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Abstract: Modern fighters are designed to fly at high angle of attacks reaching
90 deg as part of their routine maneuvers. These maneuvers generate complex
nonlinear and unsteady aerodynamic loading. In this study, different aero-
dynamic prediction tools are investigated to achieve a model which is highly
accurate, less computational, and provides a stable prediction of associated
unsteady aerodynamics that results from high angle of attack maneuvers.
These prediction tools include Artificial Neural Networks (ANN) model,
Adaptive Neuro Fuzzy Logic Inference System (ANFIS), Fourier model, and
Polynomial Classifier Networks (PCN). The main aim of the prediction model
is to estimate the pitch moment and the normal force data obtained from
forced tests of unsteady delta-winged aircrafts performing high angles of
attack maneuvers. The investigation includes three delta wing models with 1,
1.5, and 2 aspect ratios with four determined variables: change rate in angle of
attack (0 to 90 deg), non-dimensional pitch rate (0 to .06), and angle of attack.
Following a comprehensive analysis of the proposed identification methods,
it was found that the newly proposed model of PCN showed the least error
in modeling and prediction results. Based on prediction capabilities, it is seen
that polynomial networks modeling outperformed ANFIS and ANN for the
present nonlinear problem.

Keywords: Unsteady aerodynamics; supermaneuverability; identification;
neuro-fuzzy; polynomial networks; neural networks

1 Introduction

In the past, aircraft designers avoided post stall maneuvering of fighter aircraft which is charac-
terized by large flow separation. Today’s tactical fighters are using the supermaneuverability, which is
defined as the ability of an aircraft to perform transient moves beyond the stall angle in a controlled
manner of attack up to 90 degrees [1]. Additionally, the concept also refers to the ability of aircraft to
alter its flight path in space whilst holding constant fuselage attitude or equivalently, possessing the
ability to pitch and yaw without having to change the path of flight. This in return would enhance
air-to-air combat on a short range performance at subsonic speeds where transients of angle of attack
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to 50 degrees and above can be achieved [2]. The characterized wings are delta-winged aircrafts which
possess extreme high angles of attack, Fig. 1.
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Figure 1: Delta wing nomenclature, where α is angle-of-attack, � is swept angle, V∞ is free-stream
velocity, CN is the normal force coefficient, CD is the drag force coefficient and CL is the lift force
coefficient

Consequently, numerous experimental attempts have been accomplished to model and study
complex unsteady delta wing aerodynamics and its characteristics of, vortex sheets, vortex bursting,
and flow separation [3]. For many years, the aerodynamic functions are approximated by linear
expressions in the form of stability derivatives with an addition of nonlinear terms to express high-
angle-of-attack maneuvers. The aforementioned type of formulation makes the assumption that
moments and aerodynamic forces can be represented by differential function, and thus can be
expanded using Taylor series while only possessing the first order terms (represents stability and
control derivatives). However, the mentioned mathematical structure ultimately lacks the capability
of modeling aerodynamic responses during occurrences of unsteady nonlinear effects, and is only
sufficient for portions of the flight envelope [4,5].

Many researchers conducted experiments on unsteady high alpha maneuvers for various aspect
ratios delta wings and with alpha excursions range from 0 deg to over 90 deg. It was found that flow
separation, vortex bursting and attachment play vital roles in the production of aerodynamic loads.
Therefore, aerodynamic coefficients vary with motion variables in a non-linear manner and depend
on the motion history [6]. This study implements different aerodynamic prediction tools, including:
adaptive neuro fuzzy logic inference system, artificial neural networks, and Fourier nonlinear model
to estimate the pitch moment and the normal force of unsteady aerodynamics for delta-winged
aircrafts at high attack angles. These methods are compared to an original tool of polynomial classifier
networks to determine most suitable prediction tool in terms of relative precision, less complexity
and stability of all models. The motivation behind this work is to achieve a highly accurate, less
computational, and stable prediction model of associated aerodynamic instability due to a high angle
of attack maneuvers.

2 Unsteady Aerodynamic Experimental Tests

Wind tunnel tests are often utilized to investigate and accurately describe the unsteady aero-
dynamic effects in prior- and post-stall regimes for fighter aircrafts at high angle of attack. The
experimental data in this study is obtained for a range of delta wings aspect ratios performing fighter
like supermaneuvers [7]. The experiments were carried out for several data ranges of system variables,
i.e.,α (angle of attack), K (Reduced Frequency), and AR (Aspect Ratio). The hysteresis loops are found
to become larger at high angles of attack; they also enlarge with an increase of the reduced frequency.

The aerodynamic tests are acquired by generating sinusoidal and ramp variations of the angle
of attack. The simulated maneuvers are characterized by wind tunnel-matched dimensionless time
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constants (reduced frequencies) as K = wCR/2V∞. The sinusoidal and ramp simulated maneuvers are
described in Eqs. (1) and (2) respectively.

α = αmax

2
[1 − cos(wt)] (1)

α =
⎧⎨
⎩

αmin +
(

αmax − αmin

τ

)
t, 0 ≤ t ≤ τ

αmax , t ≥ τ

⎫⎬
⎭ (2)

where: αmin is the minimum angle of attack during one cycle test; τ is preprogrammed time when
maximum angle of attack αmax reached. The reduced frequency is chosen to be 0.0 to 0.08 as often
used for advanced fighters. More than 2500 measurements for normal Force coefficients and pitching
moment coefficients have been employed in this study.

3 Model Formulations of Unsteady Aerodynamic Data

Researchers have previously unveiled numerous techniques for prediction aerodynamic loading at
extremely high angle of attack maneuvers. Utilizing linear terms in the Expansion of the aerodynamic
forces and moments using the Taylor series has been one of the most prominent and regularly used
methodologies for the aircraft’s forces’ and moments’ formulation [8]. The aforementioned terms are
referred to as aerodynamic stability derivatives; this is due to the fact that their signs and magnitudes
can be used to determine the stability at the equilibrium [9]. The indicated method has proven its high
effectiveness specifically for flow attachments with low attack angles [1]. Moreover, the useful range of
flight conditions of practical applications can further be extended by adding quadratic terms in Taylor
expansions, which thereby expresses the stability derivatives’ changes [10].

The indicial response method is also an alternative approach to the modelling of aerodynamic
loading. Since the theory of the linear Indian can approximate as a linear time-invariant system, know-
ing the system’s indicial functions can also the way it would react to any random motion. Therefore, a
reduction in computational requirements is achieved [11]. Moreover, the development of nonlinear
indicial prediction models has permitted the prediction of unsteady time-dependent aerodynamic
loads which are correlated with aircraft maneuvers at high pitch rates and high angle of attack [11,12].
The basis of this model lays on the nonlinear indicial theory in addition to the parameterization of
the indicial and crucial state responses efficiently that stem from local information; for instance, the
pitch rate and instantaneous angle of attack. However, there is great complexity in the aerodynamic
transient that occurs when a critical state is crossed, and thus this model is unable to provide correct
predictions in such cases. Nonetheless, researchers have shed a light on a solution that uses a dynamic
simulation of state space which determines the state of Separation of unsteady flows in terms of the
complementary state variable [13]. Aerodynamic coefficients have been obtained when utilizing the
preceding state and corresponding inputs (α, q) state variable [13]. the aerodynamic coefficients were
acquired using (α, q).

Precise time solutions of Euler or Navier-Stokes system equations are computationally expensive
approach where several parameters have to be identified, as in maneuvers involving a high angle of
attack. To demonstrate this problem’s complexity, CFD analysis is performed in Figs. 2 and 3 to show
the velocity streamlines and pressure profiles of different α for AR = 1, Re (Reynolds Number) =
4.5 × 105 and K = 0.01. The shown time dependent aerodynamic nonlinearity in velocity streamlines
demonstrates the variations of aerodynamic loads that are time-dependent and correlated with aircraft
movements at high pitch rates and high angles of attack. Large time delays and hysteresis are used to
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examine the vortex breakup over delta wings in unsteady flows. which resulted in increased lift and
delayed stall [14].

Figure 2: Velocity streamlines for different angle of attack simulations for Re = 4.5 × 105 and K = 0.01

Figure 3: Pressure profiles for different angle of attack simulations for Re = 4.5 × 105 and K = 0.01
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Several researchers have implemented a converged CFD simulation for data generation and
learning. The time frame data of the unsteady flow was recorded, including velocity, pressure,
and aerodynamic force of the wings at different α. The generated data set for training, testing and
validation was composed with different extracted variables, such as point coordinates, aerodynamic
lift and drag force coefficients for varied angles of attack at a fixed Reynolds number and wing aspect
ratio [15]. Under transonic circumstances, the flow across delta wings is quite complicated and they
are highly affected by different parameters. Different researchers have investigated the occurrence
of vortex breakdown in order to provide a description for the contrariety between computational
and experimental results based on the under-prediction of the vortex core axial velocity [16]. In
previous work, generalized aerodynamic force coefficients related to the time and frequency domains
are investigated. The Fourier analysis of the time series of the harmonic responses allows for the
transmission of the time domain results into frequency domain [17].

4 Methodology

This research describes a study which aims to analyze multiple modeling techniques of aero-
dynamic loading for a delta wing like aircraft’s entire flight regime. A novel method is introduced,
alongside artificial intelligence methods, based on polynomial networks technique which produces a
model to identify aerodynamic instability up to a high angle of attack regime. The temporal history of
motion and the wing aspect ratio act as the system’s variable inputs, whereas both unsteady normal
force and pitch moment exerted on a delta wing in the range 0 to 90 degrees angles of attack act as its
outputs.

4.1 Fourier Nonlinear Model

Aerodynamic responses result from a Fourier analysis of harmonic forced oscillation at high
angles of attack when changing frequency. This analysis technique is efficient in assessing the resulting
time integrals based on a concept of equivalent harmonic motion [18]. Fourier method is conducted
in this study to analyze normal force and pitching moment data collected in Forced oscillation
experiments with huge amplitudes at high attack angles.

4.2 Neural Networks Model

In the modeling of aerodynamic data from wind tunnel tests on a variety of aircraft, a utilization of
the neural network method occurred [19]. In [20,21], a rectangular wing with the NACA0015 profile,
pitching from α = 0◦ to α = 60 about the 1/4 chord location ◦, is introduced using the ANN model.
At varying span locations, the pressure coefficients and sectional force in the model was predicted
using the neural network. The applied ANN is characterized as a feed-forward network consisting of
three network layers, i.e., input layer (α, AR, and K), hidden trained layer and output layer (which
represents normal force and pitching moment coefficients). The neural network structure is shown
in Fig. 4 which uses supervised backpropagation training method. In an effort to diminish the mean
square error (MSE) and keep it to a minimum, the optimal number of neurons in the hidden layer is
found.
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Figure 4: ANN Model, where: bi
k+1 is node i bias at k + 1 layer, wij

k+1 is the connecting weight for node
i at layer k + 1 and node j, k = 0, 1, 2 . . . (total layers-1)

4.3 Adaptive Neuro-Fuzzy Modeling

A favorable comparison between Neuro-fuzzy model and semi-empirical approaches for unstable
aerodynamic normal force coefficients was conducted [22]. In modeling the aerodynamic unsteady
normal force coefficient, three inputs comprised the model: non-dimensional pitch rate, aspect ratio
and angle of attack. The system’s root mean square error was less than 6% for the 0 to 90 degrees
angle of attack range., which indicated highly reliable results for CN prediction. In this work, similar
input vector as the ANN method (α, AR, and K) was included in the selected model as displayed in
Fig. 5. The ANFIS model comprised of three stages of several learning algorithms [23]: The first layer
involved unsupervised learning of the membership functions (Centers and widths), the second layer
involved unsupervised learning of the Rules (rules computation), and the third layer included error
back propagation to improve the membership functions [24].
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Figure 5: Adaptive-neuro-fuzzy modeling system. where: (x1–x4) are input vectors, k: is node number,
Ai,j: are input fuzzy sets, wm: the rule output, fm is a output crisp variable of mth rule
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4.4 Polynomial Networks Model

Polynomial networks algorithm is a nonlinear mapping technique of all possible input polynomial
terms which are essential to model the system [25,26]. The model desired output vector (normal force
or pitching moment coefficient) is symbolized by C :

C = [C(0) C(1) C(2) . . . C(N − 1)]T (3)

where: N is the output vector’s length(coefficients of normal force and pitch moment). The corre-
sponding input vector I is defined as:

I =

⎡
⎢⎢⎣

α(0) α̇(0) K(0) AR(0)

α(1) α̇(1) K(1) AR(1)
...

...
...

...
α(N − 1) α̇(N − 1) K(N − 1) AR(N − 1)

⎤
⎥⎥⎦ (4)

The vector P is a sequence of polynomial basis terms represented by the input vector sequence IP

and expressed as P(IP) = [1 IP], where IP is defined as:

IP = [
α α̇ K AR α2 αα̇ αK αAR α̇2 α̇K α̇AR K2 KAR AR2

]
(5)

The first term in the polynomial vector P is to model any present DC output, where other terms
refer to first order linear terms and second order nonlinear terms. Mapping of input sequence IP into
the desired output sequence C is achieved by using mean-squared error as the objective criterion is:

w = argmin
w

||Pw − C||2 (6)

where: w is the network mapping gain. Solving Eq. (6) for C when error approaches zero:

Pt
iPiwi = Pt

iCi (7)

wi = (Pt
iPi)

−1Pt
iCi (8)

In this section, to improve the accuracy and learning rate of the polynomial model, a novel strategy
is proposed. The modified polynomial model, shown in Fig. 6, is based on closed loop identification
by assuming a new sequence of polynomial basis terms P′(IP) as:

P′(IP) = [
1 IPŶ

]
(9)

+

MinimizationPolynomial
Expansion
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Error

P' w

-
ΠΣ

C

Figure 6: Block diagram of closed loop model training based on polynomial networks

The lines’ thicknesses indicate the dimensionality of the data. MSE is calculated based on the
difference measurement between C and (Pw) [27].
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The addition of feedback loops of the estimated output enabled the improved model to include
more nonlinear terms without additional computations. Therefore, the new methodology shall
enhance the convergence rate of the system with lower degree of polynomial order. The least squares
error (LSE) method is used to optimize the weights for the proposed network. To further improve
the model estimates, it is vital to eliminate ineffectual terms in the polynomial sequence vector before
implementing the LSE.

5 Results

The aerodynamic load coefficients were classified for three different delta wings according the
three categories: training, testing, and validation. The distribution of the data was as follows: 80%
for training, 10% validation and 10% testing. One thousand data vectors exist in the training data,
and each data vector has system inputs comprised of angle of attack, aspect ratio, angle of attack
rate change, and the reduced frequency, while the system outputs consist of the coefficients pitching
moment and normal force. Three hundred data vectors comprise the testing data and are utilized to
ensure the accuracy of implemented models. Finally, validation of the model’s performance is achieved
by using MSE percentage error.

5.1 Fourier Nonlinear Model

A simple model is built to obtain the Fourier expansion for the fifth term in the sequence. Tab. 1
is a brief conclusion of this algorithm results. The performance was very responsible with an average
percentage error of around 5%. The model produced the envelope shape of the coefficients of normal
force and pitch moment, without any overshooting in this response.

Table 1: Testing results using fourier expansion model

Normal force coefficients Pitch moment coefficients

AR K CNmin CNmax Error % AR K CNmin CNmax Error %

1 0.01 −0.017 1.8173 5.55 1 0.01 0.0257 0.4768 6.89
1 0.02 −0.002 1.8468 5.64 1 0.02 0.0361 0.4898 7.37
1 0.04 0.008 1.848 6.01 1 0.04 0.0067 0.526 7.85
1 0.06 −0.019 1.918 4.42 1 0.06 0.001 0.486 6.38
1.5 0 0 1.59 4.86 1.5 0.01 0.003 0.482 7.90
1.5 0.01 0 1.83 6.43 1.5 0.06 0.0079 0.5804 4.21
1.5 0.06 0 2.29 4.73 2 0.01 0.0015 0.4429 12.71
2 0 0 1.57 6.24 2 0.04 0.0013 0.6381 9.60
2 0.01 0 1.76 6.90 2 0.06 0.0078 0.5932 9.97
2 0.04 0.12 2.2 7.64
2 0.06 0 2.25 4.23
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5.2 Neural Network Model Results

The Neural Networks-based model is comprised of two layers of adjustable weights: an output
layer and a hidden layer. A manually optimizing technique of the hidden layer neurons was attained
to minimize MSE. The model’s performance results proved that the first 20 epoch are where the
most significant advancement took place, the MSE error was recorded as 1.5046e − 3. Furthermore,
hyperbolic tangent (TAN) sigmoid and logarithmic (LOG) sigmoid were utilized to attain back
propagation network training.

Aerodynamic normal force coefficients for aspect ratios of 1, 1.5, and 2 are modeled with K = 0.01,
0.02, 0.04, and 0.06.as in Tab. 2. Outstanding performance is shown in the obtained results; however,
at aspect ratios = 1.5 and 2, the model’s response showed a different performance than that of an
aspect ratio = 1. The cause of this difference is the smaller size of the data used in training which
is less than that at AR = 1. The unsteady aerodynamics pitch moment loading was also modeled by
implementing the neural network technique. Tab. 3 depicts the results that show that the agreement
between the model and the experiment is less than that of the CN model. This arises from the degree
of difficulty and convolution of estimating the pitch moment since the unsteady load distribution is
represented by it as well.

Table 2: Experimental data used to train the NN model utilized to test the results for normal force
coefficients. The findings for 100 epochs with 50 and 200 neurons in the hidden layer are displayed

AR K Output range Percentage error %
LOG sig

Percentage error %
TAN sig

CNmin CNmax 50 neurons 200 neurons 50 neurons 200 neurons
1 0.01 −0.016618173 1.8173 1.30 1.04 1.49 1.13
1 0.02 −0.0021 1.8468 1.19 1.03 1.66 1.32
1 0.04 0.008 1.848 1.55 1.19 2.09 1.32
1 0.06 −0.019 1.918 1.59 1.06 1.57 1.48
1.5 0 0 1.59 1.22 1.06 2.20 1.13
1.5 0.01 0 1.83 1.54 1.06 1.79 3.55
1.5 0.06 0 2.29 1.29 1.06 1.96 1.63
2 0 0 1.57 1.36 1.04 1.83 1.09
2 0.01 0 1.76 1.35 1.03 2.29 1.14
2 0.04 0.12 2.2 1.97 1.25 2.26 2.89
2 0.06 0 2.25 1.85 1.12 2.40 1.17

Table 3: The experimental data used to train the NN model utilized to test the results for pitch moment
coefficients. At 100 epochs, using 50 and 200 neurons in the hidden layer, the results are given

AR K Output range Percentage error %
LOG sig

Percentage error %
TAN sig

CNmin CNmax 50 neurons 200 neurons 50 neurons 200 neurons

1 0.01 0.0257 0.4768 2.49 1.14 4.81 2.08
1 0.02 0.0361 0.4898 2.56 1.23 6.10 6.72
1 0.04 0.0067 0.526 4.95 2.22 4.44 2.38

(Continued)
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Table 3: Continued
AR K Output range Percentage error %

LOG sig
Percentage error %

TAN sig

CNmin CNmax 50 neurons 200 neurons 50 neurons 200 neurons

1 0.06 0.001 0.486 3.58 1.18 3.27 4.02
1.5 0.01 0.003 0.482 2.82 1.17 7.03 2.45
1.5 0.06 0.0079 0.5804 3.82 2.12 6.47 4.86
2 0.01 0.0015 0.4429 2.93 1.16 7.53 3.20
2 0.04 0.0013 0.6381 2.23 1.28 4.78 6.60
2 0.06 0.0078 0.5932 2.91 1.41 4.48 2.52

In comparison with the learning functions of hyperbolic tangent sigmoid, the performance of
the ANN model was improved through the utilization of logarithmic sigmoid training function.
Furthermore, the accuracy of the model was enhanced to a settling limit by incrementing the number of
epochs. On the other hand, increasing the hidden layer’s neurons to a number larger than 200 neurons
did not achieve any notable enhancement in the performance or precision of the model.

5.3 Adaptive Neuro-Fuzzy Model Results

With the aim of optimizing and increasing the efficiency of the membership function’s (MFs)
distribution, ANFIS model is used to minimize MSE errors and divergence between experimental
data used for training and the model output. The implementation of Gaussian bell shape membership
function occurred.

A summary presenting the result’s iterations and percentage errors in Tabs. 4 and 5 that were
collected to model the pitch moment and normal force coefficients with ANFIS. The results of the
model were representative and accurate with a minimum percentage error of around 0.01%. The model
accuracy was improved by having a higher number of MFs and epochs. The training data of the model
is rigidly tracked at an extremely high epochs number. However, this leads to a tradeoff in the predictive
abilities of the model.

Table 4: Testing results for normal force coefficients using ANFIS model for different MFs

AR K Percentage error %
MFs [α = 4 α̇ = 6 AR = 3 K = 3]

Percentage error %
MFs [α = 6 α̇ = 8 AR = 4 K = 4]

3 epochs 5 epochs 3 epochs 5 epochs

1 0.01 0.05 0.01 0.01 0.01
1 0.02 0.04 0.01 0.01 0.01
1 0.04 0.05 0.05 0.01 0.01
1 0.06 0.10 0.08 0.01 0.01
1.5 0 0.13 0.07 0.04 0.03
1.5 0.01 0.45 0.03 0.02 0.02
1.5 0.06 1.35 0.88 0.21 0.20

(Continued)
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Table 4: Continued
AR K Percentage error %

MFs [α = 4 α̇ = 6 AR = 3 K = 3]
Percentage error %

MFs [α = 6 α̇ = 8 AR = 4 K = 4]

3 epochs 5 epochs 3 epochs 5 epochs

2 0 0.90 0.20 0.04 0.03
2 0.01 0.20 0.01 0.01 0.01
2 0.04 1.57 0.57 0.58 0.36
2 0.06 1.9 0.42 0.54 0.41

Table 5: Testing results for pitch moment coefficients using ANFIS model for different MFs

AR K Percentage error %
MFs [α = 4 α̇ = 6 AR = 3 K = 3]

Percentage error %
MFs [α = 6 α̇ = 8 AR = 4 K = 4]

3 epochs 5 epochs 3 epochs 5 epochs

1 0.01 0.09 0.10 0.09 0.07
1 0.02 0.04 0.04 0.01 0.02
1 0.04 0.43 0.28 0.02 0.02
1 0.06 4.19 1.07 0.01 0.02
1.5 0.01 0.06 0.06 0.03 0.02
1.5 0.06 0.57 0.56 0.81 0.70
2 0.01 0.10 0.11 0.08 0.07
2 0.04 0.24 0.15 0.77 0.33
2 0.06 2.78 0.81 1.76 1.20

5.4 Polynomial Networks Results

The results for open loop and closed loop polynomial models are shown in Fig. 7. The closed loop
output is always following the experimental data and minimizes the error rapidly. This improvement
made the polynomial network model able to perform modeling with high accuracy for unsteady
nonlinear aerodynamics systems.

The polynomial network has shown a competitive efficiency in modeling all conditions with
almost same accuracy regardless of the number of data points used to train the model. For instance,
at AR = 1.5, the data set was fewer than the data used to train the model at AR = 1, but the model
results showed a similar performance for both data sets. The same range of angle of attack and
aerodynamic parameters are used to model CN and CM. The improvement in feedback modeling is
apparent compared to classical polynomial structure.
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Figure 7: Unsteady aerodynamic (a) normal force and (b) pitching moment coefficients for checking
data points using polynomial networks model

The model demonstrates rapid enhancement in the output performance when polynomial network
order increase. Figs. 8 and 9 showed that using feedback loops improved significantly the model
estimation ability. The polynomial networks model for normal force and pitch moment unsteady
aerodynamics coefficients showed significant performance improvement compared to earlier models.
Figs. 8 and 9 also show the global minima of model evaluation curves as an optimization point. With
no feedback loops, the best result was obtained with fourth order polynomial model, where using the
feedback loops resulted in a better convergence without higher order terms. The results of modeling
normal force coefficients showed the possibility of getting an outstanding performance with lower
order polynomial model by using only one feedback loop, therefore, reducing the computations cost
needed for such modeling technique. These results were not as accurate for modeling the pitch moment
unsteady aerodynamics.
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Figure 8: Evaluation of polynomial networks model of unsteady aerodynamics (a) normal force and
(b) pitching moment coefficients with no feedback loops
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Figure 9: Evaluation of polynomial networks model of unsteady aerodynamic (a) normal force and
(b) pitching moment coefficients with two feedback loops

6 Discussion

Flow separations and dynamic lags for vortex bursting are the two flow mechanisms that cause
the unsteady effects. Thus, it can be predicted a comparable hysteresis loop will be demonstrated in the
pitch oscillatory maneuvers. This investigation has provided results that present the adaptive Neuro
fuzzy model as the one with the lowest percentage error, as shown in Fig. 10. This signifies that there is
an over fitting in the training data by the adaptive Neuro fuzzy model which allows is to act similarly
to a lookup table, which will be distinctly depicted in the prediction results discussed later.

Figure 10: Testing results of modeling (a) normal force coefficients, AR = 1 and K = 0.01 (b) pitching
moment coefficients, AR = 2, K = 0.04, using fourier, NN, ANFIS and PCN modeling techniques

The standard deviation of the results was found the lowest for ANFIS model and the highest
for PCN model. Comparison of the four modeling schemes for modeling normal force coefficients at
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AR = 1 and K = 0.01 is shown in Fig. 10a Also Fig. 10b shows the comparison results for modeling
pitch moment coefficients at AR = 2, K = 0.04.

7 Modeling Prediction Performance
7.1 Neural Network Model Prediction

The neural network model’s prediction capability was put to the test. Fig. 11 presents an evaluation
of the prediction performance at a unique data set which the system had not tested before with the
values K = 0.03 and AR = 2; this case lies in the confines of the training data’s scale. Agreeable results
between the experimental and estimated data sets were obtained.

Figure 11: Prediction of unsteady aerodynamics for (a) normal force (b) pitch moment coefficients,
where K = 0.03, reynolds number = 4.5 × 105, and AR = 2 using NN

As depicted in Tab. 6, the model predicts the largest error to be at AR = 1.5, which reached 28.54%
when predicting CM ; the low number of training cases at this specific value is the main cause of this
error. Inversely, 1.06% was the least error recorded, at Tan-sig training function and 200 neurons.

An alternate case of novel prediction is explored where the reduced frequency and highest angle
of attack (model inputs) lie outside the training range. The results showed that the neural network’s
model proved to be incapable of predicting such a case, especially when compared with in-range cases.
The MSE percentage error was wide-ranging between 4%–25%, and thus the model is not suitable for
generalizations to unknown aerodynamics.

7.2 Adaptive Neuro-Fuzzy Model Prediction

As shown in Fig. 12, the data set K = 0. 03 and AR = 1 was used to validate the ANFIS model,
within the trained scale of inputs. The model was quite unstable with and low performance in modeling
CN while being highly accurate in modeling cases of CM.
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Table 6: Prediction results of neural networks modeling of normal force coefficients CN and pitch
moment coefficients CM

AR K CN percentage error %
LOG sig

CN percentage error %
TAN sig

CM percentage error %
LOG sig

CM percentage error %
TAN sig

50 neurons
100 epoch

200 neurons
100 epoch

50 neurons
100 epoch

200
neurons
100 epoch

50 neurons
100 epoch

200
neurons
100 epoch

50 neurons
100 epoch

200 neurons
100 epoch

1 0.03 1.42 1.06 2.03 2.92 6.36 2.63 4.27 4.12
1.5 0.03 2.94 1.16 5.46 5.32 6.54 3.55 14.48 28.54
2 0.03 1.97 1.13 2.72 3.14 3.38 2.51 12.16 4.75

Figure 12: Prediction of unsteady aerodynamics for (a) normal force (b) pitch moment coefficients,
where K = 0.03, reynolds number = 4.5 × 105, and AR = 2 using ANFIS

Tab. 7 depicts a list of iterations which attempt to enhance the adaptive neuro-fuzzy technique’s
prediction ability through varying the number of epochs and altering MF’s. On account for the over-
fitting in the training process, the obtained results give very high MSE reaching up to 72% in certain
cases.

7.3 Polynomial Networks Prediction Results

Based on the results of PCN model identification of unsteady aerodynamics, shown in Fig. 13,
this model has predicted the normal force and pitch moment coefficients for various values of aspect
ratios. The close loop configuration of PCN has shown a remarkable enhancement over classical PCN.
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Table 7: Prediction results ANFIS modeling of normal force coefficients CN and pitch moment
coefficients CM

AR K CN percentage error %
MFs [α = 4 α̇ = 6 AR = 3

K = 3]

CN percentage error %
MFs [α = 6 α̇ = 8

AR = 4 K = 4]

CM percentage error %
MFs [α = 4 α̇ = 6 AR = 3

K = 3]

CM percentage error %
MFs [α = 6 α̇ = 8 AR = 4

K = 4]

3 epochs 5 epochs 3 epochs 5 epochs 3 epochs 5 epochs 3 epochs 5 epochs
1 0.03 0.54 0.30 4.67 1.38 0.53 0.84 13.33 10.33
1.5 0.03 5.71 3.71 56.68 47.13 50.97 27.00 4.10 2.10
2 0.03 22.00 19.00 72.39 62.11 12.57 11.39 20.50 16.50

Figure 13: Prediction of unsteady aerodynamics for (a) normal force and (b) pitch moment coefficients,
where K = 0.03, reynolds number = 4.5 × 105, and AR = 1 using PCN model

It is noticed that the range of MSE for prediction results is similar to the MSE of testing phase
as seen it Tabs. 8 and 9. This clearly demonstrates the stability, steadiness, and generalization of
polynomial networks model is a vital outcome of this new method.

Table 8: Prediction results of PCN modeling of normal force coefficients CN

AR K Percentage error % Order (No
feedback loops)

Percentage error % Order
(Feedback loops = 2)

Percentage error % Feedback
loops (Order = 3)

1 2 3 5 1 2 3 5 1 2 3 5
1 0.03 10.32 2.67 0.75 2.60 7.48 0.38 0.24 3.09 0.23 0.24 0.24 0.28
1.5 0.03 9.45 2.55 0.69 1.57 7.48 0.38 0.81 3.90 0.74 0.81 0.70 0.80
2 0.03 9.42 2.32 0.61 3.09 7.48 0.42 0.64 3.56 0.85 0.64 0.47 0.41
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Table 9: PCN prediction results of modeling pitch moment coefficients CM

AR K Percentage error %
Order (No feedback loops)

Percentage error %
Order (Feedback loops = 2)

Percentage error %
Feedback loops (Order = 3)

1 2 3 5 1 2 3 5 1 2 3 5
1 0.03 23.82 8.43 5.67 8.95 17.80 3.47 2.28 7.77 3.17 3.28 3.25 2.38
1.5 0.03 19.98 8.31 2.93 5.25 15.60 2.05 2.88 6.88 2.11 2.88 2.53 2.67
2 0.03 19.83 8.43 2.65 6.33 13.50 2.53 1.84 3.28 2.14 1.84 2.19 2.08

To further explore the extent of model generality, novel aerodynamic data set is used where
AR = 1.5 and K = 0.02 with a maximum angle of attack = 60◦. Tab. 10 shows that polynomial
networks model satisfies this issue undoubtedly. The feedback PCN improved prediction capability
of open loop polynomial model. Even though the system was not trained with this new range of
maneuvering data, it showed extremely accurate performance.

Table 10: PCN prediction results of modeling normal force coefficients CN with novel inputs

AR K Percentage error % Order (No
feedback loops)

Percentage error % Order
(Feedback loops = 2)

Percentage error % Feedback
loops (Order = 3)

1 2 3 5 1 2 3 5 1 2 3 5
1.5 0.02 11.07 2.79 1.25 3.17 7.07 0.75 0.87 1.68 0.95 0.87 0.78 0.81

8 Models Prediction Comparison

The crucial issue of this work is to study models’ ability in predicting the unsteady aerodynamics
of new maneuvers, for both pitch moment and normal force coefficients. Tab. 11 shows an assessment
of predicting capabilities of discussed models.

Table 11: Models prediction results of modeling normal force coefficients CN and pitch moment
coefficients CM

AR K Output range CN percentage error % Output range CM percentage error %

CNmin CNmax PCN NN ANFIS Fourier CMmin CMmax PCN NN ANFIS Fourier

1 0.03 −0.01 1.8576 0.28 1.06 0.3 4.52 0.0311 0.4872 2.38 2.63 10.33 7.38
1.5 0.03 0 2.02 0.8 1.16 3.71 2.28 0.008 0.5162 2.67 3.55 2.1 5.12
2 0.03 0 2.03 0.41 1.13 19 1.29 0.005 0.5611 2.08 2.51 16.5 7.24

The results illustrate the prediction accuracy and stability for polynomial networks model, where
other models demonstrates lower precision or instability at certain points. The average achieved
prediction accuracy with PCN was less than 0.9%. Although, these results were lower for predicting
pitch moment coefficients due to limited data set and complexity of CM profiles.
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Using a new data set to test the ability of each system in predicting the unsteady aerodynamics
at high angle of attack regimes with new maneuvering data is discussed in Tab. 12. The polynomial
network showed a remarkable accuracy compared to other modeling techniques. The MSE of PCN
was 0.78% compared to the second best method, NN, with MSE of 6.89%.

Table 12: Models prediction results of normal force coefficients CM with novel inputs

AR K Output range CM percentage error %

CMmin CMmax PCN NN ANFIS Fourier

1.5 0.02 0 1.87 0.78 6.89 17 10.46

9 Conclusion

This paper presents a comparative study of nonlinear modeling of unsteady aerodynamics loading.
Neural networks, adaptive neuro fuzzy logic inference system, Fourier nonlinear expansion, and
polynomial classifier networks were utilized as identification methods. Such models serve the objective
of predicting the aerodynamic normal force and pitching moment coefficients for aircrafts with
differently shaped delta-wings that carry out unsteady maneuvers at diverse values of maximum
angle of attack. Acquired results proved that the polynomial networks model is a reliable and
capable technique in the prediction of unsteady aerodynamics at high angle of attack maneuvers,
whereas alternate models were impeded by problems of generalization and memorization. Moreover,
using them ensues many difficulties such as their requirement for exhaustive and slow training with
numerous parameters to adjust, as well the possibility of falling into local minima. In contrast,
the polynomial networks model was very efficient and comprehensive in the prediction of unsteady
aerodynamics. Further enhancement of this method is presented by introducing a feedback state, which
improved the model’s performance; it was optimized using several feedback loops and polynomial
orders. The proposed model proved capable in foretelling novel maneuvering data. The proposed
model is inherently a parallel algorithm, which is ideal for multiprocessor hardware.
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