
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.025353

Article

Embedding Extraction for Arabic Text Using the AraBERT Model

Amira Hamed Abo-Elghit1,*, Taher Hamza1 and Aya Al-Zoghby2

1Faculty of Computers and Information, Department of Computer Sciences, Mansoura University, Mansoura,
35516, Egypt

2Faculty of Computers and Artificial Intelligence, Department of Computer Sciences, Damietta University, Damietta,
34517, Egypt

*Corresponding Author: Amira Hamed Abo-Elghit. Email: amira-hamed@mans.edu.eg
Received: 21 November 2021; Accepted: 17 January 2022

Abstract: Nowadays, we can use the multi-task learning approach to train a
machine-learning algorithm to learn multiple related tasks instead of training
it to solve a single task. In this work, we propose an algorithm for estimating
textual similarity scores and then use these scores in multiple tasks such as
text ranking, essay grading, and question answering systems. We used several
vectorization schemes to represent the Arabic texts in the SemEval2017-
task3-subtask-D dataset. The used schemes include lexical-based similar-
ity features, frequency-based features, and pre-trained model-based features.
Also, we used contextual-based embedding models such as Arabic Bidirec-
tional Encoder Representations from Transformers (AraBERT). We used the
AraBERT model in two different variants. First, as a feature extractor in
addition to the text vectorization schemes’ features. We fed those features
to various regression models to make a prediction value that represents the
relevancy score between Arabic text units. Second, AraBERT is adopted
as a pre-trained model, and its parameters are fine-tuned to estimate the
relevancy scores between Arabic textual sentences. To evaluate the research
results, we conducted several experiments to compare the use of the AraBERT
model in its two variants. In terms of Mean Absolute Percentage Error
(MAPE), the results show minor variance between AraBERT v0.2 as a feature
extractor (21.7723) and the fine-tuned AraBERT v2 (21.8211). On the other
hand, AraBERT v0.2-Large as a feature extractor outperforms the fine-
tuned AraBERT v2 model on the used data set in terms of the coefficient of
determination (R2) values (0.014050,−0.032861), respectively.

Keywords: Semantic textual similarity; arabic language; embeddings; AraBERT;
pre-trained models; regression; contextual-based models; concurrency
concept

1 Introduction

The textual similarity is a critical topic in Natural Language Processing (NLP). That is due to its
increasingly important turn in related topics such as text classification, recovery of specific information

http://dx.doi.org/10.32604/cmc.2022.025353
mailto:amira-hamed@mans.edu.eg


1968 CMC, 2022, vol.72, no.1

from data, clustering, topic retrieval, subject tracking, question answering systems, essay grading, and
summarization. The textual similarity process tends to estimate the relevancy between text units [1,2].
The variations in the approaches existing in the literature review for textual similarity depend on the
text representation scheme used before text comparison. Text representation is a significant task used
to convert the unregulated form of textual data into a more formal construction before any additional
text analysis or using it in predictive modeling [3]. Text representation, word embeddings, or vectoriza-
tion means converting the text to numbers, which can be integers or floating-point values, then using
it as input to machine learning algorithms [4]. We can divide the approaches of word embeddings into
three categories: frequency-based or statistical-based, prediction-based or pre-trained, and contextual-
based word embeddings. The frequency-based word embeddings approach is the traditional text
modeling, which is based on the BOW representation. It contains One Hot Encoding (OHE), Hashing
Vectorization, Part Of Speech (POS) Weighting [5], Word Counts, Term Frequency-Inverse Document
Frequency (TFIDF) [4], and N-grams [6]. These vectorization techniques of text representation work
well; however, they fail to keep a semantic relation between words or the meaning of a text, not
considering the context in which a word appears. Consequently, the order of words’ occurrence is lost as
we create a vector of tokens in randomized order, and they may provide a sparse vector that contains
a lot of zeros. The prediction-based or pre-trained word embedding models are trained on a large
collection of texts to build fixed-length and continuous-valued vectors in low-dimensional space. The
embedding size can vary depending on the target size selected during the training. It includes Word2Vec
[7], Doc2Vec [8], FastText [9], GloVe [10], Aravec [11], etc. Pre-trained models save the time spent
on obtaining, cleaning, and processing (intensively) enormous datasets. However, it, unfortunately,
does not consider the relations between multiple words and the overall sentences’ meanings or context
within the text.

To overcome the above problems, contextual-based embedding models such as ELMo [12],
ULMFiT [13], and BERT [14] are effective for learning complete sentence embeddings. They are
used in sequence-level semantics learning of all the sequences in the documents. Thus, such models
learn divergent embeddings for polysemous words. The ELMo model, e.g., is a dynamic language
modeling technique to learn the embeddings of words based on context and considers the divergent
embeddings of polysemous words. It contains two language models in each of the two directions that
form a multilayer Recurrent Neural Network (RNN). The ULMFiT model is a left-to-right language
model that boosts performance for some pre-trained models such as ELMo by including multiple
fine-tuning techniques. By contrast to the ELMo, which incorporates the left-to-right and right-to-left
models, the BERT uses bidirectional transformer training to provide more precise word embeddings.
Three versions of BERT that address the Arabic language include the multilingual BERT (mBERT)
[15] and two versions of AraBERT [16].

The main objective of this research is to propose an algorithm for estimating the textual similarity
scores between Arabic texts. Then, use these scores in multiple tasks, such as text ranking, essay
grading, and question answering systems. Our detailed objectives are: 1) Choosing the best text
vectorization scheme to represent texts in the used dataset. 2) Picking the best regression model to
make predictions represent the relevancy scores between text units from the applied regressors in terms
of MAPE and R2 Evaluation metrics. 3) Reducing the execution time of processing and increasing
the CPU utilization as much as possible.

To implement our proposed algorithm, we used the AraBERT model in two different variants:
first, we used it as a feature extractor model in addition to many other text embedding schemes such
as word counts, TFIDF, and POS weighting as statistical-based approaches. Also, we use FastText
and Aravec pre-trained models as prediction-based approaches. Then, we fed those features to several



CMC, 2022, vol.72, no.1 1969

regressors to make a prediction value that represents the relevancy score between their input texts.
Second, we address the AraBERT model as a pre-trained model and fine-tune its parameters on the
measuring textual similarity task to use the obtained results in many other tasks later.

The rest of this paper is organized as follows. The literature is reviewed in Section 2. Section 3
then describes the details of our proposed algorithm, and the experimental settings are introduced in
Section 4. We present our experiments’ details in Section 5. The discussion of results and implications
is introduced in Section 6. Section 7 finally outlines the conclusion and suggests future work.

2 Review of Literature

Section 2.1 discusses the concept of textual similarity and the studies addressing it in the literature.
Then, we address the recent research that used the AraBERT model in multiple NLP tasks in
Section 2.2.

2.1 Textual Similarity and Its Approaches

In our previous work [1], we introduced a comprehensive overview of the textual similarity mea-
surement approaches in the literature. We illustrated the differences between the categories of textual
similarity concepts: lexical-based, semantic-based, and hybrid-based similarity in detail. We noticed
that the differences in the approaches provided in the previous work depend on the text vectorization
technique used before the text comparison process. There are various text vectorization techniques
used, such as TFIDF, Latent Semantic Indexing (LSI) [17], and Graph-based Representation [18].
Due to these techniques, the similarity measure to compare text units differs because one similarity
measure may not be convenient for all representation schemes. We summarized the most prominent
attempts to measure the different textual similarity types and compared them according to the applied
technique of feature extraction, the used dataset, and the results released by each approach. Then we
shed light on the semantic analysis in the Arabic language, which is divided into four approaches: the
word co-occurrence approach, the LSI approach, the feature-based approach, and the hybrid-based
approach. Regarding the previous taxonomy mentioned above, we reviewed some of those approaches
and summarized them according to the applied technique, the used dataset, the aim of each one,
the similarity type (string-based, corpus-based, knowledge-based, or hybrid-based), and the results
obtained by each approach.

Recently, [19] proposed a semantics-based approach for post-retrieval query-performance pre-
diction depending on semantic similarities measured between entities in documents and queries. It
consists of predictors for measuring semantic distinction, semantic query drift, and semantic cohesion
in the top-ranked list of retrieved documents. The finding was that the proposed semantics approach
is more effective in query performance predicting than the term-based methods by considering the
semantic relatedness instead of the exact terms matching. They evaluated the proposed approach
on the Robust04, ClueWeb09-B, and ClueWeb12-B datasets. Their queries’ rankings are compared
according to the proposed predictions and the actual values using Pearson and Kendall Correlation
rank coefficients.

On the other hand, [20] proposed a probabilistic framework that incorporates Bidirectional
Encoder Representations from Transformers (BERT) via sentence-level semantics into Pseudo-
Relevance Feedback (PRF). They obtained the term importance at the term level. Then, they used
the fine-tuned BERT model to get the embeddings of the query and the sentences in the feedback
document to estimate the relevancy score between them. Next, the term scores at the sentence level
are summed. Finally, the term-level and sentence-level weights are balanced by factors and combining



1970 CMC, 2022, vol.72, no.1

the top-k terms to generate a novel query for the next iteration of the processing. They conducted
several experiments depending on six TREC datasets. As manifested by the evaluation indicators, the
improved models outperformed the existing baseline models.

2.2 Using AraBERT Model in NLP Tasks

Several researchers have used the AraBERT model, either as a feature extractor model or by
fine-tuning its parameters for a specific task. For example, [21] proposed three neural models:
Bi-LSTM, CNN with FastText pre-trained word embeddings, and Transformer architecture with
AraBERT embeddings. They are combined with three similarity measures for Arabic text similarity
and plagiarism detection. They used the question similarity dataset for Semantic Textual Similarity
(STS) called Mawdoo3 and the 2015 Arabic Pan dataset for plagiarism detection evaluation. Their
results showed that the AraBERT-Transformer outperformed other models in terms of Pearson
correlation with the Dot-Product-Similarity.

Reference [22] is another research that combined different types of classical and contextual embed-
dings: pre-trained word embeddings such as FastText and Aravec, pooled contextual embeddings,
and AraBERT embeddings for processing Arabic Named Entity Recognition (NER) task on the
AQMAR dataset. These embeddings are then fed into the Bi-LSTM. The experiments showed that
the combination of the pooled contextual embeddings, FastText embeddings, and BERT embeddings
had achieved the best performance. The proposed method in this research has achieved an F1 score
of 77.62 percent, which outperforms all previously published results of deep and non-deep learning
models on the same dataset.

Reference [23] paper addressed the pre-trained AraBERT model to learn complete contextual
sentence embeddings to show its utilization in Arabic text multi-class categorization. They used it in
two variants. The first is to transfer the AraBERT knowledge to the Arabic text categorization, and
they fine-tuned the AraBERT’s parameters on the OSAC datasets. Second, they used it as a feature
extractor model, then fed its results to several classifiers, including CNN, LSTM, Bi-LSTM, MLP,
and SVM. After comprehensive experiments, the findings showed that the fine-tuned AraBERT model
accomplished state-of-the-art performance results (99%) in terms of F1-score and accuracy.

Reference [24] presented a binary classifier model to decide whether the pairs of verses provided
by the QurSim dataset are semantically related or not. The AraBERT language model is used. They
avoided redundancy and generated unrelated verse pairs from the QurSim dataset, dividing it into
three datasets for comparisons. The experiments showed that the AraBERTv0.2 outperformed the
AraBERTv2 on the three datasets in terms of accuracy score (92%).

Finally, [25] is shared in the EACL WANLP-2021 Shared Task 2: “Sarcasm and Sentiment
Detection.” and proposed a strategy consisting of two systems. The first system investigated whether
a given Arabic tweet was sarcastic or not, which required performing deletions, segmentation, and
insertion operations on different parts of the text. The other system aimed to detect the sentiment of
the Arabic tweet from the ArSarcasm-v2 dataset that involved experimenting with multiple versions of
two transformer-based models, AraELECTRA and AraBERT. They achieved the seventh and fourth
places in the sarcasm and sentiment detection subtasks, respectively.



CMC, 2022, vol.72, no.1 1971

3 Methodology

This section extensively presents the methodology implemented for developing the proposed
system. First, we start by describing the dataset used in this work. Then, we explain the proposed
method and its modules.

3.1 Dataset

In this paper, we use the SemEval2017-task3 (Community Question Answering)-subtask-D
(Rerank correct answers for a new question) dataset, which refers to the Arabic CQA-MD (Commu-
nity Question Answering-Medical Domain) dataset [26]. It was collected from three Arabic medical
websites (WebTeb, Altibbi, and Islamweb) that permit posting questions related to health and medical
conditions by visitors and getting answers from professional doctors. It was divided into training,
development, and testing datasets. Every dataset file includes a sequence of threads that begins with
the original question and is associated with a list of 30 question-answer pairs, each with the following
labels: D (Direct) means the QA pair contains a direct answer to the original question. R (Related)
means the QA pair includes an answer to the original question that covers some of the aspects raised
in the original question. In the end, I (irrelevant) means the QA pair contains an answer irrelevant to
the original question.

Fig. 1 illustrates annotated questions from the dataset. Also, each QA pair is associated with some
metadata, including the following: ID (QAID) is a unique ID of the question-answer pair. Relevance
(QArel): the relevance of the question-answer pair concerning the question, which is to be predicted at
test time, and Confidence (QAconf): this is the confidence value for the relevance annotation, based
on inter-annotator agreement and other factors. This value is available for the training dataset only; it
is not available for the development and test datasets.

Figure 1: Annotated question from the Arabic CQA-MD dataset

So, we use this dataset (training and development) with this associated metadata to accomplish
our primary research objective: estimate the relevancy scores between text pairs. We consider the
confidence (QAconf) values as the relevancy score between the question and its QA pairs.



1972 CMC, 2022, vol.72, no.1

3.2 Text Preprocessing Phase

In Fig. 2, we propose two models for preprocessing: simple preprocessing and full preprocessing,
depending on the nature of the task of the subsequent phases. For instance, we only need some
preprocessing steps to transform data into a form that matches the AraBERT model, such as removing
diacritics, punctuations, and URL text. So, we consider this situation in our proposed methodology
and define two types of preprocessing steps. The simple preprocessing procedure includes diacritics
removal (Tashkeel_Removing Function), punctuations, URL text removal, and spell checking. Then,
we apply the tokenization task to split the text into its tokens using the AraBERT tokenizer. Afterward,
we change each text to a BERT format by adding the particular [CLS] token at the start of each
text and a [SEP] token between the sentence and the end. Then, we determine each token’s index
according to AraBERT’s vocabulary. The full preprocessing contains the same steps as the previous
preprocessing type, in addition to stopwords removing, named entity recognition (NER), stemming,
and lemmatization tasks, respectively. But there is a difference between the tokenization task in both
algorithms.

To complete the diacritics removing task (Tashkeel_Removing function), we use the Tashaphyne
Python library [27], which is an Arabic light stemmer and segmentor. In the normalize module of
this package, we specifically use the function strip_tashkeel. We define a set of patterns to detect any
punctuation symbols and URL text in the text using the re python library, which provides several
functions to facilitate the search for a specific pattern or string form in the text and remove it from
the text. Next, we use Farasa [28], an Arabic Natural Language Processing (ANLP) toolkit serving the
spellchecking task and several other tasks such as segmentation, stemming, Named Entity Recognition
(NER), and part-of-speech tagging. As shown in Algorithm 1 of the full preprocessing, we use a built-
in function in Python called split that allows changing the default splitter from space to any symbol
or character if we need it. Consequently, we remove them from sentences using the Natural Language
Toolkit (NLTK) Python package, which includes a stopwords corpus containing stopwords’ lists for
Arabic and many other languages [29]. The Farasa Named Entity Recognizer is used to generate a
list of named entities in text. The aim behind using this technique as a step of preprocessing steps is
to keep the named entities found in a text without any change that may be happening to them in the
stemming task, as shown in Tab. 1.

Arabic stemmers are categorized into two categories: light-based stemmers and root-based
stemmers. This type is used in the stemming step with the Farasa Stemmer web API. Also, we use
Khoja stemmer as a root-based stemmer [30]. Consequently, after applying the NER and stemming
processes to a text, we compare the output list from the NER process to the output list from the
stemming process to obtain the final representation of the given text, as shown in Fig. 3. Thus, we are
given a set of questions, each of which is associated with a set called P that includes question-answer
pairs. To compute our features, we define a question with its question-answer pairs as < T1, T2 >,
where T1 is the original question and T2 is a question from its question-answer pair according to
three setups:

• Simple processed data setup in which we perform simple preprocessing on T1 and T2 before
using them in the AraBERT model.

• Stemmed data setup in which the stemming process from the full preprocessing phase is applied
to T1 and T2.

• Lemmatized data setup in which the lemmatization process from the full preprocessing phase
is applied to T1 and T2.



CMC, 2022, vol.72, no.1 1973

Figure 2: System architecture



1974 CMC, 2022, vol.72, no.1

Algorithm 1: Full Text Preprocessing
1. Function: Full_Preprocessing (qi,pi)
2. Input:
3 qi: question
4 pi: list of approximately 30 pair of answers retrieved for qi

5. Output:
6. stemmed_ques: string object represents stemmed version of preprocessed question //

initially null
7. lemmatized_ques: string object represents lemmatized version of preprocessed question//

initially null
8. stemmed_pairs: preprocessed list of stemmed answers for this question // initially empty
9. lemmatized_pairs: preprocessed list of lemmatized answers for this question // initially

empty
10. Variables:
11. qo: preprocessed question
12. po: a list of preprocessed answers for qo

13. token_list: list of tokens, initially empty
14. tokens_after_stopwords_remove: list of tokens after removes stopwords from them //

initially empty
15. ner_list: list of tuples of NER process // initially empty
16. stems_list: list of stems of tokens // initially empty
17. stemmed_ques: string object represents the stemmed version of the question
18. lemmatized_ques: string object represents the lemmatized version of the question
19. stemmed_pairs: preprocessed list of stemmed answers for this question
20. lemmatized_pairs: preprocessed list of lemmatized answers for this question
21. Begin
22. qo = Tashkeel_Removing (qi)
23. qo = URL_Removing (qi)
24. qo = Punctuation_Removing (qi)
25. qo = Spellchecking (qi)
26. tokens_list = Tokenization (qi)
27. tokens_after_stopwords_remove = Stopwords_Removing (tokens_list)
28. ner_list = Named Entity Recognition (tokens_after_stopwords_remove)
29. stems_list = Stemming (tokens_after_stopwords_remove)
30. stemmed_ques = Compare (ner_list, stems_list)
31. lemmatized_ques = Lemmatize (stemmed_ques)
32. for answer in pi answer = 0, 1, . . . do
33. po [answer] = Tashkeel_Removing (pi [answer])
34. po [answer] = URL_Removing (pi [answer])
35. po [answer] = Punctuation_Removing (pi [answer])

(Continued)



CMC, 2022, vol.72, no.1 1975

Algorithm 1: Continued
36. po [answer] = Spellchecking (pi [answer])
37. token_list = Tokenization (pi [answer])
38. tokens_after_stopwords_remove = Stopwords_Removing (token_list)
39. ner_list = Named Entity Recognition (tokens_after_stopwords_remove)
40. stems_list = Stemming (tokens_after_stopwords_remove)
41. stemmed_pairs. insert (answer, Compare (ner_list, stems_list ))
42. lemmatized_pairs. insert (answer, Lemmatize (stems_list ))
43. return stemmed_ques, lemmatized_ques, stemmed_pairs, lemmatized_pairs
44. End

Table 1: Representation of the influence of the spell checking and NER processes on stemming and
lemmatization results



1976 CMC, 2022, vol.72, no.1

Figure 3: Comparison between NER and stemming processes’ results

3.3 Text Vectorization Phase

This phase consists of two modules: the traditional features module and the AraBERT model.

3.3.1 Traditional Features Module

In this phase, we execute multiple feature engineering techniques. To begin, we employ three-
sentence pair matching metrics: Long Common Substring/Sequence [31], Levenshtein distance, and
Minimum Edit Distance (MED) [32], which are intended to directly calculate the similarity (over-
lapping of characters/terms/substrings) of two sequences. To obtain an accurate sequence similarity
value, the stopwords are removed and each word is lemmatized. Consequently, for each sentence
pair, we get three features as lexical-based similarity features. Second, we apply three types of
statistical-based embedding techniques: word counting, TFIDF, and POS weighting. We use the
sklearn.feature_extraction module [33] to extract these features in a format reinforced by machine
learning algorithms from the dataset. We consider the sparsity problem, which may be caused by them,
and try to solve it by applying these steps in the preprocessing phase: stopwords from being removed,
fixing misspelt words, and reducing words to their lemma.

To ensure that these steps have an effect, we calculate the number of vocabulary in our dataset;
it is approximately 21835 in the stemmed data setups and it becomes approximately 10988 in
the lemmatized data setup. We notice that the number of vocabulary words decreased using the
lemmatization process. Consequently, the dimensionality of vectors decreases. Third, we apply some
pre-trained word embedding models: FastText and Aravec, both of which apply to the Arabic language.
Tab. 2 shows the versions of pre-trained word embedding that were used in this study. In Python, we
use the Genism library that provides access to FastText and other word embedding algorithms for
training and extracting word vectors; it allows us to download pre-trained models from the internet
to be loaded and fine-tuned [34].

We try each of these models individually to initialize word embedding, although we sometimes
cannot find embeddings for some words in a sentence. Consequently, we combined them to complete
each other and obtain a large number of word embeddings. Because of the nature of our used dataset,
a sentence may contain foreign words that are the names of medicines or diseases that are not found in



CMC, 2022, vol.72, no.1 1977

the Aravec or Arabic Fast text models. To address this issue, we used the FastText model’s multilingual
model, as shown in Fig. 4. We notice that some of the words are misspelled, so we cannot use an
embedding model to get the correct embedding for them. Thus, spell checking is an essential step
in the preprocessing phase. Second, we must convert some words to their lemma form to get their
embeddings from pre-trained models such as the Aravec model. However, there are some terms that
are not found in an embedding model even after correcting them; thus, we ignore them from a sentence.

Table 2: Pre-trained word embedding models

Embeddings model’ name Dimension Source

FastText 300d fastText-wiki-news-subwords 300
Arabic_FastText 300d cc.ar.300.vec
Aravec 300d full_grams_sg_300_wiki.mdl

token

In Arabic 

fasttext 

model?

NO

YES

Get the token vector

Get the token’ Lemma

In Arabic 

fasttext 

model?

YES

Get the token’ lemma vector

In Aravec

model?

NO NO
In Aravec

model?

YES YES

NO

In fasttext 

model?

NO

Spellcheck the token/lemma 

YES

In fasttext 

model?

NO

Ignore the token from the sentence 

Figure 4: Process of obtaining word embeddings from the pre-trained models

To obtain a single sentence vector representing the embedding of each sentence, we adopt several
methods, such as averaging the word vectors that form each sentence, the averaged vectors that result
are multiplied by a projection matrix, and using smooth inverse frequency (SIF) [35] to estimate each
word-embedding weight by a / (a + p(w)), where a is a parameter that is typically set to 0.001 and
p(w) is the frequency of the word in a dataset, contrary to the previous methods that assign equivalent
weights to each word in the sentence.

3.3.2 AraBERT Model

Because we are dealing with Arabic texts, we use the AraBERT model, which is an Arabic
pre-trained language model based on the BERT architecture [14,16]. There are four releases of it:
AraBERT v0.1, AraBERT v1, AraBERT v0.2, and AraBERT v2. They may differ from each other in
using the Farasa segmenter that will split affixes from the text. AraBERT now comes in four new
variants. All models are accessible on the HuggingFace model page under the aubmindlab name.
AraBERT models are pre-trained on a massive collection of text and then fine-tuned for different
tasks. Consequently, we used the AraBERT model in two ways: first, we investigated and fine-tuned its



1978 CMC, 2022, vol.72, no.1

parameters for the Semantic Textual Similarity (STS) task, and then, we fed the AraBERT embeddings
to a feed-forward layer containing one neuron with a linear activation function to predict the similarity
scores. Second, we apply it as a feature extractor model to obtain a fixed-length tensor (usually 768
for AraBERT Base models and 1024 for AraBERT Large models). To obtain sentence embeddings,
the average pooling of all tokens’ layers is estimated. Then, feed these obtained embeddings to the
regression models. In two variants, we compare the AraBERT model with the Multilingual BERT
(mBERT) model [15].

3.4 Features Extraction Phase

In this phase, we use two methods to extract features from each sentence pair’s vectors: kernels
and element-wise operations. To begin with, we want to maintain the discriminating power of lexical-
based similarity features when compared to the dimensionality of a vector derived from each BOW
feature for each sentence. Consequently, we estimate sentence pair distances using 12 kernel functions
and combine them with lexical-based similarity features to represent each sentence pair. Tab. 3 shows
the 12 kernel functions that were used in this work. We notice that these features are on different scales,
which may have an impact on the fit of regression models in the following phase. Thus, we attempt to
normalize them into [0, 1] using the max-min normalization technique and standardize them around
0 using the StandardScaler module before building regression models.

Table 3: Used kernel functions

Type Measurements

Linear kernels Cosine distance, Manhattan distance, Euclidean distance, Chebyshev
distance, Linear distance

Stat kernels Pearson coefficient, Spearman coefficient, Kendall tau coefficient
Non-linear kernels Polynomial, RBF, Laplacian, sigmoid

The second method is the element-wise operations that contain a large category of operations such
as arithmetic, comparison, and other operations that operate on corresponding elements within the
respective tensors or vectors. For each sentence pair, we use two types of operations: multiplication
and subtraction. Then, we concatenate the results into a single tensor.

3.5 Regression Phase

Different machine learning algorithms and deep learning models are considered for building
regression models to make predictions that represent textual similarity scores.

3.5.1 Machine Learning Regression Algorithms

We investigate multiple learning algorithms for regression tasks such as Random Forest (RF),
Support Vector Regressor (SVR), Nu Support Vector Regression (NuSVR), Gradient Boosting
(GB), AdaBoost, least angle regression (LARS), Cross-validated Least Angle Regression (LARSCV),
Bagging regressor, Stochastic Gradient Descent (SGD), Ridge regressor, Bayesian Ridge regressor,
Decision Trees, Lasso regressor, Elastic Net, Polynomial regressor, and Extreme Gradient Boosting
(XGB) [36]. In Python, we use the scikit-learn toolkit [37] to implement these algorithms except for
the XGB regressor, which we used the xgboost package to implement in our work.



CMC, 2022, vol.72, no.1 1979

3.5.2 Deep Learning Models

We implement a multilayer perceptron model (MLP) that comprises two hidden layers with the
ReLU activation function. Sentence pairs’ embeddings represent the input that is fed to these layers.
The first hidden layer contains the number of input dimensions plus 50 hidden neurons, i.e., if the
dimensions of the input embeddings are equal to (600,), the number of input dimensions plus 10 hidden
nodes comprises the second hidden layer. This should be noted. We experimented with wider and
deeper neural networks in this model, but the wider neural network outperformed the deeper neural
network in the experiments; hence, we rely on this neural network architecture. We use Adam [38]
as an optimization technique and use Mean Square Error (MSE) and Mean Absolute Error (MAE)
as both loss and evaluation functions [39]. Then, we set the validation split parameter to 0.2; hence,
80% of the data is used to train the model, whereas the remaining 20% is used for testing purposes,
with epochs of 100 and batch_size of 100. Finally, the output layer contains one hidden neuron with
a linear activation function to make a prediction. In Python, we use the Keras API, based on the
TensorFlow and Theano [40] packages, for executing high-level neural networks; thus, we needed to
have TensorFlow installed on our system first.

4 Experimental Settings

We describe the concurrency concept in Section 4.1, and the evaluation metrics are described in
Section 4.2.

4.1 Concurrency Concepts

Section 3.1 shows that the answer pairs’ total number is enormous and needs a long time to
process all these pairs, which may be up to several days. For the experiment, we selected a sample
that includes eight training questions with their pairs to be preprocessed. The time taken in this
experiment is 1 hr: 23 m: 48 s. It has been a long time, so to speed up program execution on this
dataset, we used the concurrency concept, which is about parallel computation. All our experiments
were run on a CPU processor with four cores using the Python Interpreter 3.8. There are three types of
concurrency concepts: multithreading [41] is also known as preemptive multitasking, as the OS knows
about each thread and can interrupt at any moment to start executing on another thread. Second,
Asyncio [42] is also referred to as cooperative multitasking because the tasks collaborate and decide
when to relinquish control. Finally, multiprocessing [43] achieves true concurrent execution because
the processes run concurrently on different processors on different CPU cores. We will only look at
two types: multithreading and multiprocessing.

ThreadPool is a technology for achieving concurrency of execution in a computer program. It
keeps a pool of idle threads pre-instantiated and ready to be assigned tasks; hence, it eliminates the
creation time required to create them one by one. Another advantage of thread pools is that a thread
can be reused once its execution is complete. We use concurrent.futures, a Python standard library
module that includes a concrete subclass known as ThreadPoolExecuter, which uses multithreading,
and we get a pool of threads for submitting the tasks. The pool thus created assigns tasks to the
available threads and arranges them to run. For applying the multiprocessing concept in Python, we
use a multiprocessing library for creating multiprocess operations, in which the process class creates
a queue object to store the results of each process, in which the Queue class. The multiprocessing
module provides the pool class, which offers a convenient means of parallelizing the execution of
a function across multiple input values, distributing the input data across processes. There is no
guarantee that multithreaded will be faster because it depends on the type of program; there is a



1980 CMC, 2022, vol.72, no.1

performance difference between CPU-bound and I/O-bound programs. When the tasks are CPU-
intensive, we should consider the multiprocessing module. By contrast, the tasks are I/O bound and
require plenty of connections; the multithreading concept is recommended. To demonstrate that the
multithreading concept is best suited for our I/O bound program, we ran several experiments on
different dataset samples.

4.1.1 Experiments 1 and 2

Table 4: Comparison between sequential computation/running and the two concepts of parallel
computation in experiments 1 and 2

Experiment 1 Experiment 2

Sequential
computation

Parallel computation Sequential
computation

Parallel computation

Multi-threading Multi-
processing

Multi-threading Multi-
processing

#Num of
processes

1 process 1 process 5 processes,
each work on 2
questions

1 process 1 process 4 processes,
each work on
2 questions

#Num of
threads

- 5 threads, each
work on 2
questions

- - 4 threads, each
work on 2
questions

-

#Num of
questions

10 Questions
with their pairs

10 Questions
with their pairs

10 Questions
with their pairs

8 Questions
with their pairs

8 Questions
with their pairs

8 Questions
with their
pairs

CPU utilization average, but
sometime be
very low

Very high and
most of times
achieve 100%

Very high and
most of times
achieve 100%

average, but
sometime be
very low

Very high and
most of times
achieve 100%

Very high
and most of
times achieve
100%

Taken time 1 h: 45 m: 48 s 55 m: 10 s 55 m: 31 s 1 h: 23 m: 48 s 44 m: 17 s 43 m: 10 s

As shown in Tab. 4, both experiments 1 and 2 are applied to the first 8–10 questions with their
pairs in the training dataset. In Fig. 5, we observe the following: In both experiments, sequential
computation took more execution time than parallel computation. Hence, we eliminate sequential
computation in the following experiments. The two types of parallel computation outperform sequen-
tial computation, but the difference in execution time between multithreading and multiprocessing is
trivial.



CMC, 2022, vol.72, no.1 1981

Figure 5: Comparison between running time of sequential computation and the parallel computation

4.1.2 Experiments 3 and 4

Table 5: Comparison between sequential computation/running and the two concepts of parallel
computation in experiments 3 and 4

Experiment 3 Experiment 4

Parallel computation

Multi-
processing

Multi-threading Multi-
processing with
multi-threading
(Hybrid)

Multi-
processing

Multi-threading Multi-
processing
with multi-
threading
(Hybrid)

#Num of
processes

5 processes,
each work on 2
questions

1 process 5 processes,
each with 2
threads

7 processes 1 process 5 processes,
each with 2
threads

#Num of
threads

- 5 threads, each
work on 2
questions

10 threads, each
work on 1
question (but 6
threads
worked).

- 7 threads 10 threads,
each work on
1 question
(but 7
threads
worked).

#Num of
questions

10 Questions
with their pairs

10 Questions
with their pairs

10 Questions
with their pairs
(but 6 questions
only processed).

7 Questions
with their pairs,
each process
work on 1.

7 Questions
with their pairs,
each thread
work on 1.

10 Questions
with their
pairs (but 7
questions
only
processed).

CPU utilization Very high and
most of times
achieve 100%

Very high and
most of times
achieve 100%

Very high and
most of times
achieve 100%

Very high and
most of times
achieve 100%

Very high and
most of times
achieve 100%

Very high
and most of
times achieve
100%

Taken time 00 h: 55 m: 31 s 51 m: 57 s 00 h: 35 m: 26 s 00 h: 49 m: 38 s 00 h: 44 m: 20 s 00 h: 52 m:
28 s



1982 CMC, 2022, vol.72, no.1

As shown in Tab. 5, in both experiments 3 and 4, we apply multithreading and multiprocessing
concepts and try to emerge with a hybrid concept, trying to decrease executing time. From the training
dataset, we take a sample of 10 questions and their pairs, ranging from index 76 to index 86. However,
only 6–7 questions were processed in the hybrid concept. In the fourth experiment, we hope to explain
why only six of the 10 questions in the third experiment worked. The hybrid concept comes first in this
experiment’s order. Then both other concepts are applied to the same number and order of questions
that are processed first in the hybrid. We determined that 6–7 threads only worked because the total
number of threads that can run on our CPU processor with its cores is eight threads if all cores are
occupied. Thus, the peak number of threads that can be run is equal to or less than eight, on the
condition that no other programs or processes are running. In Fig. 6, we observe the following: The
peak number of threads that can run on all CPU cores is not constant. It changes from one experiment
to another. Hybrid concepts take a longer execution time when compared with multithreading and
multiprocessing individually. We prove that the multithreading concept is the most suitable for our
task as it takes the least amount of time to execute.

Figure 6: Comparison between running time of sequential computation and the parallel computation

4.2 Regression Models Evaluation Metrics

We used different metrics to evaluate the performance of different regression models on different
types of features, as listed below:

Root Mean Square Error (RMSE): It is the squared root of the mean of summation of squared
prediction error as shown in Eq. (2) [39]. The prediction error of a row of data is shown in Eq. (1). It
converts the value of errors back to the units of the output variable, which makes it meaningful for
interpretation. Its value varies from 0 to ∞. A value of 0 indicates a perfect fit; the smaller the value,
the better the fit.

Prediction Error = Actual Value − Predicted Value (1)

RMSE =
√√√√ 1

N

N∑
i=1

(yi − ŷi)
2 (2)

Mean Absolute Error (MAE): It is the mean of the summation of absolute squared prediction
errors as shown in Eq. (3). Compared to RMSE, MAE is robust to the presence of outliers because it



CMC, 2022, vol.72, no.1 1983

uses the absolute value. A value of 0 indicates a perfect fit; the smaller the value, the better the fit [39].

1
N

N∑
i=1

|yi − ŷi| (3)

The coefficient of determination (R2 score) is the square of the correlation coefficient (R). It
determines how well the regression predictions explore the real data points as shown in the equation
as shown in Eq. (4).

R2 = 1 −
∑N

i=1 (yi − ŷi)
2∑N

i=1 (yi − ȳ)
2

(4)

where ŷi represents the prediction value of yi and ȳ is the mean of actual data.

ȳ =
N∑

i=1

yi (5)

R2 varies from 0 to 1. A value of 1 indicates that the regression predictions perfectly fit the data
[39]. 0 indicates that the model does not explain the variability of the response data around its mean.
R2 may be a negative value when the model selected does not appropriately represent the nature of
the data.

The Mean Absolute Percentage Error (MAPE) is a popular metric for assessing generic regression
problems [44]. It is given by the following formula, as shown in Eq. (6). We can multiply this formula
by 100% to express the number as a percentage.

M = 1
n

n∑
t=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ (6)

5 Experiments and Results

The experimental results are analyzed and shown in the following. A comparison between using
stemmed and lemmatized data setups is discussed in Section 5.1. The frequency-based with lexical-
based features experiment is described in Section 5.2. The pre-trained models’ experiment is described
in Section 5.3. AraBERT as a feature-extracting model experiment is discussed in Section 5.4. Then,
we compared the findings of the MLP model in terms of MAE and MAPE with the best regressors of
all the previous experiments.

5.1 Stemmed and Lemmatized Data Setups Experiment

In this experiment, we aim to determine if using lemma to decrease the dimensionality of the
vector represented by BOW (word counting, TFIDF, and POS weighting) features provides better
outcomes in the regression phase or not. Then, in the regression phase, we identify the influence of
lemmatization and stemming processes on the data as we try these two data setups to test the quality of
them as indicated by the results of the regressor model, which are evaluated via the RMSE as shown
in Eq. (2). We discard the SGD regressor because its results show that it does not properly explore
the problem variables. We select the minimum average of the RMSE values of regression models with
different features (word counting, TFIDF, and POS weighting) as shown in Fig. 7. We conclude the
following:



1984 CMC, 2022, vol.72, no.1

Figure 7: Using stemmed and lemmatized data setups: (A) that represents using these data setups on
word counting representation, (B) that represents using these data setups on TFIDF representation,
and (C) that represents using these data setups on POS weighting representation

In the word counting representation, the average of the RMSE values of regression models
according to stemmed data setup equals 0.208107, and lemmatized data setup equals 0.371046067.
Hence, we observe that the stemmed data setup is more appropriate for word counting than the
lemmatized data setup. In the TFIDF representation, the average of the RMSE values of regression
models according to stemmed data setup equals 0.452521867, and the lemmatized data setup equals
0.1848484. Hence, we observe that the lemmatized data setup is more appropriate for the TFIDF than
the stemmed data setup. In the POS weighting representation, the average of the RMSE values of
regression models according to stemmed data setup equals 0.186642, and the lemmatized data setup
equals 0.184832333. We realize that the difference between the two values is not particularly significant.
Hence, the POS weighting features are neutral, indicating that their influence is minor in comparison
to other features, as demonstrated by the following experiments.

5.2 Frequency/Lexical Based Features’ Experiment

After applying kernel functions to the vectors obtained from each BOW feature for each sentence
pair, with the purpose of keeping the discriminating power of lexical-based similarity features
compared with them. In this experiment, we intend to filter which are the best regressors based on



CMC, 2022, vol.72, no.1 1985

both BOW and lexical-based features to select the best pool of regressors and the best types of features,
where the BOW feature represents the word counting, POS weighting, and TFIDF features collectively.
MED, Long Common Substring, and Long Common Subsequence are all represented by lexical-based
features. All features represent all BOW and lexical-based features together, as shown in Fig. 8. The
filtering process is based on selecting the smallest value in both RMSE and MAE and the highest
value in the R2 metric. Then, in ascending order, we rank those different selected models based on
MAE metric values, which is the best metric for this purpose because it does not reflect large residuals.
According to Fig. 9, we conclude the following:

• We notice the XGP regressor gives the best values in terms of MAE and MAPE. However, the
values of R2 are negative, so we do not select it.

• The best regressors are the Gradient Boosting, AdaBoost, and Lasso regressors.
• The best representation schemes for features are Long Common Substring, Long Common

Subsequence, and BOW features (word counting, TFIDF, and POS weighting together).

Figure 8: Results of different regressors on the BOW and lexical-based features according to (A) RMSE
evaluation metric, (B) MAE evaluation metric, and (C) R2 evaluation metric



1986 CMC, 2022, vol.72, no.1

Figure 9: Results of the best regressors on the BOW and lexical-based features according to (A) MAE
evaluation metric, (B) R2 evaluation metric, and (C) RMSE evaluation metric

5.3 Pre-Trained Models Experiment

In this experiment, we aim to filter the best regressors according to each sentence embedding
(averaging word vectors, projected averaging word vectors, and SIF) to select the best pool of regressors
and the best representation of sentence embeddings using the same evaluation metrics settings as
shown in Fig. 10. According to Fig. 11, those regressors (AdaBoost, Gradient Boosting, and Ridge)
show the best results. Hence, we use them to identify the best sentence embedding representations. We
conclude that the best sentence embedding representation is SIF sentence embeddings.

5.4 AraBERT as a Features-Extracting Model Experiment

In this experiment, we aim to filter which are the best regressors according to (AraBERT
v0.1, AraBERT v1, AraBERT v0.2, AraBERT v2, and mBERT) embedding models to select the
best pool of regressors and the best of these embedding models with the same evaluation metrics
settings as the previous, as shown in Fig. 12. According to Fig. 12, those four regressors (AdaBoost,
Gradient Boosting, Elastic Net, and Lars) show the best results. Thus, we use them to identify the
best embedding models. As shown in Fig. 13, we conclude that the best embedding models are the
AraBERT v2-large embedding model and the AraBERT v0.2-large embedding model.



CMC, 2022, vol.72, no.1 1987

Figure 10: Results of different regressors on the sentence embeddings representations according to (A)
RMSE evaluation metric, (B) MAE evaluation metric, and (C) R2 evaluation metric

Figure 11: (Continued)



1988 CMC, 2022, vol.72, no.1

Figure 11: Results of the best regressors on the sentence embeddings representations according to (A)
RMSE evaluation metric, (B) MAE evaluation metric, and (C) R2 evaluation metric

Figure 12: Results of different regressors on the five types of features according to (A) RMSE
evaluation metric, (B) MAE evaluation metric, and (C) R2 evaluation metric



CMC, 2022, vol.72, no.1 1989

Figure 13: Results of the best regressors on the five types of features according to (A) RMSE evaluation
metric, (B) R2 evaluation metric, and (C) MAE evaluation metric

6 Discussion of Results and Implications

In this paper, we used the AraBERT model in two different variants to estimate the similarity
scores between text units. All the previous experiments demonstrate that these regressors (Gradient
Boosting and AdaBoost) give the best results with these text embeddings (Long Common Substring,
Long Common Subsequence, SIF, AraBERT v0.2, and AraBERT v2) in terms of RMSE, MAE, and
R2. We compare the findings of the MLP model in terms of MAE and MAPE with Gradient Boosting
and AdaBoost regressors on these embeddings, as shown in Tabs. 6 and 7. In both previous tables,
the bolded values in each row represent the best values (the smallest values) according to MAE and
MAPE metrics, on the condition that the value of the metric for these values is positive. Consequently,
some rows in Tab. 7 contain two bolded values. For example, the best MAPE to SIF value is 21.1508
and the worst value is −0.0065. Consequently, the condition is not met, and 21.7922 is chosen. The
same is true for the BOW features. According to MAE and MAPE, BOW features are eliminated
because the best regressor for them varies. From both tables, we can determine the best regressor for
each embedding model as follows: AraBERT v0.2-Large with AdaBoost, Long Common Substring
with AdaBoost, SIF with AdaBoost, Long Common Subsequence with MLP, and AraBERT v2-Large
with GradientBoosting.

In the final experiment, we fine-tune the parameters of AraBERT v2 on the used dataset to
estimate the relevancy scores between text units. Next, the comparison between the previous candidate
models from Tab. 7 and the fine-tuned AraBERT v2 is illustrated in Tab. 8 in terms of the MAPE
metric. Finally, we conclude that AraBERT v0.2-Large as a feature extractor model with AdaBoost has



1990 CMC, 2022, vol.72, no.1

the highest value in terms of R2 and the variance in the MAPE values between it and others is minor.
In addition, the AraBERT v0.2-Large as a feature extractor outperforms the fine-tuned AraBERT v2
model on the used data set in terms of R2.

Table 6: Comparison between the MLP, gradient boosting, and Adaboost regressors according to
MAE evaluation metric

Regressor name

Embeddings models Gradient boosting AdaBoost MLP
Long common substring 0.155441 0.155090 0.156000
Long common subsequence 0.155957 0.156038 0.156000
BOW features 0.155132 0.156042 0.158000
SIF 0.156926 0.155889 0.156000
AraBERT v0.2-large 0.156253 0.155855 0.157000
AraBERT v2-large 0.156323 0.156772 0.157000

Table 7: Comparison between the MLP, gradient boosting, and Adaboost regressors according to
MAPE evaluation metric

Regressor name

Embeddings model Gradient boosting AdaBoost MLP
Long common substring 22.1845 21.7857 21.8181
Long common subsequence 22.2269 22.2616 21.7953
BOW features 22.1519 22.1232 22.0282
SIF 21.8898 21.7922 21.1508
AraBERT v0.2-large 21.9244 21.7723 21.9111
AraBERT v2-large 21.9086 21.9831 22.0359

Table 8: Best regressor for each embedding model according to our experiments

Embeddings model MAPE R2

Long common substring_AdaBoost 21.7857 0.011123
Long common subsequence_MLP 21.7953 0.000422
SIF_AdaBoost 21.7922 0.008748
AraBERT v0.2-large_AdaBoost 21.7723 0.014050
AraBERT v2-large_GradientBoosting 21.9086 0.012529
Fine-tuned AraBERTv2 21.8211 −0.032861



CMC, 2022, vol.72, no.1 1991

According to our findings in this paper, we can use them as the first step in a variety of NLP
tasks such as text ranking, question–answer systems, and essay grading. Additionally, we used the
multithreading concurrency concept to reduce processing execution time and increase CPU utilization
as much as possible. Based on the findings, we believe that it is a better method for preprocessing text
pairs than sequential processing and that it can be applied to other datasets and language settings.

7 Conclusions and Future Work

In this paper, we addressed the textual similarity task, which is of paramount importance for
multiple topics in NLP, such as text ranking, essay grading, question answering systems, and text
classification. We used the multi-tasks learning approach to train an algorithm to learn the embeddings
from our dataset to estimate the textual similarity scores between text units and use them later
in multiple tasks. Our system is divided into two different variants. In the first, we used multiple
text vectorization schemes such as word counts, TFIDF, and POS weighting as statistical-based
approaches, and FastText and Aravec pre-trained models as prediction-based approaches, besides the
AraBERT as a feature extractor model to obtain text embeddings. These embeddings are then fed
to various regressors to estimate the relevancy scores between text units. In the second variant of the
system, we exploited the AraBERT model as a pre-trained model and fine-tuned its parameters for
the task of measuring textual similarity. We conducted several experiments on the SemEval2017-task3-
subtask-D dataset, and we proved that the usage of the AraBERT v0.2-Large as a feature extractor
model with AdaBoost has the highest value in terms of R2. In addition, the variance in the MAPE
values between it and the other models is minor. Moreover, we noticed that the usage of AraBERT
v0.2-Large as a feature extractor outperforms the fine-tuned AraBERT v2 model on the used data set
in terms of R2. As for future work, we intend to use the obtained similarity scores in other NLP tasks
and use the AraGPT or AraELECTRA models to obtain different embeddings.

Acknowledgement: This paper and the research behind it would not have been possible without the
exceptional support of my God, my supervisors, my family, and my institution and colleagues.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] A. Abo-Elghit, A. Al-Zoghby and T. Hamza, “Textual similarity measurement approaches: A survey (1),”

The Egyptian Journal of Language Engineering, vol. 7, no. 2, pp. 41–62, 2020. http://dx.doi.org/10.21608/
ejle.2020.42018.1012.

[2] W. H. Gomaa and A. A. Fahmy, “A survey of text similarity approaches,” International Journal of Computer
Applications(IJCA), vol. 68, no. 13, pp. 13–18, 2013. http://dx.doi.org/10.5120/11638-7118.

[3] M. A. Zahran, A. Magooda, A. Y. Mahgoub, H. Raafat, M. Rashwan et al., “Word representations in vector
space and their applications for arabic,” in Int. Conf. on Intelligent Text Processing and Computational
Linguistics, CICLing 2015. Proc.: Lecture Notes in Computer Science (LNCS 9041), Cairo City, Egypt, pp.
430–443, 2015.

[4] J. Brownlee, Deep Learning with Python: Develop Deep Learning Models on Theano and Tensorow Using
Keras, 1st ed. Victoria, Vermont, Australia: Machine Learning Mastery, 2016. [Online]. Available: https://
www.goodreads.com/en/book/show/34043770-deep-learning-with-python.

http://dx.doi.org/10.21608/ejle.2020.42018.1012
http://dx.doi.org/10.21608/ejle.2020.42018.1012
http://dx.doi.org/10.5120/11638-7118
https://www.goodreads.com/en/book/show/34043770-deep-learning-with-python
https://www.goodreads.com/en/book/show/34043770-deep-learning-with-python


1992 CMC, 2022, vol.72, no.1

[5] C. Lioma and R. Blanco, “Part of speech based term weighting for information retrieval,” in 30th Annual
European Conf. on Information Retrieval Research (ECIR 2009), Toulouse, France, pp. 412–423, 2009.

[6] D. Jurafsky and J. H. Martin, “N-Gram language models N-Gram language models,” in Speech and
Language Processing, 2nd ed., Upper Saddle River, NJ, USA: Prentice-Hall, Inc., vol. 3, pp. 189–230, 2009.

[7] T. Mikolov, I. Sutskever, K. Chen, G. Corrado and J. Dean, “Distributed representations of words and
phrases and their compositionality,” in Proc. of the 26th Int. Conf. on Neural Information Processing
Systems(NIPS 2013), vol. 26, Lake Tahoe, Nevada, USA, pp. 1–9, 2013.

[8] Q. Le and T. Mikolov “Distributed representations of sentences and documents,” in 31st Int. Conf. on
Machine Learning (ICML 2014), vol. 4, Beijing, China, pp. 2931–2939, 2014.

[9] E. Grave, P. Bojanowski, P. Gupta, A. Joulin and T. Mikolov, “Learning word vectors for 157 languages,” in
Int. Conf. on Language Resources and Evaluation (LREC 2018), 11th ed., Miyazaki, Japan, pp. 3483–3487,
2019.

[10] J. Pennington and R. Socher, “GloVe: Global vectors for word representation,” in Proc. of the 2014 Conf.
on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, pp. 1532–1543, 2014.

[11] A. B. Soliman, K. Eissa and S. R. El-Beltagy, “AraVec: A set of arabic word embedding models for
use in arabic NLP,” Procedia Computer Science, vol. 117, pp. 256–265, 2017. http://dx.doi.org/10.1016/
j.procs.2017.10.117.

[12] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark et al., “Deep contextualized word represen-
tations,” in Proc. of the 2018 Conf. of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, vol. 1, New Orleans, Louisiana, pp. 2227–2237, 2018. http://
dx.doi.org/10.18653/v1/n18-1202.

[13] J. Howard and S. Ruder, “Universal language model fine-tuning for text classification,” in ACL 2018-56th
Annual Meeting of the Association for Computational Linguistics, Proc. of the Conf. (Long Papers), vol. 1,
Melbourne, Australia, pp. 328–339, 2018. http://dx.doi.org/10.18653/v1/p18-1031.

[14] J. Devlin, M. W. Chang, K. Lee and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers
for language understanding,” in Proc. of the 2019 Conf. of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, vol. 1, no. Mlm, Minneapolis, U.S., pp. 4171–
4186, 2019.

[15] T. Pires, E. Schlinger and D. Garrette, “How multilingual is multilingual BERT?,” in ACL 2019-Proc. of the
57th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts, Florence, Italy,
pp. 4996–5001, 2020. http://dx.doi.org/10.18653/v1/p19-1493.

[16] W. Antoun, F. Baly and H. Hajj, “AraBERT: Transformer-based model for arabic language understand-
ing,” in Proc. of the 12th Language Resources and Evaluation Conf. (LREC 2020 Workshop), Marseille,
France, pp. 9–15, 2020.

[17] A. Aquino and E. Chavez, “Analysis on the use of Latent Semantic Indexing (LSI) for document classifica-
tion and retrieval system of PNP files,” in“ Open Access Proceedings in Materials Science, Engineering
and Chemistry (MATEC) Web of Conferences, vol. 189, Beijing, China, pp. 3009, 2018. http://dx.doi.
org/10.1051/matecconf/201818903009.

[18] A. H. Osman and O. M. Barukub, “Graph-based text representation and matching: A review of the state
of the art and future challenges,” IEEE Access, vol. 8, pp. 87562–87583, 2020. http://dx.doi.org/10.1109/
ACCESS.2020.2993191.

[19] P. Jafarzadeh and F. Ensan, “A semantic approach to post-retrieval query performance prediction,”
Information Processing & Management, vol. 59, no. 1, pp. 102746, 2022. http://dx.doi.org/10.1016/j.
ipm.2021.102746.

[20] M. Pan, J. Wang, J. X. Huang, A. J. Huang, Q. Chen et al., “A probabilistic framework for integrating
sentence-level semantics via BERT into pseudo-relevance feedback,” Information Processing & Manage-
ment, vol. 59, no. 1, pp. 102734, 2022. http://dx.doi.org/10.1016/j.ipm.2021.102734.

[21] A. A. Aliane and H. Aliane, “Evaluating SIAMESE architecture neural models for Arabic textual similarity
and plagiarism detection,” in 4th Int. Symp. on Informatics and its Applications (ISIA), M’sila, Algeria, pp.
1–6, 2020.

http://dx.doi.org/10.1016/j.procs.2017.10.117
http://dx.doi.org/10.1016/j.procs.2017.10.117
http://dx.doi.org/10.18653/v1/n18-1202
http://dx.doi.org/10.18653/v1/n18-1202
http://dx.doi.org/10.18653/v1/p18-1031
http://dx.doi.org/10.18653/v1/p19-1493
http://dx.doi.org/10.1051/matecconf/201818903009
http://dx.doi.org/10.1051/matecconf/201818903009
http://dx.doi.org/10.1109/ACCESS.2020.2993191
http://dx.doi.org/10.1109/ACCESS.2020.2993191
http://dx.doi.org/10.1016/j.ipm.2021.102746
http://dx.doi.org/10.1016/j.ipm.2021.102746
http://dx.doi.org/10.1016/j.ipm.2021.102734


CMC, 2022, vol.72, no.1 1993

[22] A. Youssef, M. Elattar and S. R. El-Beltagy, “A Multi-embeddings approach coupled with deep learning
for arabic named entity recognition,” in 2nd Novel Intelligent and Leading Emerging Sciences Conf. (NILES
2020), Giza, Egypt, pp. 456–460, 2020. http://dx.doi.org/10.1109/NILES50944.2020.9257975.

[23] F. El-Alami, S. El Alaoui and N. En-Nahnahi, “Contextual semantic embeddings based on fine-tuned
AraBERT model for arabic text multi-class categorization,” Journal of King Saud University-Computer and
Information Sciences, 2021. http://dx.doi.org/10.1016/j.jksuci.2021.02.005.

[24] A. Altahhan, E. Atwell and A. N. Alsaleh, “Quranic verses semantic relatedness using AraBERT,” in Proc.
of the Sixth Arabic Natural Language Processing Workshop, Kyiv, Ukraine (Virtual), pp. 185–190, 2021.

[25] A. Wadhawan, “AraBERT and Farasa segmentation based approach for sarcasm and sentiment detection
in Arabic tweets,” in Proc. of the Sixth Arabic Natural Language Processing Workshop, Kyiv, Ukraine
(Virtual), pp. 395–400, 2021.

[26] P. Nakov, L. Màrquez, W. Magdy, A. Moschitti, J. Glass et al., “SemEval-2016 Task 3: Community
question answering,” in Proc. of the 10th Int. Workshop on Semantic Evaluation (SemEval-2016), San Diego,
California, pp. 525–545, 2016.

[27] T. Zerrouki, “Tashaphyne, Arabic light stemmer.” 2012, [Online]. Available: https://pypi.python.org/pypi/
Tashaphyne/0.2.

[28] K. Darwish and H. Mubarak, “Farasa: A new fast and accurate Arabic word segmenter,” in Proc. of the
10th Int. Conf. on Language Resources and Evaluation (LREC’16), Portorož, Slovenia, pp. 1070–1074, 2016.

[29] S. Bird, “NLTK: The natural language toolkit,” in Proc. of the ACL Interactive Poster and Demonstration
Sessions, vol. Proceeding, Barcelona, Spain: Association for Computational Linguistics, pp. 214–217, 2004.

[30] M. N. Al-Kabi, S. A. Kazakzeh, B. M. Abu Ata, S. A. Al-Rababah and I. M. Alsmadi, “A novel root based
arabic stemmer,” Journal of King Saud University-Computer and Information Sciences, vol. 27, no. 2, pp.
94–103, 2015. http://dx.doi.org/10.1016/j.jksuci.2014.04.001.

[31] A. Apostolico and C. Guerra, “The longest common subsequence problem revisited, ” Algorithmica, vol.
2, no. 2, pp. 315–336, 1987. http://dx.doi.org/10.1007/BF01840365.

[32] A. F. Gad, “Implementing the levenshtein distance in python,” Paperspace Blog, 2019. [Online]. Available:
https://blog.paperspace.com/implementing-levenshtein-distance-word-autocomplete-autocorrect/
(accessed Oct. 22, 2021).

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., “Feature extraction,” in Scikit-learn
1.0 Documentation, 2011. [Online]. Available: https://scikit-learn.org/stable/modules/feature_extraction.
html (accessed Oct. 22, 2021).

[34] R. Rehurek and P. Sojka, “Software framework for topic modelling with large corpora,” in Proc. of the
LREC 2010 Workshop on New Challenges for NLP Frameworks, Valletta, Malta, pp. 45–50, May 2010.

[35] S. Arora, Y. Liang and T. Ma, “A simple but tough-to-beat baseline for sentence embeddings,” in Int. Conf.
on Learning Representations, ICLR (2017), Palais des Congrès Neptune, Toulon, France, 2017.

[36] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proc. of the ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining, vol. 13–17-Augu, New York, NY, United States, pp.
785–794, 2016. https://doi.org/10.1145/2939672.2939785

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., “Scikit-learn: Machine learning in
python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[38] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in 3rd Int. Conf. on Learning
Representations, ICLR 2015, San Diego, CA, USA, pp. 1–15, 2015.

[39] S. G. Andreas and C. Müller, “Evaluation of regression models in scikit-learn,” in Introduction to Machine
Learning with Python: A Guide for Data Scientists, 1st ed., vol. 5, Gravenstein Highway North, Sebastopol,
CA, USA: O’Reilly Media, 2016. [Online]. Available: https://www.goodreads.com/book/show/24346909-
introduction-to-machine-learning-with-python.

[40] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau et al., “Theano: A python framework
for fast computation of mathematical expressions,” arXiv e-prints, vol. abs/1605.0, May 2016, [Online].
Available: http://arxiv.org/abs/1605.02688.

http://dx.doi.org/10.1109/NILES50944.2020.9257975
http://dx.doi.org/10.1016/j.jksuci.2021.02.005
https://pypi.python.org/pypi/Tashaphyne/0.2
https://pypi.python.org/pypi/Tashaphyne/0.2
http://dx.doi.org/10.1016/j.jksuci.2014.04.001
http://dx.doi.org/10.1007/BF01840365
https://blog.paperspace.com/implementing-levenshtein-distance-word-autocomplete-autocorrect/
https://scikit-learn.org/stable/modules/feature_extraction.html
https://scikit-learn.org/stable/modules/feature_extraction.html
https://doi.org/10.1145/2939672.2939785
https://www.goodreads.com/book/show/24346909-introduction-to-machine-learning-with-python
https://www.goodreads.com/book/show/24346909-introduction-to-machine-learning-with-python
http://arxiv.org/abs/1605.02688


1994 CMC, 2022, vol.72, no.1

[41] A. Malakhov, “Composable multi-threading for python libraries,” in Proc. of the 15th Python in Science
Conf. (SciPy 2016), Austin, Texas, pp. 15–19, 2016. http://dx.doi.org/10.25080/Majora-629e541a-002.

[42] A. Astori, “Concurrency and parallelism in python,” Towards Data Science, Apr. 2021. [Online]. Available:
https://towardsdatascience.com/concurrency-and-parallelism-in-python-bbd7af8c6625 (accessed Oct. 22,
2021).

[43] S. Raschka, “An introduction to parallel programming using Python’s multiprocessing module–
using Python’s multiprocessing module,” sebastianraschka.com, Jun. 2014. [Online]. Available: https://
sebastianraschka.com/Articles/2014_multiprocessing.html (accessed Junuary. 3, 2022).

[44] P. M. Swamidass, “MAPE (mean absolute percentage error),” in Encyclopedia of Production and Manufac-
turing Management, 6th ed., Boston, MA: Springer US, pp. 462, 2000.

http://dx.doi.org/10.25080/Majora-629e541a-002
https://towardsdatascience.com/concurrency-and-parallelism-in-python-bbd7af8c6625
https://sebastianraschka.com/Articles/2014_multiprocessing.html
https://sebastianraschka.com/Articles/2014_multiprocessing.html

	Embedding Extraction for Arabic Text Using the AraBERT Model
	1 Introduction
	2 Review of Literature
	3 Methodology
	4 Experimental Settings
	5 Experiments and Results
	6 Discussion of Results and Implications
	7 Conclusions and Future Work


