
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.025027

Article

Improved Test Case Selection Algorithm to Reduce Time in Regression
Testing

Israr Ghani*, Wan M. N. Wan-Kadir, Adila Firdaus Arbain and Noraini Ibrahim

School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310, Malaysia
*Corresponding Author: Israr Ghani. Email: gisrar@graduate.utm.my

Received: 08 November 2021; Accepted: 27 December 2021

Abstract: Regression testing (RT) is an essential but an expensive activity
in software development. RT confirms that new faults/errors will not have
occurred in the modified program. RT efficiency can be improved through
an effective technique of selected only modified test cases that appropriate
to the modifications within the given time frame. Earlier, several test case
selection approaches have been introduced, but either these techniques were
not sufficient according to the requirements of software tester experts or they
are ineffective and cannot be used for available test suite specifications and
architecture. To address these limitations, we recommend an improved and
efficient test case selection (TCS) algorithm for RT. Our proposed technique
decreases the execution time and redundancy of the duplicate test cases (TC)
and detects only modified changes that appropriate to the modifications in test
cases. To reduce execution time for TCS, evaluation results of our proposed
approach are established on fault detection, redundancy and already executed
test case. Results indicate that proposed technique decreases the inclusive
testing time of TCS to execute modified test cases by, on average related to
a method of Hybrid Whale Algorithm (HWOA), which is a progressive TCS
approach in regression testing for a single product.

Keywords: Test case selection; regression testing; change detection; TCS
algorithm; test suite minimization

1 Introduction

There are several vital reasons for projects to use regression testing to make sure that software
does not interrupt the running program in the system [1–4]. Regression testing has to arrange with a
possibly enormous quantity of variations to reduce time during test case selection. A satisfactory way
of RT is to detect and select only the appropriate modified test cases in the running program that are
affected by code modifications. The main goal of RTS to reduce test suite size within a given time frame
by only selecting the tests that are affected by code modifications. Regression testing needs to be re-
executed; all existing test cases are already executed and passed before the modification is completed.
However, such an approach unreasonably deserves extra time because a number of test cases would be
recurrence each time a modification is completed [3,5,6]. The problematic area for modified parts of

http://dx.doi.org/10.32604/cmc.2022.025027
mailto:gisrar@graduate.utm.my


636 CMC, 2022, vol.72, no.1

a system is called regression test selection (RTS) when extracting a modified subset of modified test
cases [3,7–9].

A common regression test case selection procedure for a particular software product is focused on
three segments, (A) the Research phase for a retest based on test case modifications, (B) the detection
of actual change for modified TC as shown in Fig. 1 the third phase (C) the assembling segment
calculation of time selection material from the running test cases collection version. To improve the
efficiency, and reduce redundancy, time and unnecessary recurrences as well as fault detected of already
executed and passed test cases need depth analysis of modified test suite [10–14]. There should be a
focus on mentioned areas as much as possible. Furthermore, there is a need for an enhanced regression
testing algorithm to detect altered or modified test cases only to provide an efficient test suite selection
approach within given time frame [15–18]. Several approaches were introduced to reduce testing time
in regression test case selection [19,20]. Therefore, lack of implementation in medium and large-
scale testing environments and some testing approaches are limited either to black box or white box
techniques [21–23]. Moreover, existing approaches are also limited either for object-oriented or service-
oriented based testing environments. Lack of efficient test case selection in literature also causes the
deficiency of testing experiments in introduced approaches throughout selection that are interrelated
to the revised portion of System Under Test (SUT) [24–27]. The number of test cases escalation to deal
with the modified changes, and at last, it turns out to be substantially challenging to execute every one
of them inside limited testing time [28,29]. The highlighted problem also needs to be addressed due
to insufficient testing environments reported in several studies [30–32]. To address, above limitations,
after assessment and experiments of our proposed approach significantly reduces the average time
without missing any fault-revealing to perform regression testing.

Regression Testing 

Test Case Minimization Test Case Selection Test Case Prioritization 

Figure 1: Regression testing

The prominent significances of this study are as follows:

� A new TC) technique using test case selection algorithm to reduce TCS time and redundancy
with fault coverage.

� An experiment was performed to verify the time reduction and effectiveness of our approach.
Results show the improvements in time reduction by adopting a two-step (test case selection
and change detection) procedure without increasing TCS time.

The main goal of this study is to reduce RTCS effort in terms of time (in seconds) and (No.
of overall test cases/total no. of modified test cases). We proposed a safe lightweight regression
test case selection technique using enhanced test case selection and change detection algorithm by
applying mapping rules (test cases change collection history, number of changes calculation, number
of modified test cases) for test suites S, SF and TS. The primary purpose of splitting test cases into
two different stages is by applying additional filters to detect (exclude Fault Detect test case, duplicate
test cases and already executed test case) from the x2 test suite.



CMC, 2022, vol.72, no.1 637

2 Related Work

The main purpose of this study is to introduce an enhanced regression testing approach, simplify
the test technique used, find the gaps in regression testing issues that remain to explore in depth and
address the test case repetition challenges which increase the extraordinary time and precision in test
suit selection. Presently, there are several issues need to address but most of them has been discussed
in state-of-the-art testing challenges perspectives on “regression test case selection to reduce time and
improve precision in software testing area. TCS and detection of modified test cases in regression
testing are being adopted to reduce time and improve precision.

Therefore, the lack of implementation on medium and large scale testing environments and some
testing approaches are restricted to black or white boxes. Banias [26] introduced a TCS algorithm
based on dynamic memorization programming. Therefore, the main focus was the management of a
huge amount of test cases with the allocated memory size of the system, which is not close to real
project scenarios. Souza et al. [28] recommended a search constructed algorithm, but this technique is
limited to functional and object-oriented based applications. Harikarthik et al. [30] developed a TCS
algorithm, therefore this approach discusses the test case prioritization and the proposed algorithm
was not compared with more than one approach. Delavernhe et al. [32] published a multi-objective test
case selection algorithm. Therefore, the proposed algorithm was not compared to another approach
to assess the time and effectiveness.

Beleová et al. [33] presented hardware compatibility related test cases; however, minimum and
maximum requirements of the application is not mentioned. Additionally, this algorithm is limited
to functional testing only. Sahoo and Ray [34] proposed a slicing based framework and algorithm.
Their proposed algorithm is limited to select modified test cases for WSDL files only, also proposed
algorithm results have not been compared to know the efficiency of the proposed framework and
algorithm. In 2018, Wang et al. [25] introduced RTS approach, but their approach was not compared
to relevant regression-based test case selection approaches. Chen and Zhang [35] proposed a predictive
based test case selection approach where multiple iterations have been performed on each test suite,
but results are now shown for each iteration, and the focus was only on fault detection. In 2019
Wang et al. [25] also introduced the RTS approach, but their approach was not compared to relevant
regression-based test case selection approaches. Earlier, authors have introduced RTS techniques using
BAT, HWOA and ACO by allowing for medium or large size test suite so the total time of TCS
can be evaluate and reduced efficiently [25,36–38]. Therefore, these approaches are limited either for
objected based applications or service-oriented based test cases where multiple hardcode checks have
also been performed to get expected results. To address above mentioned weaknesses and limitations,
we propose an improved and efficient test case selection algorithm for regression testing. We believe
that the enhanced test case selection and change detection algorithm of regression testing will resolve
highlighted research problems; an enhanced regression testing approach will improve testing quality.
An enhanced regression testing approach will reduce the time concerns and questions raised in this
research despite the facts. Regression testing analysis and experiments show how the regression test
case selection workflow has been adopted to address the mentioned concerns and questions that have
been proposed in our research.

3 Problem Statement

RTS is endless and immeasurable activity to execute the complete test suite. Due to this reason,
need to identify the modified test case selection by using change detection algorithm on the test case
selection procedure between modified and actual test suits.



638 CMC, 2022, vol.72, no.1

In next step, a dynamic algorithm requires to select only the modified and the affected parts of the
requested change for time, cost and efficiency in regression testing. Furthermore, need to improve to
avoid repetition in test case selection and an efficient regression testing approach to select an efficient
test case suite. RTS is of major concern and described as follow:

Given: A test suite S = {s1, s2, s3, . . . , sn}, a set of fault and redundant test suite SF = {sf1, sf2,
sf3, . . . , sn}, selected by change detection criterion C and final subset of TS {ts1, ts2, ts3, . . . , Tn}, that
are detected by each of the SF such that each modified test case TS (TS∈S) which covers fault of S
and SF. With total execution time �timeh.

Regression testing is vital when changes have been introduced during software enhancement.
Therefore, the more significant challenge is selecting an efficient test suite within the given time frame.
In order to select modified test cases and detect only modified changes, Fig. 2 explains and divides
one test suite into three steps. Suite1 is a combination of original and modified test cases. Suite2 detects
the modified test case affected by code changes, and Suite3 provides an actual test suite to execute,
which contains only modified test cases. In order to reduce time in test case selection and detection of
modified change, we split the initial test suite into mentioned three steps.

RTS : S > SF (1)

Total execution time � = SF : SF > TS (2)

TS : TS < SF < S (3)

Suite2

SF

S

�time
. TS

Suite1 Suite3

Figure 2: Problem statement of TCS

4 Proposed Solution

In this study, an enhanced RTCS using test case selection algorithm (modified change detection)
approach is proposed, enhancement direction proposed to reduce time and improve precision.
The tackling of the persistent uncertainty in parameter selection and determination of appropriate
regression testing approach. Preliminary findings and are presented with appropriate examples and
the proposed framework and algorithm is included in this study.

To define the effectiveness and outcome of the proposed algorithm, we introduced a framework
and algorithm with the following three steps. Therefore, to reduce three different test suites size S, SF
and TS, a total of four iterations have been performed for each test suite as 50, 100, 150, and 200



CMC, 2022, vol.72, no.1 639

test cases compared to propose test cases by Hybrid Whale Optimization Algorithm (HWOA) then
compare its ratio in terms of time. The main purpose is to define the workflow to get the statistical
evidence of the proposed solution compared to the HWOA algorithm.

4.1 Experimental Framework

The following test case selection and change detection framework are well-structured in a planned
manner to assist the researchers in accomplishing the research goals. Fig. 3 shows the research
framework according to the study’s objectives described in the experimental setup section for an
enhanced RT approach to select the modified test cases and detect the newly added change that
is proposed and raised the questions in this research. The stepwise phases are described below and
depicted as followed:

RTCS framework process 

Suite TSSuite S Suite SF 

Test case 
selection and 

change 
detection 

Complete & 
modified test 

suite with 
time 

performance 
validation 

SUT

Change 
History 

Collection 

Number of 
changes 

calculation 

Number of 
modified 
test cases 

Query 
Builder

 (TCS Manager)

Change Detector 
Algorithm

Exclude Fault 
Detect test case, 

duplicate test 
cases, already 
executed test 

case

Change 
Detection 

Filters

List of 
Selected 

Test Cases

Test 
Suit 

Version 
S

TS

SF 

Suite 

TS 

Suite 

1. Test cases 
evaluation 

2. Total execution 
time 

Test Suit 
Version 

SF

Figure 3: RTCS framework

This analysis will have examined the structure of the efficient test case selection and detection of
newly added change from test suite X while considering the role to read the activity from SUT. Each
word plays in the sentences where change collection history, number of modified changes calculation
and total number of modified test cases against SUT (System Under Test) to select modified test cases
for modified test suite X1 and X2. The planning from literature review phase consisted of three main
elements: problem formulation, literature review and identifying existing testing approach. Problem



640 CMC, 2022, vol.72, no.1

formulation involved the process of identifying the issues that existed in regression testing approach
that did not have solutions or if a solution was available it needed much improvement. The broad
problem addressed in this research is an enhanced regression testing approach in test case selection
and detection of modified change to reduce testing time. The problem is narrowed down to test case
selection and further narrowed down to the specific issue of detection in modified test case. The RTCS
framework is used on a medium and large scale database to detect modified test cases and significant
improvement compared to previous application on test suit selection and detection of modified test
cases in regression testing.

The framework should be well-structured in a planned manner to assist the researchers in accom-
plishing the research goals according to the given workflow. Fig. 3 shows the research framework
according to the TCS procedure raised in this study described in Fig. 1. To select the enhanced RT
technique for selection of modified test cases and detect the newly added change proposed in this
research. This analysis has examined the efficient test case selection structure and detection of newly
added change from test suite S. The primary purpose is to split one test suite into two stages to perform
efficient test case selection and detect a modified change from modified test cases. The first stage refers
to modified test cases only, while the second stage detects newly added changes in the modified test
case. We claim that using two different iterations for one test suite will provide an efficient test suite
to execute.

However, considering the role of reading the activity from SUT where change collection history,
number of modified changes calculation, and the total number of modified test cases against SUT
(System under Test) to select modified test cases produce test suite SF. The second part of the
framework shows the detection of newly added change in modified test cases where a change detection
algorithm is applied for small, medium and large scale test suites. Multiple filtered applied to exclude
duplicate, irrelevant, fault detector and already executed test cases according to the requirements to
get the updated and efficient version of modified test suite TS using the query builder. The Stanford
rich text format based library and WSDL files have been used for this purpose. It also derives
the relationships among the different components. Following is the process flow of the proposed
framework.

4.2 Implementation of RTCS Algorithm

The first stage of TCS is the selection procurement; in this stage, the test case selection and change
detection algorithm is used to select the modified change. The second stage has been introduced for
change detection to detect the newly added change in the modified part of the test case and evaluate the
proposed algorithm RTCS with quality parameter time. This segment describes the process flow and
procedures followed to achieve the objectives of the study. The process flow also defines the detailed
design of the conducted research which leads to the development of an enhanced testing approach
to diagnose issues from test case selection in regression testing, extraction of test case cases based on
regression test case selection process flow. The ultimate aim of any enhanced test case selection and
change detection testing approach is to get the needed pure vein pattern and describe its features.

The test case selection and change detection process flow in Fig. 4 is presented and then
applies a dimensionality reduction on test case repetition features using the change detection filters.
Furthermore, an application using an enhanced regression testing approach supports selecting an
efficient test suit technique. Based on test cases, selection and change detection algorithms are applied
to avoid over-fitting, yield a better generalization test suite, and improve the regression test case
technique. The novelty of this study relies on the test case selection and detection of modified change



CMC, 2022, vol.72, no.1 641

in regression testing for from where the test case selection extracted features are implemented based
on the test suite selection.

SUT (Original suite)

S

Modified Suite

SF

Complete & 
modified suite (TS)

Change History 
Collection

Number of 
changes 

calculation

Number of 
modified test 

cases

Exclude fault 
detect, duplicate 

and already 
executed test 

case

Detected newly 
added change

Number of 
detected changes

Figure 4: RTCS process flow

4.3 Test Case Selection Algorithm

In the process of TCS if the selection of test cases is stated as minor (S) level (50 test cases), which
fault reports, so this execution can be negated for the upcoming iteration. In detecting actual modified
test cases (SF) segment, duplicate, false and already executed test cases will test to get expected results
within the given time frame. The mentioned selection and detection procedure has been performed to
target only invalid test cases. To insure about mentioned criteria, the test case selection algorithm is
introduced and shown as follows:

Algorithm: SelectTestCase (S, S(F), ValidInput. ValidOutput) : S(F)’
Input: S. S’ the original/enhanced test suite,
S(F) A false test suite created to test S
Output: S(F)’- Subset of S(S’) selected for executing S(F)

begin
S(F)’=Ø

i = 1
B = Build SF from S
d = Select false test cases from S(F)
while NOT end of log file (S(F))

begin
(Continued)



642 CMC, 2022, vol.72, no.1

Algorithm: Continued
select di

case S1 (ValidInput = FALSE) and (ValidOutput = TRUE):
begin

Bsi = build SF from S
If InvokeProcedureCall (S, Ssi)a

break;
else if NonRedundantTestCase (di, S(F)’ b)

break:
else S(F)’ = S(F)’ + di

end
case S2 (ValidInput = FALSE) and (ValidOutput = TRUE):

begin
if NonRedundantTestCase (di, S(F), S(F)’b)

break;
else S(FY = S(F) + di,
end

case S3 (ValidInput = FALSE) and (ValidOutput = TRUE):
begin

d(S) = d(S)’ + di

End
i = i + 1
end

Return S(S)’
end

Although a ValidInput is recognized will be justified for the upcoming test suite and will remain
the same as the part of the major (SF) original and modified suite. Therefore a false and enhanced test
suite has been generated to check the redundancy for the next iteration. However, this procedure will
continue unrestrictedly for every fault test case until the method completes its detection finally.

The process of ValidInput and ValidOutput are non-compulsory of the recommended method
which demanded to be input. Furthermore, the original input of the test suite (SF) and modified input
(S’) will be responsible for result of false test cases within the given time frame and test suite.

Overall, four iterations have been performed for 50, 100, 150, 200 test cases by followed the process
mentioned in Figs. 3, 4. We can see in Figs. 5 to 8 how efficiently time has been reduced by using RTCS
algorithm, where results are well described in Tab. 1 for further analysis.

Tab. 2 shows the average calculation time for the TC selection phase as per Fig. 3 framework and
compared with the HWOA approach using average ratio time.



CMC, 2022, vol.72, no.1 643

Figure 5: 50 Test cases

Figure 6: 100 Test cases

Figure 7: 150 Test cases



644 CMC, 2022, vol.72, no.1

Figure 8: 200 Test cases

Table 1: Stepwise execution plan

Input Test case selection Data from the selected database, API and interface
Output An efficient test suite to execute after selection and detection modified test cases
Begin

Step 1: Test case selection using test case selection mapping rules
Step 2: Divide Test Suite Selection and detection test suites
Step 3: Insert test cases into the selected database to select modified test cases
Step 4: Apply change detection algorithm against selected modified test cases to
exclude duplicate/fault detector and already executed test cases from the modified test
suite.
Step 5: send the request to detect the modified test cases.
Step 6: Receive a response for the selected and modified changes from the test suite
Step 7: calculate time against of selected and detected unique test cases from modified
test suite.
Step 8: perform analysis to compare with HWOA approach on the expected result

End

Table 2: Test case selection time

Approaches Test cases

50 TC 100 TC 150 TC 200 TC

RTCS (avg time) 5 9 14 19
HWOA (avg time) 8 14 20 24



CMC, 2022, vol.72, no.1 645

4.4 Change Detection Algorithm

Meanwhile the modified test suite (SF) produced from the recommended approach after excluding
redundant fault detectors and already executed test cases from (S). (SF) is a set of false and redundant
test cases that need to be associated with false test case in (TS) with the same test cases numbers as
compare to HWOA. A proposed procedure named the “ChangeDetectorTestCase” algorithm is as
follows:

Algorithm: NonRedundantTestCase (TS): TRUE or FALSE
Input ti- Mark false test case,
Input �timeh- Calculate Execution time,

S(F)’- Subset of (S) selected for executing �timeh ’
Output: TRUE when t is not redundant pathway, ELSE proceeds FALSE

begin
k = 1
Cti = Generate SF from Si

tj = Detect false test cases k from SF’
Cj = Construct TS from Sj

while (NOT end of (SF) and (Cti <> Cj)
begin

j = j + 1
�timeh = �timeh + 1
Sj = Detect a false test j from (SF)’
C = Construct TS from SF

End
if (Cti == (Cj,)

Return TRUE
Return �timeh

Else Return FALSE
end

Lastly, the result will be a decreased test suit (TS) size within given time frame. Following are the
results for the execution of the mentioned algorithm in four iterations. It shows how our technique
reduces the time by splitting test case selection in the first phase compared to the HWOA technique.
Results indicates its benefits in terms of detecting case and false test suite SF can be squeezed to
generate an optimized test suite. Finally, the modified (TS) will be produced after applying multiple
filters to exclude duplicate test cases to redundancy and cases which are already executed in test suite
(SF). Finally, TS with given time Return �time and the results are presented as follows:

Maximum four iterations have been performed for 50, 100, 150, 200 test cases for change detection
by followed the process mentioned in Figs. 3, 4. We can see in Figs. 9 to 12 how proficiently time has
been reduced using a change detection algorithm where results are well described in Tab. 2 for further
analysis.

Tab. 3 explains the average calculation time for change detection phase for modified test cases as
per Fig. 3 framework and well compared with HWOA approach using average ratio time. The test case
selection and change detection algorithm can tackle the low, medium and high volume number of test
cases.



646 CMC, 2022, vol.72, no.1

Figure 9: 50 Test cases

Figure 10: 100 Test cases

Figure 11: 50 Test cases

Our approach have the ability to select only modified and approved test cases repetition problems
in regression testing as well as this approach able to have an enhanced regression test testing to reduce
time and improve precision within given timeframe.



CMC, 2022, vol.72, no.1 647

Figure 12: 50 Test cases

Table 3: Test case selection time

Approaches Test cases

50 TC 100 TC 150 TC 200 TC

RTCS (avg time) 2 5 8 10
HWOA (avg time) 5 9 11 14

5 Threats to Validity

The purpose of regression testing is to ensure that software satisfies the requested customer
requirements [21,39,40]. In this section, some of the possible threats to validity of results of this study
have been discussed. Corrupted data or incorrect program execution in ASP.NET, SQL server man-
agement and API’s test cases are actual threats in internal validity in this research. The experimental
procedure is implemented in ASP.NET 3.5 framework installed on a pc with Intel @ Court i7-3770
CPU @ 3.40 GHz 3.40 GHz installed with 16 GB ram. The conclusion of this research is consistent
but there is a possibility of validity and bias threats for the regressing based blackbox testing against
selected test cases to create test suite of selection, conduct analysis, experimental setup process or result
phase of the study. Therefore, in regression testing has some fundamental concerns like effectiveness
and accuracy in test case selection and change detection with consistency. The proposed algorithm to
recognize the primary study is concluded by deliberating bias, external validity and internal validity
suggested and suggested by Berk et al. [41]. For further validation, the unambiguousness of the
proposed study will contribute to evaluating the reliability of the effects results for the researchers. The
regression test case selection and change detection results determine that this study’s justification is
vital and needs more attention, as discussed in the introduction section. In the foregoing, an enhanced
regression test case selection and change detection approach need more concentration for integrity,
security, interoperability and inconsistencies of regression testing [42].

There is the probability to avoid some studies for the reason that of grey areas of study related
to regression test case selection, such as the contribution of solution techniques and the relationship
between test case selection and change detection, testing techniques and testing levels. This study is
connected with numerous software testing group of people, quality assurance, information systems,
service oriented architecture (SOA), and web service testing. An enhanced regression testing approach
to select test suite persistent uncertainty in quality parameters selection and detection to determine



648 CMC, 2022, vol.72, no.1

appropriate and sensitive quality attributes such as time and efficiency are essential, which put the
business of the software industry at stake.

6 Conclusion

The main goal of regression test case selection and detection of the modified change approach
is to select a test suit that determines quality parameters such as time and efficiency are important
to improve regression testing techniques. The result evaluation shows that the analysis efficiently
identifies how by splitting the test case selection and detecting modified changes to reduce TCS time
in three phases. (A) The analysis or exploration phase selects TC for a retest based on test case
modifications, (B) the detection of actual change for modified test cases and (C) the collection phase
calculation of the time of selection material from the running test suite version. Our proposed approach
significantly reduces TCS execution time by following the mentioned three phases to getting expected
results and improves the TCS technique within the given time frame. Our proposed approach decreases
the execution time and redundancy of the duplicate TC and detects only modified changes. Therefore,
selecting test suite persistent uncertainty in quality parameters selection and detection to determine
appropriate and sensitive quality attributes such as efficiency and accuracy is also important, which
puts the software industry’s business at stake. For future research, an enhanced regression testing
approach needs more concentration for performance, accuracy, security, and re-usability of regression
testing.

Funding Statement: This work was supported in part by the Research Management Center
(RMC), Universiti Teknologi Malaysia (UTM) and Ministry of Higher Education Malaysia
(MOHE) through the UTM High Impact Research (UTMHR) grant scheme under (Vot Number
Q.J130000.2451.08G55).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] V. Garousi, R. Özkan and A. Betin-Can, “Multi-objective regression test selection in practice: An empirical

study in the defense software industry,” Information and Software Technology, vol. 103, pp. 40–54, 2018.
[2] R. Kazmi, D. Jawawi, R. Mohamad and I. Ghani, “Effective regression test case selection: A systematic

literature review,” ACM Computing Surveys (CSUR), vol. 50, no. 2, pp. 1–32, 2017.
[3] S. Khan, S. Lee, N. Javaid and W. Abdul, “A systematic review on test suite reduction: Approaches,

experiment’s quality evaluation, and guidelines,” IEEE Access, vol. 6, pp. 11816–11841, 2018.
[4] B. Guan, Y. Zhao and Y. Li, “An improved ant colony optimization with an automatic updating mechanism

for constraint satisfaction problems,” Expert Systems with Applications, vol. 164, pp. 114021, 2021.
[5] W. Lewis, “Prepare for the next spiral (Act),” in Software Testing and Continuous Quality Improvement,

Auerbach Publications, New York, USA, pp. 251–260, 2017.
[6] C. Zhu, O. Legunsen, A. Shi and M. Gligoric, “A framework for checking regression test selection tools,” in

IEEE/ACM 41st Int. Conf. on Software Engineering (ICSE), Montreal, QC, Canada, IEEE, pp. 430–441,
2019.

[7] D. Pradhan, S. Wang, S. Ali and T. Yue, “Search-based cost-effective test case selection within a time budget:
An empirical study,” in Proc. of the Genetic and Evolutionary Computation Conf., Boston, USA, vol. 2016,
pp. 1085–1092, 2016.

[8] W. Linden and H. Ren, “A fast and simple algorithm for Bayesian adaptive testing,” Journal of Educational
and Behavioral Statistics, vol. 45, no. 1, pp. 58–85, 2020.



CMC, 2022, vol.72, no.1 649

[9] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization: A survey,” Software
Testing, Verification and Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[10] D. Pradhan, S. Wang, S. Ali, T. Yue and M. Liaaen, “CBGA-ES: A cluster-based genetic algorithm with
elitist selection for supporting multi-objective test optimization,” in IEEE Int. Conf. on Software Testing,
Verification and Validation (ICST), Tokyo, Japan, IEEE, pp. 367–378, 2017.

[11] A. Ngah, M. Munro, Z. Abdullah, A. Jalil and M. Abdallah, “Regression test selection model: A
comparison between ReTSE and pythia,” TELKOMNIKA (Telecommunication Computing Electronics and
Control), vol. 17, no. 2, pp. 844–851, 2019.

[12] A. Agrawal, A. Choudhary and A. Kaur, “An effective regression test case selection using hybrid whale
optimization algorithm,” International Journal of Distributed Systems and Technologies (IJDST), vol. 11,
no. 1, pp. 53–67, 2020.

[13] P. Mishra and L. Singh, “Test case selection for regression testing of applications using web services based
on wsdl specification changes,” in Int. Conf. on Computing, Communication & Automation, Greater Noida,
India, IEEE, pp. 908–913, 2015.

[14] A. Mustafa, W. Kadir and I. Ibrahim, “Comparative evaluation of the state-of-art requirements-based
test case generation approaches,” International Journal on Advanced Science, Engineering and Information
Technology, vol. 7, no. 4–2, pp. 1567–1573, 2017.

[15] O. Legunsen, F. Hariri, A. Shi and Y. Lu, “An extensive study of static regression test selection in modern
software evolution,” in Proc. of the 24th ACM SIGSOFT Int. Symp. on Foundations of Software Engineering,
Auckland, Newzealand, pp. 583–594, 2016.

[16] A. Choudhary, A. Prakash and A. Kaur, “An effective approach for regression test case selection using
pareto based multi-objective harmony search,” in Proc. of the 11th Int. Workshop on Search-Based Software
Testing, New York, USA, pp. 13–20, 2018.

[17] G. Guizzo, J. Petke, F. Sarro and M. Harman, “Enhancing genetic improvement of software with regression
test selection,” in IEEE/ACM 43rd Int. Conf. on Software Engineering (ICSE), Madrid, Spain, IEEE, pp.
1323–1333, 2021.

[18] A. Mustafa, W. Kadir and N. Ibrahim, “Automated test case generation from requirements: A systematic
literature review,” Computers Materials & Continua, vol. 67, no. 2, pp. 1819–1833, 2021.

[19] M. Harman, Y. Jia and Y. Zhang, “Achievements, open problems and challenges for search based software
testing,” in IEEE 8th Int. Conf. on Software Testing, Verification and Validation (ICST), Graz, Austria,
IEEE, pp. 1–12, 2015.

[20] M. Refai, W. Cazzola and S. Ghosh, “A fuzzy logic based approach for model-based regression test
selection,” in 2017 ACM/IEEE 20th Int. Conf. on Model Driven Engineering Languages and Systems
(MODELS), Austin, TX, USA, IEEE, pp. 55–62, 2017.

[21] M. Gligoric, L. Eloussi and D. Marinov, “Practical regression test selection with dynamic file dependen-
cies,” in Proc. of the Int. Symp. on Software Testing and Analysis, New York, USA, pp. 211–222, 2015.

[22] W. Zheng, R. Hierons, M. Li, X. Liu and V. Vinciotti, “Multi-objective optimisation for regression testing,”
Information Sciences, vol. 334, pp. 1–16, 2016.

[23] M. Khatibsyarbini, M. Isa, D. Jawawi and R. Tumeng, “Test case prioritization approaches in regression
testing: A systematic literature review,” Information and Software Technology, vol. 93, pp. 74–93, 2018.

[24] D. Panwar, P. Tomar and V. Singh, “Hybridization of Cuckoo-ACO algorithm for test case prioritization,”
Journal of Statistics and Management Systems, vol. 21, no. 4, pp. 539–546, 2018.

[25] K. Wang, C. Zhu, A. Celik and J. Kim, “Towards refactoring-aware regression test selection,” in
IEEE/ACM 40th Int. Conf. on Software Engineering (ICSE), Gothenburg, Sweden, IEEE, pp. 233–244,
2018.

[26] O. Banias, “Test case selection-prioritization approach based on memoization dynamic programming
algorithm,” Information and Software Technology, vol. 115, pp. 119–130, 2019.

[27] A. Bertolino, G. Angelis and F. Lonetti, “Governing regression testing in systems of systems,” in IEEE Int.
Symp. on Software Reliability Engineering Workshops (ISSREW), Berlin, Germany, IEEE, pp. 144–148,
2019.



650 CMC, 2022, vol.72, no.1

[28] L. Souza, R. Bastos, C. Prudêncio and F. Barros, “A hybrid particle swarm optimization and harmony
search algorithm approach for multi-objective test case selection,” Journal of the Brazilian Computer
Society, vol. 21, no. 1, pp. 1–20, 2015.

[29] M. Machalica, A. Samylkin, M. Porth and S. Chandra, “Predictive test selection,” in IEEE/ACM 41st Int.
Conf. on Software Engineering: Software Engineering in Practice (ICSE-SEIP), Montreal, Canada, IEEE,
pp. 91–100, 2019.

[30] S. Harikarthik, V. Palanisamy and P. Ramanathan, “Optimal test suite selection in regression testing with
testcase prioritization using modified ann and Whale optimization algorithm,” Cluster Computing, vol. 22,
no. 5, pp. 11425–11434, 2019.

[31] M. Kargar and A. Hanifizade, “Automation of regression test in microservice architecture,” in 4th Int.
Conf. on Web Research (ICWR), Tehran, Iran, IEEE, pp. 133–137, 2018.

[32] F. Delavernhe, T. Saber, M. Papadakis and A. Ventresque, “A hybrid algorithm for multi-objective test
case selection in regression testing,” Congress on Evolutionary Computation, Rio de Janeiro, Brazil, IEEE,
pp. 101–108, 2018.

[33] M. Beleová, Z. Kotásek and T. Hruka, “Application of evolutionary algorithms for regression suites
optimization,” in IEEE 18th Int. Symp. on Design and Diagnostics of Electronic Circuits & Systems,
Belgrade, Serbia, IEEE, pp. 91–94, 2015.

[34] S. Sahoo and A. Ray, “A framework for optimization of regression testing of web services using slicing,”
in 2017 Int. Conf. on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India,
IEEE, pp. 1017–1022, 2017.

[35] L. Chen and L. Zhang, “Speeding up mutation testing via regression test selection: An extensive study,” in
2018 IEEE 11th Int. Conf. on Software Testing, Verification and Validation (ICST), Gothenburg, Sweden,
IEEE, pp. 58–69, 2018.

[36] L. Zhang, “Hybrid regression test selection,” in 2018 IEEE/ACM 40th Int. Conf. on Software Engineering
(ICSE), Gothenburg, Sweden, IEEE, pp. 199–209, 2018.

[37] G. Gay, “The fitness function for the job: Search-based generation of test suites that detect real faults,”
in 2017 IEEE Int. Conf. on Software Testing, Verification and Validation (ICST), Tokyo, Japan, IEEE, pp.
345–355, 2017.

[38] A. Shi, P. Zhao and D. Marinov, “Understanding and improving regression test selection in continuous
integration,” in IEEE 30th Int. Symp. on Software Reliability Engineering (ISSRE), Berlin, Germany, IEEE,
pp. 228–238, 2019.

[39] S. Mansky and E. Gunter, “Safety of a smart classes-used regression test selection algorithm,” Electronic
Notes in Theoretical Computer Science, vol. 351, pp. 51–73, 2020.

[40] S. Khatib, “Optimization of path selection and code-coverage in regression testing using dragonfly
algorithm,” in Int. Conf. on Information Technology (ICIT), Amman, Jordan, IEEE, pp. 919–923, 2021.

[41] R. Berk, L. Brown, A. Buja, K. Zhang and L. Zhao, “Valid post-selection inference,” The Annals of
Statistics, vol. 41, pp. 802–837, 2013.

[42] M. Jeong and H. Zo, “Preventing insider threats to enhance organizational security: The role of
opportunity-reducing techniques,” Telematics and Informatics, vol. 63, pp. 101670, 2021.


	Improved Test Case Selection Algorithm to Reduce Time in Regression Testing
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Proposed Solution
	5 Threats to Validity
	6 Conclusion


