, this article conducts a case
study on 8 distinct machine learning-based intrusion detection systems in order to evaluate their
optimum cybersecurity qualities. For this project, 8 different intrusion detection systems were chosen
as possibilities. The tactic we adopted for our study requires the identification of alternatives and the
ranking of those options. Furthermore, these 8 different intrusion detection systems were chosen as
options for their comparative cyber-security estimation based on the collaborative choice of domain
experts and intrusion detection system owners. To make this activity more corroborative and efficient,
AHP-TOPSIS was employed under fuzzy conditions. This experiment looked at eight characteris-
tics, including spam detection, phishing detection, malware detection, DoS attack detection, abuse
detection, anomaly detection, implementation difficulty, and accuracy, to establish the idealness
estimation of a machine learning-based intrusion detection system. In the succeeding research, the
identified features were designated as F1, F2, F3, F4, F5, F6, F7, and F8. Idealness estimation of
machine learning-based intrusion detection systems has been performed using AHP-TOPSIS under
the succeeding conditions, as given in Eqs. (1)–(26) in Section 4 of this paper:

Initially, the language concepts were translated into numeric values and later into fuzzy logic
based crisp numeric values by considering Eqs. (1)–(9). The outcomes of the numerical calculations
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were then employed to generate a pair-wise comparison matrix, as shown in Tab. 1. The procedure
encountered the implementation of fuzzy wrappers by approaching Eq. (1); approaching Eqs. (2)
and (5); estimation of trapezoidal numbers C = (l, m, n, o); and approaching Eqs. (6) and (7),
and considering, which represents a number between (0–1), the 1st and 2nd weight types have been
discovered. Finally, the experts calculated the pair-wise comparison matrix using Eqs. (8) and (9). We
haven’t included the intermediate processes because they aren’t really important.

Table 1: Trapezoidal fuzzy pair-wise comparison matrix at level 1

F1 F2 F3 F4 F5 F6 F7 F8

F1 1.00000,
1.00000,
1.00000

0.23254,
0.28547,
0.36569

0.30758,
0.44456,
0.80587

0.49857,
0.64635,
1.00256

0.27212,
0.31425,
0.52253

1.00568,
1.57582,
1.93564

0.49758,
0.64745,
1.00746

0.27745,
0.35457,
0.52463

F2 - 1.00000,
1.00000,
1.00000

0.66474,
1.17452,
1.69474

0.66547,
1.17457,
1.69563

1.15542,
1.44154,
1.70236

0.22453,
0.24759,
0.42635

1.00475,
1.32475,
1.55556

1.15458,
1.44745,
1.70745

F3 - - 1.00000,
1.00000,
1.00000

1.19745,
1.58475,
2.15653

0.49457,
0.64745,
1.00457

0.27532,
0.37895,
0.52856

0.37540,
0.44745,
0.88589

0.49758,
0.68544,
1.07780

F4 - - - 1.00000,
1.00000,
1.00000

1.00747,
1.32456,
1.55444

1.15596,
1.44414,
1.70444

0.66485,
1.17774,
1.69465

0.66566,
1.14587,
1.67899

F5 - - - - 1.00000,
1.00000,
1.00000

0.49474,
0.64454,
1.00114

1.00263,
1.32214,
1.55345

1.11235,
1.42564,
1.74570

F6 - - - - - 1.00000,
1.00000,
1.00000

0.27748,
0.35563,
0.52474

0.47459,
0.64745,
1.07450

F7 - - - - - - 1.00000,
1.00000,
1.00000

1.17455,
1.44574,
1.77780

F8 - - - - - - - 1.00000,
1.00000,
1.00000

The defuzzified values and normalised weights of the level 1 characteristic were computed using
Eqs. (10)–(16), and the outcomes are displayed in Tab. 2. In order to calculate Tab. 2, the succeeding
intermediate steps were employed: For the defuzzification procedure, Eq. (10) was employed to turn
the pair-wise comparison matrixes into united defuzzified values. Then, to ensure matrix consistency,
Eqs. (11) and (12) were employed to calculate the consistency index and consistency ratio (CR), and
we found that CR = 0.03485540 for this study, which equals 0.1, indicating that our evaluated matrix
is consistent. After that, numerical calculations were performed to determine the geometric mean for
row values and the most relevant qualities, using Eqs. (13) and (14) as a guide. Then, using Eqs. (15)
and (16), the defuzzified data was analysed and converted to normalised weights.
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Table 2: Weights after defuzzification

F1 F2 F3 F4 F5 F6 F7 F8 Defuzzified weights

F1 1.00000 0.24587 0.98547 0.38547 0.64857 0.36522 0.92545 0.18547 0.059362
F2 4.06719 1.00000 0.18574 0.17584 0.17458 0.18596 0.19658 0.38898 0.049009
F3 1.01474 5.38387 1.00000 1.74578 1.04554 0.72565 0.13652 0.92565 0.105436
F4 2.59424 5.68699 0.57281 1.00000 0.93365 0.12565 0.32563 0.75874 0.092310
F5 1.54185 5.72803 0.95644 1.07107 1.00000 0.95857 0.74587 1.77458 0.133181
F6 2.73808 5.3775 1.37807 7.95862 1.04322 1.00000 1.02545 1.22541 0.205979
F7 1.08056 5.08699 7.32493 3.07097 1.34072 0.97518 1.00000 0.48574 0.204074
F8 5.39171 2.57083 1.08032 1.31797 0.56351 0.81605 2.05871 1.00000 0.150648

C.R. = 0.01254024

Succeeding that, this section of the paper gives a realistic estimation of the evaluated outcomes of
extremely sensitive machine learning-based intrusion detection systems employed in Indian hospitals.
The global ranking of competing alternatives was constructed using TOPSIS under fuzzy logic
conditions after the defuzzified and normalised weights of characteristics were obtained using an AHP
tactic under fuzzy logic conditions. The summarised outcomes displayed in Tab. 3 were computed by
combining the standard scale specified in the Tactic sub-section at step 10 and Eqs. (1) and (17) from
the technological data of 8 machine learning-based intrusion detection systems. The AHP-derived
characteristic weights are fed into the TOPSIS tactic under fuzzy logic conditions to get the ranking
order for the alternatives. Tab. 4 shows the normalised fuzzy decision-matrix for 8 qualities and 8
competitive options, which was calculated using certain intermediary operations and combining step
10 and Eq. (18). Using Eqs. (19)–(22), the normalised fuzzy decision-matrix cell values (performance-
values) are multiplied by each characteristic weight value, yielding a weighted fuzzy normalised
decision-matrix, as shown in Tab. 5. The final outcomes are listed in Tab. 6 under the column headings
dist+ and dist-, which were calculated using Eqs. (22) and (23) to determine the positive and negative
idealness of each alternative for each characteristic. The CC-i satisfaction degree was then calculated
as the relative closeness score for each choice using Eqs. (25) and (26), and the outcomes are shown in
Tab. 6 and Fig. 2.

Table 3: Subjective cognition outcomes

Characteristics
(SDA)/
alternatives

A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8

F1 1.1800,
3.0000,
5.0000

1.6400,
3.3600,
5.3600

0.3600,
1.7300,
3.7300

6.2700,
8.2700,
9.4500

1.1800,
3.0000,
5.0000

1.6400,
3.3600,
5.3600

0.3600,
1.7300,
3.7300

6.2700,
8.2700,
9.4500

F2 0.7300,
2.4500,
4.4500

0.8200,
2.4500,
4.4500

1.1800,
3.0000,
5.0000

4.1800,
6.0900,
7.6400

0.7300,
2.4500,
4.4500

0.8200,
2.4500,
4.4500

1.1800,
3.0000,
5.0000

4.1800,
6.0900,
7.6400

(Continued)
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Table 3: Continued
Characteristics
(SDA)/
alternatives

A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8

F3 0.8200,
2.4500,
4.4500

1.0000,
2.6400,
4.6400

0.7300,
2.4500,
4.4500

5.0000,
7.0000,
8.4500

1.0000,
2.6400,
4.6400

0.7300,
2.4500,
4.4500

5.0000,
7.0000,
8.4500

2.8200,
4.8200,
6.7300

F4 1.0000,
2.6400,
4.6400

0.7300,
2.4500,
4.4500

5.0000,
7.0000,
8.4500

2.8200,
4.8200,
6.7300

0.7300,
2.2700,
4.2700

0.6400,
2.2700,
4.2700

5.3600,
7.3600,
8.7300

1.1800,
3.0000,
5.0000

F5 0.7300,
2.2700,
4.2700

0.6400,
2.2700,
4.2700

5.3600,
7.3600,
8.7300

1.1800,
3.0000,
5.0000

1.6400,
3.3600,
5.3600

0.3600,
1.7300,
3.7300

6.2700,
8.2700,
9.4500

4.0900,
6.0900,
7.7300

F6 1.6400,
3.3600,
5.3600

1.1800,
3.0000,
5.0000

1.6400,
3.3600,
5.3600

0.3600,
1.7300,
3.7300

1.1800,
3.0000,
5.0000

1.6400,
3.3600,
5.3600

0.3600,
1.7300,
3.7300

6.2700,
8.2700,
9.4500

F7 0.8200,
2.4500,
4.4500

0.7300,
2.4500,
4.4500

0.8200,
2.4500,
4.4500

1.1800,
3.0000,
5.0000

0.7300,
2.4500,
4.4500

0.8200,
2.4500,
4.4500

1.1800,
3.0000,
5.0000

4.1800,
6.0900,
7.6400

F8 1.0000,
2.6400,
4.6400

0.8200,
2.4500,
4.4500

1.0000,
2.6400,
4.6400

0.7300,
2.4500,
4.4500

0.8200,
2.4500,
4.4500

1.0000,
2.6400,
4.6400

0.7300,
2.4500,
4.4500

5.0000,
7.0000,
8.4500

Table 4: The normalized fuzzy-decision matrix

A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8

F1 0.4200,
0.6900,
0.9900

0.3800,
0.6600,
0.9600

0.2000,
0.5000,
0.8000

0.5500,
0.7600,
0.9300

0.2000,
0.4700,
0.7700

0.4600,
0.6800,
0.8700

0.1800,
0.4500,
0.7400

0.2000,
0.5000,
0.8000

F2 0.2000,
0.4700,
0.7700

0.2000,
0.5000,
0.8000

0.2000,
0.5000,
0.8000

0.4700,
0.6800,
0.8800

0.2000,
0.5000,
0.8000

0.5500,
0.7600,
0.9300

0.2000,
0.4700,
0.7700

0.1200,
0.3900,
0.6900

F3 0.4700,
0.6800,
0.8800

0.2000,
0.5000,
0.8000

0.5500,
0.7600,
0.9300

0.2000,
0.4700,
0.7700

0.1200,
0.3900,
0.6900

0.4700,
0.6800,
0.8800

0.2000,
0.4700,
0.7700

0.5400,
0.7500,
0.9300

F4 0.2000,
0.4700,
0.7700

0.2000,
0.5000,
0.8000

0.4700,
0.6800,
0.8800

0.2000,
0.4700,
0.7700

0.5400,
0.7500,
0.9300

0.2000,
0.4700,
0.7700

0.1600,
0.4200,
0.7200

0.3000,
0.5700,
0.8300

F5 0.2000,
0.5000,
0.8000

0.5500,
0.7600,
0.9300

0.4700,
0.6800,
0.8800

0.2000,
0.5000,
0.8000

0.5500,
0.7600,
0.9300

0.2000,
0.4700,
0.7700

0.1200,
0.3900,
0.6900

0.1800,
0.4500,
0.7400

(Continued)
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Table 4: Continued
A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8

F6 0.5200,
0.7400,
0.9200

0.2000,
0.4700,
0.7700

0.2000,
0.4700,
0.7700

0.2000,
0.5000,
0.8000

0.4700,
0.6800,
0.8800

0.2000,
0.4700,
0.7700

0.5400,
0.7500,
0.9300

0.2000,
0.4700,
0.7700

F7 0.6000,
0.8100,
1.0000

0.4700,
0.6800,
0.8800

0.2000,
0.5000,
0.8000

0.5500,
0.7600,
0.9300

0.2000,
0.4700,
0.7700

0.1200,
0.3900,
0.6900

0.3000,
0.5700,
0.8300

0.2000,
0.4700,
0.7700

F8 0.4600,
0.6800,
0.8800

0.2000,
0.4700,
0.7700

0.2000,
0.5000,
0.8000

0.4700,
0.6800,
0.8800

0.2000,
0.4700,
0.7700

0.5400,
0.7500,
0.9300

0.2000,
0.5000,
0.8000

0.5500,
0.7600,
0.9300

Table 5: The weighted normalized fuzzy-decision matrix

A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8

F1 0.0020,
0.0070,
0.0270

0.0020,
0.0070,
0.0250

0.0020,
0.0060,
0.0200

0.0010,
0.0050,
0.0190

0.0020,
0.0100,
0.0370

0.0020,
0.0090,
0.0380

0.0020,
0.0100,
0.0390

0.0020,
0.0090,
0.0380

F2 0.0020,
0.0100,
0.0370

0.0020,
0.0090,
0.0380

0.0000,
0.0020,
0.0090

0.0010,
0.0050,
0.0180

0.0010,
0.0050,
0.0190

0.0010,
0.0050,
0.0180

0.0010,
0.0040,
0.0170

0.0010,
0.0050,
0.0180

F3 0.0010,
0.0050,
0.0190

0.0010,
0.0050,
0.0180

0.0020,
0.0100,
0.0390

0.0020,
0.0090,
0.0380

0.0010,
0.0050,
0.0180

0.0010,
0.0050,
0.0190

0.0020,
0.0100,
0.0370

0.0020,
0.0090,
0.0380

F4 0.0020,
0.0060,
0.0200

0.0010,
0.0050,
0.0190

0.0010,
0.0050,
0.0180

0.0020,
0.0100,
0.0390

0.0020,
0.0070,
0.0250

0.0010,
0.0050,
0.0180

0.0010,
0.0050,
0.0190

0.0010,
0.0050,
0.0180

F5 0.0010,
0.0050,
0.0190

0.0020,
0.0100,
0.0370

0.0020,
0.0090,
0.0380

0.0010,
0.0040,
0.0170

0.0020,
0.0090,
0.0380

0.0020,
0.0090,
0.0380

0.0010,
0.0050,
0.0180

0.0000,
0.0020,
0.0090

F6 0.0010,
0.0050,
0.0180

0.0010,
0.0050,
0.0190

0.0010,
0.0050,
0.0180

0.0020,
0.0100,
0.0390

0.0010,
0.0050,
0.0180

0.0010,
0.0050,
0.0190

0.0020,
0.0100,
0.0370

0.0020,
0.0090,
0.0380

F7 0.0020,
0.0090,
0.0380

0.0010,
0.0050,
0.0180

0.0000,
0.0020,
0.0090

0.0000,
0.0040,
0.0170

0.0010,
0.0050,
0.0190

0.0010,
0.0050,
0.0180

0.0010,
0.0050,
0.0190

0.0010,
0.0050,
0.0180

F8 0.0020,
0.0100,
0.0390

0.0020,
0.0070,
0.0250

0.0020,
0.0060,
0.0200

0.0000,
0.0020,
0.0090

0.0010,
0.0050,
0.0180

0.0020,
0.0090,
0.0380

0.0010,
0.0050,
0.0180

0.0000,
0.0020,
0.0090
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Table 6: Closeness coefficients of selected alternatives

Alternatives Dist+ Dist− Gaps degree of
CC+ i

Satisfaction
degree of CC
−i

Alternative
Ranks

A-1 0.345254 0.596587 0.595652 0.3652587 7
A-2 0.036525 0.056524 0.652587 0.3475859 8
A-3 0.034742 0.052566 0.502547 0.4889876 5
A-4 0.040221 0.054745 0.523695 0.4856 + 97 6
A-5 0.036874 0.063526 0.555645 0.4933021 4
A-6 0.063587 0.026789 0.385989 0.6232547 2
A-7 0.036524 0.036252 0.456362 0.5321255 3
A-8 0.042415 0.024525 0.402560 0.6554744 1

Alternatives

IDS-2
IDS-4

IDS-6
IDS-8

0

0.2

0.4

0.6

0.8

1 2 3 4 5

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2

Figure 2: Graphical representation of satisfaction degree

In an idealness estimation of machine learning-based cybersecurity, the numerical findings
demonstrate that, based on the performance scores, the competitive alternative rankings (8 machine
learning-based intrusion detection systems) are generated as: A-6, A-8, A-7, A-5, A-4, A-3,
A-1, and A-2. The idealness estimation of 8 alternative machine learning-based intrusion detection
systems based on defined criteria found that A-6 is more ideal and effective in addressing important
cybersecurity problems and difficulties. Furthermore, the identified characteristics for the idealness
estimation of machine learning-based intrusion detection systems have been prioritised in the
succeeding order, using a TOPSIS approach under fuzzy logic conditions: accuracy, anomaly
detection, misuse detection, DoS attack detection, malware detection, implementation complexity,
spam detection, and phishing detection, with global normalised weights of 0.273937, 0.222015,
0.127306, 0.122505, 0.10973, 0.053217, 0.052354, and 0.

Furthermore, the applicability of our suggested research is not nil. As an alternative, we looked at
8 real-time intrusion detection systems from numerous Indian hospitals. According to current relevant
research works [8–17], alternative estimation selection is an inherent aspect of our proposed tactic. For
this case study, the alternative selection is the outcome of a group decision made by domain experts
and owners of intrusion detection systems. Furthermore, the quantitative outcomes show that the A-6
has acquired the greatest number of qualities from the defined characteristic set for this research. Due
to its hybrid properties, it integrates several machine learning tactics for the detection of different types
of cyber-security assaults, which is the subject of our investigation. Similarly, other intrusion detection
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systems, receive a lower performance score in descending order for the identified qualities and domain
of their detection of known cyber-security assaults.

5 Discussion

Cybersecurity protects information, information systems, and networks against intruders in real
time. Over the last decade, there has been a massive surge in cybersecurity breaches, and cases of data
theft are increasing by the day. Organizations have spent a significant amount of money to solve these
cybersecurity vulnerabilities, and attempts to combat these incursions have already begun. Experts
and researchers have employed a variety of tactics and strategies to develop trustworthy and effective
security systems. Machine learning is one of the most well-known of them, and it plays an important
role in cybersecurity [4]. Machine learning has a proactive personality that can successfully manage
cybersecurity challenges, assess risks, and respond to breaches and security incidents in a timely and
instinctive manner [6–8]. As an outcome, machine-learning approaches are better suited to identifying
and classifying diverse types of cyber-attacks. In particular, supervised and unsupervised machine
learning approaches are capable of addressing a wide range of cybersecurity concerns [9]. Numerous
intrusion detection systems have been developed and designed by cybersecurity experts and academics
in the past few years to identify numerous types of cybersecurity threats [6].

The major goal of this research was to examine the idealness of intrusion detection systems
using integrated fuzzy-based AHP-TOPSIS tactics, as indicated. The features that were included
in this estimation were identified and chosen using expert opinions and current relevant research
findings. The accuracy characteristic has obtained the highest importance in AHP under fuzzy
logic conditions, followed by anomaly detection, misuse detection, DoS attack detection, malware
detection, implementation complexity, spam detection, and phishing detection. With a performance
score of 0.355475 computed with respect to machine learning relevant cybersecurity characteristics,
TOPSIS under fuzzy logic conditions shows that A-6 has earned the highest ranking, while A-2 has
gained the lowest ranking. The findings show that A-6 provides better and more reliable cybersecurity
than the other nine options. This study will contribute to the development of secure and dependable
intrusion detection systems as well as machine learning-based cybersecurity characteristic estimations.

According to the study’s findings, the intrusion detection system A-6 best matches the machine
learning-based cyber security characteristics that were employed to evaluate the idealness of intrusion
detection systems from a machine learning-based cybersecurity perspective. It was decided to be
the best in terms of supplying an optimal and trustworthy machine learning-based cybersecurity
mechanism against probable threats, with a performance score of 0.635660. The succeeding points
summarise the study’s main findings and conclusions.

The succeeding machine learning-based cybersecurity characteristics are prioritised in this
research experiment: accuracy, anomaly detection, misuse detection, DoS attack detection, malware
detection, implementation complexity, spam detection, and phishing detection, with global normalised
weights of 0.273937, 0.222015, 0.127306, 0.122505, 0.10973, 0.053217, 0.052354, and 0.038937,
respectively.

In terms of recognised weighted machine learning-based cybersecurity qualities, after A-6, the
succeeding competing alternatives are rated in order based on their produced performance scores:
A-8, A-7, A-5, A-4, A-3, A-1, and A-2.
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Intrusion detection systems that use machine learning to provide cybersecurity are a difficult
problem to solve, and our study provides correct recommendations for constructing optimal and
effective machine learning-based intrusion detection systems.

This research was carried out primarily for intrusion detection systems employed in healthcare
settings. Because the estimation characteristics are determined on the basis of generalisation, they
may be employed as a guideline for developing any type of ideal and successful intrusion detection
system.

6 Conclusions

According to the conclusions of this study, cyber security issues and breaches have been a difficult
challenge for researchers and security specialists in recent years. To construct trustworthy and effective
security systems, experts and researchers have employed a number of approaches and strategies. One
of the most well-known is machine learning, which plays an important role in cybersecurity. We
employed fuzzy-based AHP-TOPSIS to investigate the impact of cyber security-related characteristics
on intrusion detection systems in this league. Researchers and developers will be able to use this
tactic to prioritise cyber security characteristics and design safer and more reliable intrusion detection
systems using this tactic. Research, on the other hand, is a dynamic and ongoing endeavour. As
an outcome, while our machine learning-based cybersecurity estimation is accurate, it falls short of
achieving optimal outcomes. There are other MCDM tactics that can be employed to achieve more
efficient outcomes. Nonetheless, our empirical data suggests that we employed a trustworthy strategy
for this estimation.
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