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Abstract: One of the major concerns for the utilities in the Smart Grid (SG)
is electricity theft. With the implementation of smart meters, the frequency
of energy usage and data collection from smart homes has increased, which
makes it possible for advanced data analysis that was not previously possible.
For this purpose, we have taken historical data of energy thieves and nor-
mal users. To avoid imbalance observation, biased estimates, we applied the
interpolation method. Furthermore, the data unbalancing issue is resolved
in this paper by Nearmiss undersampling technique and makes the data
suitable for further processing. By proposing an improved version of Zeiler
and Fergus Net (ZFNet) as a feature extraction approach, we had able
to reduce the model’s time complexity. To minimize the overfitting issues,
increase the training accuracy and reduce the training loss, we have proposed
an enhanced method by merging Adaptive Boosting (AdaBoost) classifier
with Coronavirus Herd Immunity Optimizer (CHIO) and Forensic based
Investigation Optimizer (FBIO). In terms of low computational complexity,
minimized over-fitting problems on a large quantity of data, reduced training
time and training loss and increased training accuracy, our model outperforms
the benchmark scheme. Our proposed algorithms Ada-CHIO and Ada-FBIO,
have the low Mean Average Percentage Error (MAPE) value of error, i.e., 6.8%
and 9.5%, respectively. Furthermore, due to the stability of our model our
proposed algorithms Ada-CHIO and Ada-FBIO have achieved the accuracy
of 93% and 90%. Statistical analysis shows that the hypothesis we proved
using statistics is authentic for the proposed technique against benchmark
algorithms, which also depicts the superiority of our proposed techniques
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1 Introduction

By adding new transmission technology, i.e., smart meters, a traditional power network becomes
an SG infrastructure. Current findings in [1] demonstrate that the SG can help to control electrical
power efficiently. To create the ultimate use of deployed resources [2], the SG framework has created
the platform [3] for transactive energy and short-term load balancing. The work in [4] proposes a
hierarchical energy delivery system that avoids peak hours and exchanges more power for less money.
To reduce the unpredictable nature of green energy, a strategy based on information-gap decision
theory [5] is applied. In an SG, the meter reading shares data among energy users and also the
infrastructure. It stores an immense amount of data, including consumers’ electrical energy usage.
Artificial intelligence techniques may manipulate these data to map customer energy usage trends and
reliably detect power thieves through using them.

Power grids all around the world are concerned with energy losses in electricity generation and
transmission. Energy losses are generally known as Non-Technical Loss (NTL) and Technical Losses
(TL) [6]. TLs are caused by the internal functioning of power grid components such as transformers
and transmission lines in the transmission of electricity; NTLs is defined as the difference between
total losses and TLs caused mostly by energy theft. Physical attacks such as line tapping, meter
smashing and interruption meter reading are the most common ways to stop power [7]. As a result,
the revenue loss of power utilities will arise from these electricity fraud activities. Herein, the cost of
power theft in the United States (US) is estimated to be about $4.5 billion a year [8]. Nonetheless,
it is believed that electricity theft costs the world’s power systems more than $20 billion per year [9].
As a result of the advent of digital metering infrastructure in SGs, utility companies have collected
massive volumes of actual electricity usage data from smart meters, allowing them to track power loss
[10]. The Advanced Meter Infrastructure (AMI) network, on the other hand, makes new energy theft
attacks possible. AMI attacks can take a range of forms, including cyber-attacks and digital devices.
Unauthorized line diversions, meter data comparisons and testing problematic equipment or hardware
are also critical strategies for identifying electricity theft. Whereas, these solutions are highly costly and
time-consuming when inspecting all of the meters in a system [11].

Special devices, such as transmission transformers and wireless sensors, use the state-based recog-
nition concept [12]. These techniques can detect energy theft, but they necessitate the procurement
of real-time system topology and additional physical measurements, which can be challenging to
obtain. Game-based control systems create a game involving power utility and theft, then use the game
equilibrium to generate various normal and abnormal behavior distributions. They achieve a low cost
and a fair outcome in minimizing energy theft, as detailed in [13]. Although evaluating the utility
function of each player is still a challenge (e.g., regulators, marketers and fraudsters). Deep learning
and machine learning approaches are examples of artificial intelligence-focused methods. There are
two types of machine learning systems clustering models and classification, as described in [14]. While
the methods of detecting ma-chine learning described above are revolutionary and exceptional, their
efficiency is still not adequate for practice. The majority of these approaches, for example, focus on
manual feature extraction due to their limited capacity to manage data with several dimensions. The
standard deviation, mean, minimum and maximum of costs and extra are all hand-designed functions.
Manually removing functionality from smart meter data is time-consuming and tedious and it skips
out capturing 2D features.

From the aforementioned literature, the current Electricity Theft Detection (ETD) methods’
results are relevant. These processes, on the other hand, have certain limitations, which are outlined as
follows. 1) Traditional ETD employs manual processes, such as human checking of meter readings and
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manual catching of electricity transmission lines. On the other hand, these tactics require an additional
cost for the inspection teams that will be hiring. 2) The False Positive Rate (FPR) of game theory-based
approaches is high, while the recognition rate is low. 3) The state-based approach is costly, although the
installation of hardware needs an extra cost [15]. 4) The handling of unbalanced data is a big concern
in ETD using machine learning techniques. This issue is left unresolved in conventional models.
Some authors employ the Synthetic Minority Oversampling Technique (SMOTE) and Rusboost
approaches, both of which result in information loss and overfitting. 5) In some instances, the available
data includes inaccurate data that minimize the precision of the classification [16]. 6) For big data,
traditional machine learning strategies like the Logistic Regression (LR) and Support Vector Machine
(SVM) have poor classification efficiency [17]. 7) The machine learning techniques have the overfitting
problem on a large amount of ETD data [18].

We employed an interpolation approach to modify missing values, normalization methods and
the three-sigma rule to pre-process the electrical data to address the aforementioned issues, namely
missing values and eliminating outliers in the data. For managing the imbalanced dataset, a Near-miss
algorithm is applied. Afterward, the balanced data is fed into the ZFNet module for feature extraction
and ZFNet is opted to detect the irregular patterns. Finally, the obtained features are forwarded to
the AdaBoost-based FBIO and AdaBoost-based CHIO Algorithm module for classification. To this
end, the following points discuss the paper’s} main application. 1) The proposed strategy offers a
solution to an issue in the power grid, such as energy waste due to electricity theft. 2) Utility companies
can effectively enforce this model by classifying electricity criminals and reducing energy waste using
current power consumption data. 3) It is possible to use the suggested solution against all forms of
customers that steal energy.

Herein, the following are the key contributions:

1. We have stabilized, balance the data, removed unbiased estimates and ensure valid conclusions
with the Interpolation method and near-miss algorithm along with the proposed Enhanced
version of the ZFNet technique.

2. Also, we minimized the overfitting issues, computational complexity by 9%, less model training
time, and model training loss by a proposed enhanced version of the AdaBoost classifier.

3. Less computation time while utilizing as few resources as feasible. Anomalous and normal user
classification accuracy and stability are achieved using optimation methods; CHIO and FBIO.
Optimization techniques are merged with AdaBoost to fine-tune the classifier by defining a
subset of its parameters.

4. Extensive simulations are carried out on actual electricity consumption collection of data
are used as output evaluators for comparative analysis, accuracy, recall, F1-score, Kruskal
Test, Mann-Whitney Test, Paired Student’s Test, ANOVA Test, Student’s Test, Pearson’s Test,
Wilcoxon Test, Spearman’s Test, Chi-Squared Test, Kendalla’s Test Obtaining Operational
Characteristics Area Under Curve (ROC-AUC), MAPE, Mean Average Error (MAE) and
Root Mean Square Error (RMSE)

2 Related Work

Recently, researchers have applied different techniques to track energy theft. It is possible to
classify these methods into three categories: game theory, state-based strategies and machine learning.
To detect power theft, state-based solutions use external hardware devices such as distribution
transformers, wireless sensors and smart meters [19]. So the need for extra hardware resources,
this approach has a high deployment cost. In a theory-based game scheme, the power suppliers
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and energy criminals are thought to be playing a game. The difference between positive consumer
behavior and electricity thieves may be utilized to assess the game’s outcome [20]. After all, describing
the utility function with all players in the game is extremely difficult. For ETD, machine learning
approaches are commonly used. They are further categorized into supervised (classification) and
unsupervised (clustering) approaches, which are then applied to unlabeled datasets to distinguish
between illegitimate and legitimate consumers. Tab. 1 presents the existing approaches used by ETD,
containing their inputs and their shortcomings.

Based on supervised learning, our solution is proposed. Therefore, the details of recent advances
made in supervised learning methods will be reviewed. LR and SVM are often used for ETD [21].
When the dataset is small, these strategies work better. However, when the dataset is wide and highly
imbalanced, these strategies are not successful. A hybrid model combining Long Short-Term Memory
(LSTM) and Convolutional Neural Network (CNN) was proposed in [22]. The CNN gathers features,
while the LSTM refines them to distinguish between normal consumers and energy thieves. For an
unbalanced dataset, the SMOTE is applied to make it balanced. Strong results have been obtained,
i.e., 90% accuracy and 87% recall. The over-fitting problem caused by the inclusion of duplicate data
through SMOTE is not taken into account. The author proposed a hybrid ETD model based on LSTM
and Multi-Layer Perception (MLP) in [23]. LSTM and MLP are used to combine additional data and
energy usage data; this model describes the NTL. The problem of unbalanced results, on the other
hand, is not resolved until classification. Besides, because of training on fewer data, the FPR of this
model is high. When 80% of the data was used in training, the Precision Recall (PR-AUC) reached
54.5%.

Table 1: Summary of the related works

Dataset Techniques used Data balancing
techniques

Contributions Drawbacks/
Limitations

Utility Brazilian [24] Binary black hole
algorithm

Not handled To characterize the
NTL, the binary black
hole optimization
strategy was used.

The system’s
effects cannot be
accurately
assessed.

Electric Ireland and
Sustainable Energy
Authority of Ireland
(SEAI) [25]

Random Forest (RF)
and CNN

SMOTE Using decision trees in
conjunction with
CNN, the generalized
performance is
obtained.

The SMOTE
produces falsified
results, which
leads to
overfitting
problems.

SGCC [26] LSTM and CNN SMOTE The LSTM is used to
categorize the data into
reliable consumers and
energy squatters and
the CNN is being used
for information
retrieval

The problem of
overfitting, which
is induced by the
insertion of
duplicate data via
SMOTE, is not
taken into
account.

(Continued)
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Table 1: Continued
Dataset Techniques used Data balancing

techniques
Contributions Drawbacks/

Limitations

Endesa [27] eXtreme Gradient
Boosting (XGBoost)
and SVM

RusBoost The XGBoost
approach is used as an
ensemble approach to
increase classification
performance.

Filtering the
input data is not
the same as
pre-processing it.

Honduras [28] RUSBoost and
MODWPT

Brazil National
Grid

Before using the
RUSBoost method to
classify the data, the
MODWPT provides
optimized feedback
and balances the labels
in the data.

Random
sampling reduces
the scale of the
data and causes
the model to
underfit.

Irish data [29] Clustering algorithm Not handled The MIC method
collects refined data
and FSFDP clustering
algo is used to
classify it.

The hardware
installation cost
of this model is
high.

Numenta Anomaly
Benchmark (NAB)
[30]

LSTM, Gaussian
Mixture Model
(GMM)

Not handled To solve the gradient
loss problem, the
authors improved the
LSTM’s internal
structure.

The model is
dynamic and has
an elevated
execution time.

Endesa [31] LSTM and MLP Not considered To detect the NTL,
combine auxiliary data
via MLP with energy
usage data via LSTM.

Before
classification,
data is not
balanced.

To detect electricity theft, the author of [32] addresses gradient loss by improving the internal
structure of LSTM. The model of GMM and LSTM is used in this methodology. The results from this
model were fantastic. 90.1% accuracy and 91.9% memory, in other words. However, the execution time
for this model is extended. For energy theft detection, the authors use the CNN model [33]. According
to the classification by fully interconnected layers [34], the CNN contributes to the degradation
of generalization. For final classification, the authors used the RF. Besides, the imbalanced data
is handled using SMOTE. Using the decision trees with the CNN, the generalized performance is
achieved. SMOTE, on the other hand, creates synthetic data, which leads to the issue of overfitting.
For NTL detection, the authors in [35] employed a gradient Boosting theft detector. This approach
refines precision by learning from a decision tree ensemble, demonstrating the model’s usefulness.
The simulation indicates that a gradient boosting theft detector outperforms most machine learning
methods.

3 Proposed Methodology

Fig. 1 depicts the proposed model for our ETD. There are five phases to our model. Firstly, the
data is loaded and preprocessed using methods such as missing value interpolation and normalization.
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Secondly, the imbalanced data is forwarded as input to the Near-miss technique for undersampling.
Thirdly, the imbalanced data is then forwarded to ZFNet for feature extraction. Fourthly, the data is
passed to the proposed classifier AdaBoost, which CHIO and FBIO optimize. After classification, we
have performed performance evaluation using performance metrics and performance error metrics,
i.e., MAPE, Mean Square Error (MSE), RMSE, F1-score, precision, accuracy, Recall. Furthermore,
statistical analysis is also performed on the proposed method. Our proposed algorithm is compared
with the benchmark techniques.

Figure 1: Proposed electricity theft detection model

3.1 Dataset Description

The proposed system is being evaluated using State Grid Corporation of China (SGCC) [36]
smart meter data. The data used in this paper is time-series data, which claims that data is collected
at regular time intervals. 1032 is the input dimensions or attributes. Three years is the duration of the
data obtained. It consists of data from 42,372 customers on electricity consumption. The data released
also provides the ground reality that 9% of the overall customers are energy thieves, which is shown in
Tab. 2.

Table 2: Data description and details

Data details Value/type Data details Value/type

Type of data Time series Honest consumers 37,672
Collected data duration 2016–2020 Fraudulent consumers 3600
Samples 41,272 Total no. of consumers 41,272
Dimension of data 1032 Resolution of data Data from smart

meters in real-time
and high resolution
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In the data on energy usage, trustworthy users have different levels of consumption than electricity
thieves. Electricity thieves have erratic energy usage patterns and because of meter tampering, their
energy consumption is often low. Besides, honest customers have a daily frequency in their pattern of
consumption. Machine learning algorithms use data from smart meters to detect consumers’ unusual
consumption patterns to identify them as energy thieves.

3.2 Preprocessing of Data

The data is preprocessed using the interpolation approach, which improves the accuracy of the
results. Eq. (1), which gives the interpolation technique [19], given that:

f (bh) =

⎧⎪⎨
⎪⎩

bh+1 + bh−1

2
if bh ∈ N a N, bh−1 and bh+1 /∈ NaN

0 if bh ∈ NaN, bh−1 or bh+1 ∈ NaN
bh if bh /∈ NaN

(1)

where nl indicates input value/data.

To remove outliers, the three-sigma technique is applied to the input data. These outliers are aware
that energy use spikes on non-working days. Using Eq. (2) [23], we recreate these values using the Three
Sigma rule of thumb:

f (bh) =
⎧⎨
⎩avg(b) + 2std(b) if bh > avg(b) + 2std(b)

bh else
(2)

The average value of n is avg(n), while the standard deviation is std(n). This method works well
for dealing with outliers. To standardize the data between the 1 and 0 scales, we employed the Min-
Max scaling technique, interpolation and the three-sigma rule. It is required because neural networks
function poorly when the findings are inconsistent [24]. Data normalization improves the training
phase of deep learning models by providing the data on a standard scale. Eq. (3) is used to normalize
the data as follows:

B′ = B − min(B)

max(B) − min(B)
(3)

where the normalized value is represented by M’. The consistency of the input data determines machine
learning’s algorithms efficiency. The quality and dependability of the data utilized in these models are
improved by pre-processing them.

3.3 Balancing of Input Dataset

In the SGCC dataset, the number of typical energy consumers outnumbers the number of thieves.
This data mismatch is a serious problem in ETD that must be addressed; otherwise, the classifier would
be biased towards the majority class, resulting in poor performance [25].

Motivated by SMOTEBoost [26] and SMOTE [27], helping to navigate the imbalanced collection
of results. To minimize the difference in quantity between the two types of data, sampling-based
methods under-sample or over-sample the imbalanced dataset. To reduce the majority class occur-
rences, under-sampling automatically dismisses the majority class’s entries. This strategy reduces the
amount of the dataset, which is beneficial from a statistical view; However, the random elimination
might be omitted and the remaining data could be a good sample representation or not. The model
created with the test data may produce a less accurate result. It seeks to balance class representation
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by removing instances of the majority class at random. When two different classes have examples that
are substantially similar to one another, we delete all of the instances of the majority class to optimize
the space available for comparing the two classes. This contributes to the classifying procedure.

Methods based on near-neighbors are commonly in most under-sampling techniques. This is used
to eliminate the issue of information loss. A brief explanation of how some of the near-neighbor
approaches work:

• Stage 1: The method begins by identifying the distinctions between majority and minority class
instances. In this circumstance, the majority class must be under-represented.

• Stage 2: The majority of N class instances with the shortest distances from the minority class
are then selected.

• Stage 3: The majority class will have k∗n instances if the minority class has k instances, resulting
in the closest process.

The Near-miss technique for selecting n closest examples in the majority class can be implemented
in a variety of ways:

• NearMiss Variant 1: Selects majority class samples with the shortest average distances to the
nearest k occurrences of the minority class.

• NearMiss Variant 2: Selects samples from the majority class that have the shortest average
distances to the minority class’s furthest k occurrences.

• NearMiss Version 3 is a two-step process. The nearest M-neighbors of each instance of the
minority class will be saved first. Finally, the majority class instances with the biggest average
distance between N and its nearest neighbors are chosen.

3.4 Feature Extraction Using ZFNet

The Graphic Geometry Group (GGP) [28] launched ZFNet, an updated 05-layer version of
CNN. A 7/7 filer and a decreased stride value are utilized in the first layer. The softmax layer of
ZFNet is the final one. It is used for feature isolation and propagation learning [29]. This post uses
ZFNet for feature extraction to display the representation spaces formed by all layer filters in greater
detail. All of a layer’s activations are utilized to remove the related features using a deconvolution
network. Convolutional and pooling layers are utilized. In the last dense layer, the softmax is used as
an activation mechanism. The multi-pooling layers of the ZFNet modules are superior at significant
advanced data characteristics. We’ll examine the input image that optimizes the filter’s activation and
discover what features each filter catches. Sliding the kernel through the full inputs gives a functional
chart in the convolutional technique. The kernel function merges the final output from the convolution
layer after numerous feature mapping procedures, namely:

k = m × T → k|s| =
+∞∑

d=−∞
m × [s − d]T [d] (4)

The input in Eq. (4) is m and filter T, also known as the kernel failure, is calculated by multiplying
the number of times a certain filter is activated [30], but the input image is random at first. k is the
convolutional layer, s is the input data size and d is the convolution result size. Rectified Linear Unit
(ReLu) [21] is used as an activation function to introduce non-linearity to the model, as demonstrated
in Eq. (5):

ReLu(b) = max imum(0, b) (5)
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A thick layer is used to show the essential features after the dropout layer processes. To avoid
over-fitting, the dropout is set at 0.01 and the learning rate is set to 0.001. This approach may be used
to activate the final thick layer with softmax, which is specified in Eq. (6) [8] as follows:

P(k = s|ϕ(d)) = �ϕ(d)∑l

s=0�ϕ(d)
(6)

If K and S are the functions and weight matrices, respectively, then is determined in Eq. (7) as:

ϕ =
k∑

d=0

HdGd = HFG (7)

The ZFNet’s hyper-parameters are including learning rate, batch size, quantity of epochs, opti-
mizer, and drop-out rates. These criteria are fundamental for finding the ZFNet module’s optimum
results.

3.5 Classification Using AdaBoost Optimized by CHIO and FBIO

For classification, we have used the AdaBoost algorithm, which is optimized by CHIO and FBIO.
The details of the algorithm are further explained in subsections.

3.5.1 AdaBoost Algorithm

The AdaBoost algorithm, or Adaptive Boosting, is a boosting approach used as an Ensemble
Method in Machine Learning [13]. Weights are reassigned to each occurrence, with improperly
classified instances receiving larger weights, AdaBoost is the term for this. Boosting is used to minimize
bias and variance in supervised learning. It is centered on the sequential success of learners.

3.5.2 Working of AdaBoost Algorithm

AdaBoost creates n number of decision trees during the data training cycle. When the first decision
tree/model is built, the record that was incorrectly labeled in the previous model takes precedence. Only
these records are sent as reviews to the second model. The procedure will be repeated until the number
of base learners has been determined. Always keep in mind that all boosting methods cause you to
reproduce records [15]. AdaBoost is a specific training approach for boosted classifiers. A boosted
classifier is a type of classifier that works in the form of Eq. (8) [16]:

FR(c) =
R∑

r=0

fR(c) (8)

In Eq. (8), each fr function takes an object c as input and returns a value indicating the object’s c
class. In a two-class problem, for example, the sign of bad learner performance defines the predicted
object type, but the absolute value represents confidence in that classification. Similarly, if the sample
belongs to a positive class, the R-th classifier is positive; otherwise, it is negative.

Each weak learner provides a performance hypothesis, h(ci), for each sample in the training set.
Selecting a weak learner and giving it a coefficient alpha at each iteration, r reduces the cumulative
training error Wr of the resulting r-stage boost classifier. Each iteration of the training algorithm
gives each sample in the training set a weight wi, t equal to the current error W(Fr–1(xi)). The slow
learner’s training can be guided by these weights; for example, decision trees that support sorting sets
of samples with high weights can be built. A class probability estimation s(c) = S(h = 1|c) is the output
of decision trees, the certainty that c refers to the positive class. An empirical minimizer derived by
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Hastie, e–h(Fr–1(c) + fr(p(c))) for a fixed f(c), where:

fr(c) = 1
2

ln
(

1 − c
c

)
(9)

Whereas, c described the weighted error rate. Rather than increasing the output of the entire tree
by a fixed value, each leaf node now produces half of its previous value’s logit transform as shown in
Eq. (9) [17].

3.5.3 Forensic Based Optimization

Nguyen and Chou introduced the FBIO approach, which is inspired by police officers’ forensic
analysis methods. The FBIO is initiated by police officers, who use criminal investigations, arrests and
convictions as a tool. The investigative process and the pursuit phase are the two primary stages of the
FBIO. The investigators’ unit is in charge of the investigative process, while the police officers’ team
controls the pursuit phase i.e., Non Performing Assets (NPA). During the investigation process, the
parameter XAi represents the i-th suspected location to be investigated (i = 1, 2, . . . , NPA); whereas
XBi denotes the i-direction of the police officer, in which the officer continues to pursue the attacker
(i = 1, 2, . . . , NPB). The terms NPA and NPB relate to the pursuit squad, which refers to the number
of locations and police personnel inspected. In this algorithm, population size (NP) is treated the same
as NPA and NPB. The forensic procedure is completed when the total iterations (gmax) are reached.
As shown in Fig. 5, the FBIO algorithm consists of four steps: analysis of results (A1), course of the
investigation (A2), behavior (B1) and extending the phase of actions (B2). The parameter XAl and
knowledge about other possible locations were used to make this decision. A new suspected location
(Xskl) is deduced in (A1). It is presumed that each person moves as a result of the actions of others.
The flowchart of the FBIO method is shown in Fig. 2a.

Figure 2: (Continued)
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(b) FBIO algorithm

Figure 2: Flowchart of the optimization algorithm
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3.5.4 Corona Virus Herd Immunity Optimization

In this article, we have used the CHIO algorithm [18] for the parameter tuning of AdaBoost.
CHIO is used to reduce the time complexity and improve the precision of the AdaBoost performance
measurement. CHIO was inspired by the idea of herd immunity as a means to tackle a coronavirus
disease outbreak (COVID-19). The pace at which coronavirus infection spreads is determined by
how infected individuals interact with other members of society. Health authorities recommend social
distancing to shield all members of the community from the disorder. Herd immunity is a condition
reached by a species when most of the population is immune, preventing disease spread. These ideas
are modeled using optimization principles. CHIO is a mix of herd immunity and social distancing
strategies. For herd immunity, three forms of human cases are used: susceptible, contaminated and
immuned. This is to see if the newly created approach uses social distancing techniques to update the
genes. The flow of the CHIO algorithm is shown in Fig. 2a.

3.6 Classification with Ensembler

The ETD classification is carried out using the AdaBoost tuned with the CHIO and FBIO. FBIO
and CHIO compute the optimal values for the AdaBoost parameters, as illustrated in Fig. 3. The
optimization algorithms determine the most suited value for the classifier’s parameters, allowing the
classifier to perform better.

Input Data

Parameters 1 Parameters 2

Parameters 3

AdaBoost
T

ra
in

in
g 

&
 T

es
tin

g
M

od
el Classifaction of 

Normal and Theft 
Users

CHIO

Tuned with

FBIO

Figure 3: A visual view of the optimized AdaBoost model

4 Simulation Results and Discussions

The findings of our proposed model’s implementation are described in this section, are explained
in terms of their performance metrics. We have simulated our model on system specification core i7,
16GB RAM and 4.8GHZ processor. The IDE environment Anaconda (Spyder) and language python
are used. Extensive simulations are carried out, which are explained below in Figs. 4–6.

In Figs. 4a and 4b, the curve of our proposed model is gradually increasing and attaining accuracy.
The reason is the optimizers are giving the optimized values to the proposed methods. The accuracy of
our proposed model is increasing with the increase in the iterations. As the accuracy of our suggested
model is increases, on the other side the loss of our model is also decreasing with the iterations as
shown in Figs. 5a and 5b, which shows the superiority of our methodology.
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Figure 4: Accuracy vs. iteration of ADA-CHIO method

Figure 5: ADA-FBIO and ADA-CHIO method

The effectiveness of our proposed techniques has been assessed with evaluation metrics and
error metrics. The evaluation metrics are accuracy, F-score, precision, and recall. Furthermore, the
performance error metrics are RMSE, MSE and MAPE. Our proposed techniques outperform the
state-of-the-art methods in terms of performance metrics, i.e., highest value and the lowest error rate
of MSE, RMSE and MAPE. The formulas of performance evaluation metrics and performance error
metrics are governed by Eqs. (10)–(16) [2].

Precision = TPT
TPT + FPT

(10)

Recall = TPT
TPT + FNT

(11)

Accuracy = TNT + TPT
TPT + FPT + TNT + FNT

(12)
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F1 = 2
Precision ∗ Recall
Precision + Recall

(13)

MSE = 1
n

∑
(Actual − Predicted)2 (14)

MAPE = 1
b

∑∣∣∣∣Actual_Val − Predicted_Val
Actual

∗ 100

∣∣∣∣ (15)

RMSE =
√∑

(Predicted_Val − Actual_Vak)
2

B
(16)

where “Actual” variable describes the real data (on which classifier is trained), whereas the “Predicted”
variable is the predicted data. True positive rate is TPT, false positive rate is FPT, false negative values
are FNT and false positive value is FPT.

Figs. 6a and 6b describe the values of performance error and performance metrics. These figures
show that our proposed techniques’ error values are low compared to the other techniques. In Fig. 6,
it is clearly shown that the ADA-CHIO and ADA-FBIO have the highest accuracy of 93% and 90%.
Furthermore, the ADA-CHIO and ADA-FBIO have the low MAPE value of error, i.e., 6.7% and 9.4%,
respectively. These values show the sovereignty of our proposed techniques.

Figure 6: Proposed algorithm vs. benchmark algorithms

The lowest MAPE error and maximum accuracy are seen in the ADA-CHIO and ADA-FBIO.
Fig. 6a depicts the methods’ accuracy bar. As indicated in Tab. 3, we also conducted a statistical study
of the proposed approaches and benchmark techniques. In Tab. 3, the general range for a hypothesis is
less than 0 and more than −1. It means when the statistical test value is greater than −1, the hypothesis
is correct. If the value is less than 0 it is observed as a false hypothesis. We can see that our proposed
model values are greater than −1, which means our hypothesis is correct.
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5 Conclusions

In this article, we present two new algorithms namely: Ada-CHIO and Ada-FBIO to detect
energy theft in AMI. It is based on the predictability of natural and malicious consumer consumption
behavior. In addition to using the AdaBoost anomaly detector, the proposed algorithm relies on
distribution transformer meters to detect NTL at the transformer stage and it uses a base learners
scheme in the training model to distinguish the various distributions in the dataset. We have seen
that these features give the algorithm a high level of performance and it helps for resistance to
nonmalicious improvements in usage patterns and data intrusion attacks. In reality, it is observed
that the performance requirements for ETDs can differ by region. However, it is concluded that by
adding a delay to the detection algorithm, we can get an adjustment in performance to fit various
goals. Simulation results show that the proposed algorithm has a high degree of accuracy/precision
i.e., 93% and 90% and a low-performance error rate i.e., 7% and 10% on a real dataset.

The proposed model has maximum reliability, lower performance error and more sensitivity, but
it does not guarantee that it will self-learn new patterns in power theft. We can’t say how well our
fine-tuned approach will manage numerous types of fraud and large data. This research might be
expanded to find distinct patterns of power theft methods as a potential future research topic. To
make the research more dependable and precise, researchers can collect additional data samples from
real-time SG experts. To find different sorts of thieves patterns in the data, multiclass models may
be used.
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