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Abstract: There is a growing interest in the study development of artificial
intelligence and machine learning, especially regarding the support vector
machine pattern classification method. This study proposes an enhanced
implementation of the well-known whale optimisation algorithm, which com-
bines chaotic and opposition-based learning strategies, which is adopted for
hyper-parameter optimisation and feature selection machine learning chal-
lenges. The whale optimisation algorithm is a relatively recent addition to the
group of swarm intelligence algorithms commonly used for optimisation. The
Proposed improved whale optimisation algorithm was first tested for stan-
dard unconstrained CEC2017 benchmark suite and it was later adapted for
simultaneous feature selection and support vector machine hyper-parameter
tuning and validated for medical diagnostics by using breast cancer, diabetes,
and erythemato-squamous dataset. The performance of the proposed model is
compared with multiple competitive support vector machine models boosted
with other metaheuristics, including another improved whale optimisation
approach, particle swarm optimisation algorithm, bacterial foraging optimi-
sation algorithms, and genetic algorithms. Results of the simulation show that
the proposed model outperforms other competitors concerning the perfor-
mance of classification and the selected subset feature size.

Keywords: Whale optimisation algorithm; chaotic initialisation; opposition-
based learning; optimisation; diagnostics

1 Introduction

Constructing algorithms to solve non-deterministic polynomial time hard problems (NP-hard)
is not typically hard to do. However, executing such an algorithm can, in extreme cases, take
thousands of years on contemporary hardware. Such problems are regarded as nearly impossible to
solve with traditional approaches for finding a deterministic algorithm. Metaheuristics, as stochastic
optimisation approaches, are useful for solving such problems. These approaches do not guarantee an
optimum solution. Instead, they provide tolerable sub-optimal outcomes in a reasonable amount of
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time [1]. The optimisation process aims to discover a solution that is either optimum or near-to-optimal
regarding the stated goals and given constraints. Since the turn of the century, many population-
based stochastic metaheuristics have been developed to address challenging optimisation issues in both
combinatorial and global optimisation [2].

Stochastic population-based metaheuristics begin the search process using a set of random points,
but the process is led and directed by some mechanism from iteration to iteration. Natural systems and
processes can be used to inspire the concepts that underpin the search mechanism. Some algorithms,
such as genetic algorithms (GA) frequently become trapped in local optima. Hybridisation is one
method for overcoming the aforementioned difficulties with metaheuristics.

The hybridisation should not be based on a random mix of hybridising algorithms, but rather on a
specific analysis of the benefits and drawbacks of each method. Under some situations, the drawback
of one algorithm (slow convergence, tendency to quickly become trapped in the local optimum, etc.)
is overcome by combining with the structural portion of other algorithms. This can help fix common
issues of the original optimal solution search method.

In contrast to deterministic optimisation methods that ensure the optimum answer, heuristic
algorithms aim to discover the best possible solution, without ensuring that the optimal solution
is obtained [3,4] Many practical and benchmarking problems cannot be solved using deterministic
approaches as their solving is dawdling. Since heuristic algorithms are robust, academics worldwide
have been interested in their improvement. This has led to the development of metaheuristics for a
variety of problems. Metaheuristics is used to create heuristic techniques for solving different kinds of
optimisation problems. Two main groups of metaheuristics are those which are inspired and which are
not nature-inspired. Metaheuristics inspired by nature can be additionally categorised as evolutionary
algorithms (EA) and swarm intelligence. Swarm intelligence has recently become a major research
field and they are proven as methods that are able to achieve outstanding results in different fields of
optimisation [5–8].

Besides metaheuristics, machine learning is another important domain of artificial intelligence.
Notwithstanding good performance of machine learning models for various classification and regres-
sion tasks, there are still some challenges from this domain that should be addressed. Among two
most important challenges are feature selection and hyper-parameters’ optimisation. Performance
of machine learning models to the large extend depend on the un-trainable parameters, which are
known as the hyper-parameters and finding optimal or suboptimal values of such parameters for
concrete problem is NP-hard task itself. Moreover, machine learning models utilize large datasets
with many features and typically only subset of such features has significant impact on the target
variable. Therefore, the goal of feature selection is to choose a subset of features and to eliminate
redundant ones.

Study shown in this article proposes a new approach based on the well-known whale optimisa-
tion algorithm (WOA), which belongs to the group of swarm intelligence metaheuristics. Proposed
improved WOA was first tested for standard unconstrained CEC2017 benchmark suite and it was
later adapted for simultaneous feature selection and support vector machine (SVM) hyper-parameter
tuning and validated for medical diagnostics by using breast cancer, diabetes, and erythemato-
squamous datasets. The contributions of this research are twofold. First, an improved version of
the WOA, that addresses known deficiencies of the basic version by implementing the concepts of
chaotic initialisation and opposition-based learning (OBL), and by incorporating the firefly search
(FS), has been proposed, Second, proposed method was adopted for simultaneously optimisation
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of SVM hyper-parameters and feature selection and achieved better performance metrics than other
contemporary classifiers for three medical benchmark datasets.

The rest of the manuscript is structured as follows. Section 2 presents an overview of the recent
swarm intelligence applications. Section 3 introduces the WOA metaheuristics, their improvements,
and proposes the hybrid SVM optimisation approach. Section 4 exhibits the experimental findings and
the discussion. The last section brings the final remarks, proposes a future work, and concludes the
article. The authors hope to provide an accurate feature detection method used for their diagnostics.

2 Background and Related Work

Swarm intelligence is based on natural biological systems, and function with a population of self-
organising agents who interact with one another locally and globally with their environment. Although
there is no central component that governs and directs individual behaviour, local interactions between
agents result in the formation of globally coordinated behaviour. The swarm intelligence algorithm can
produce quick, inexpensive and high-quality solutions for challenging optimisation problems [9].

In swarm intelligence algorithms, a swarm is a population consisting of simple homogeneous
agents. The swarm might have direct or indirect interactions. Direct interactions refer to audio or visual
situations, touch, etc. In indirect interactions, agents are affected by the environment and changes
made to it, which can be a result of other agents’ actions, or from external influences.

The operators of evolutionary algorithms, notably selection, crossover and mutation, also employ
swarm metaheuristics. The crossover operator is employed to look for quicker convergence in a single
sub-domain. Mutations help avoid local optima and are used for random searching. The selection
operator enables the system to move to the desired conditions.

Popular implementations of swarm intelligence algorithms are the particle swarm algorithm (PSO)
[10], the ant colony optimisation (ACO) algorithm [11], the wasp swarm (WS) algorithm [12], the
stochastic diffusion search (SDS) algorithm [13], the artificial bee colony (ABC) algorithm [14],
the firefly search (FS) algorithm [15], whale optimisation algorithm (WOA) [16], the multi-swarm
optimisation (MSO) algorithm [17], the krill herd (KH) algorithm [18], the dolphin echolocation (DE)
algorithm [19], etc. Each of these algorithms, as well as many others which fall into this category, have
strengths and weaknesses for different optimisation problems. One algorithm may outperform the
other when applied to one problem and significantly under perform on another.

As already noted in Section 1, swarm intelligence has seen successful application to different areas
of optimisation. Research proposed introduces a variety of the swarm intelligence algorithm, tested
on Himmelblau’s nonlinear optimisation and speed reducer design problems, and used to attempt
to solve problems such as the travelling salesman problem, the robot path planning problem etc.
The study presented in [20] reviews earlier works and concludes that there is strong applicability
of swarm intelligence algorithms for solving complex practical problems. Authors give overviews of
the application of the swarm intelligence algorithm for swarm robotics. A chapter in [21] presents
interesting insights and predictions about the use of the swarm intelligence algorithm for swarm
robotics in the future. Study presented in [22] provides detailed reviews of the swarm intelligence
algorithm and its practical implementation, from early conceptions in the late 80s onward. Aside from
application in robotics, swarm intelligence algorithms have found application in computer networks
[23,24], power management [25], engineering [26,27], Internet of things [28], social network analysis
[29], medical diagnostics [30,31], data mining [32], etc.
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Algorithms such as PSO and GA are known to get trapped in sub-optimal search space regions.
Algorithms based on maritime animal behaviour are a relatively recent addition to the field of swarm
intelligence algorithm research. Aside from the WOA, there are several notable algorithms reported
in the literature, inspired by animal behaviour. Review [33] gives a review of other evolutionary
algorithms inspired by animals for a specific problem optimisation. However, their review covers a
range of maritime animal-inspired algorithms. Study [34] gives an overview of other animal behaviour
inspired algorithms, not limited to maritime animals. Research proposed in [35] modifies the salp
swarm algorithm optimisation [36,37], based on the salps sailing and foraging behaviour. Work
presented introduces a dolphin inspired swarm optimisation algorithm with mimics the dolphins
hunting technique, using their available senses. Research presented in demonstrates an optimisation
algorithm modification on five real-life engineering problems, etc.

In recent years, SI was frequently applied in different scientific fields with promising results,
usually targeting NP-hard problems from the fields of computer science and information technology.
Applications include global numerical optimisation problem wireless sensor network efficiency [38],
localisation and prolonging the overall lifetime [39,40] and cloud task scheduling [41,42].

Finally, swarm intelligence has also been successfully combined with machine learning models
and in this way hybrid methods were devised. Some example of such approaches include: training and
feature selection of artificial neural network (ANN) [43–49], assisting prediction of COVID-19 cases
[50,51], hyper-parameters tuning [52–54] etc.

3 Proposed Methodology

The methodology of this research can be expressed in seven steps, of which the first step was
performed manually when all input datasets were acquired from different sources, and the second-to-
last step was also automated for the ease of multiple re-runs when needed, like others those before it,
but its execution is done manually upon successful completion of the following steps:

� Download and normalise the datasets;
� Randomly split the datasets into 10 sets of training and testing data;
� Execute the optimisation algorithm for the given number of iterations;
� Randomly split the originally downloaded datasets into 10 new validation sets;
� Perform predictions with the trained model using the validation sets;
� Evaluate the prediction results;
� Compare results of this study to results from previous research.

3.1 Overview of Basic Whale Optimisation Algorithm

Whales are highly intelligent animals that have twice the number of brain cells similar to human
spindle cells, which are responsible for emotions, decision making and social behaviour. Whales are
often found in social groups, of families. Most whales prey on fish. Fish are much faster than whales.
Because of this, some whales have developed a hunting method that allows them to hunt schools of
fish. This method is often called the bubble-net feeding method. Researchers have found two variations
of this method, which whales use. A part of this method is an approach where whales encircle their
prey in a spiral manoeuvre. They dive down below the school of fish and start circling in a spiral path,
slowly working their way to the surface, all the while creating a wall of bubbles above their traversed
path. This wall of bubbles directs fish in an ever-smaller area as the circular path becomes smaller and
smaller. Finally, the whale can capture large parts of the school as it reaches the surface. Whales do
not know where the school of fish is located, ahead of time. This method helps them locate the fish



CMC, 2022, vol.72, no.1 963

after the manoeuvre. This feeding method is a direct inspiration of the WOA, which is mathematically
modelled and used to perform optimisation [55]. This method can be used to search for the optimal
location within the search space, and can be presented by these equations:

�X(t + 1) = −→
Xp(t) − �A · D (1)

D = |�B ⊗ −→
Xp(t) − �X(t)| (2)

�A = 2a�r − a (3)

�B = 2�r (4)

a = 2 − 2t
tmax

(5)

In Eqs. (1)–(5), ⊗ is an element-wise multiplication operator, t is the current iteration,
−→
Xp and �Xare

current position vectors of the best-known solution and the position vector, �r is a random vector, �A
and �B are coefficient vectors, a is a control parameter, and tmax is the maximum number of iterations.
This model can be applied to an n-dimensional search space and it has two mechanisms, with equal
probability of utilisation. The first is the shrinking encircling manoeuvre and the second is the spiral
updating position manoeuvre. The former is achieved by linearly decreasing the control parameter a
from 2 to 0 over the course of iterations, while the latter is achieved by calculating the distance between
the whale and its prey, according to the equation for the distance.

�X(t + 1) = −→
D′ ebl cos 2π l + −→

X ∗(t) (6)

In Eq. (6),
−→
D′ is the smallest distance between the whale and its prey so far, b is a constant value

determining the shape of the logarithmic spiral, and l is a random value in [−1, 1]. X ∗is the best agent
in the current iteration t. As mentioned before, the two mechanisms are used with equal probability
based on a random number in [0, 1], according to:

�X(t + 1) =
{ −→

X ∗(t) − �A · D, p < 0.5−→
D′ ebl cos 2π l + −→

X ∗(t), p ≥ 0.5
(7)

By assigning random values to �A in ranges [−∞, −1] and [1, +∞] an optimal solution search can
be performed. In this search behaviour, a random whale is selected, instead of the one with the best
search performance. This allows the WOA to search for a global optimum. This can be expressed as:

D = |�B ⊗ −→
Xr(t) − �X(t)| (8)

�X(t + 1) = −→
Xr(t) − �A · D (9)

In Eqs. (8) and (9),
−→
Xr is a random vector representing a random whale from the current

population.

The pseudo-code of the WOA can be found in a paper whereas a modified WOA with simultaneous
hyper-parameter tuning is implemented.

The model representing this experimental setup is further explained in the model section. The
proposed model balances the searching and utilising features of the algorithm. These results can be
further improved by using multi-swarm mechanisms, as reported in the original paper. In addition to
this modification, the paper suggests modifying the population generation process. Instead of using a
random feature selection for each agent in a population, it suggests generating the population-based
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on chaos theory. In this approach, a chaos progression, sensitive to initial conditions, is used to modify
the best agents from the previous population when generating the next population.

This can be achieved by introducing a self-adapting chaotic disturbance mechanism, expressed as:
−→
Xg = −→

X ∗ + R · Chaos (10)

In Eq. (10), Chaos represents the chaos value, and R is used to ensure a better balance between
the algorithm’s searching and utilising features. R is decreased from 1 to 0 in each of the iterations.
This population generation method was proven to give better performances [56–59].

3.2 Drawbacks of the Original WOA and Proposed Improved Method

The basic WOA implementation has impressive performances, and it is considered to be a very
powerful optimiser. However, the extensive experimentations with different benchmark functions
sets have revealed drawbacks that can hinder the performances of the WOA under some circum-
stances. Namely, the basic WOA suffers from scarce exploration and inappropriate intensification-
diversification trade-off, which can limit the algorithm’s power to explore different promising areas of
the search domain and lead to getting stuck in the local optima. Consequently, in some runs, the basic
WOA will not converge to the optimal areas of the search domain, obtaining poor mean values. To
address these deficiencies, the proposed enhanced WOA metaheuristics incorporate three mechanisms:
chaotic population initialisation, OBL, and FS [60].

The first proposed enhancement is the chaotic population initialisation, which was first proposed
in [61]. The majority of the metaheuristics depend on random generators, but recent publications
suggest that the search can be more intense if chaotic sequences are utilised Numerous chaotic maps
exist today, including circle, Chebushev, iterative, sine, tent, logistic, singer and many more. After
thorough experimentations with all mentioned maps, the most promising results were obtained with
a logistic map, which has been consequently chosen for implementation in WOA.

The second mechanism that was incorporated in the proposed modified WOA is OBL, first
introduced in [62]. The OBL procedure gained popularity fast as it can significantly improve both
intensification and diversification processes. The OBL procedure is applied in two stages, first when the
initial population is spawned and when a new population is spawned after completing the evaluation
and finding the best agent X ∗ of the finished iteration. Since the population P is a set containing a
number of agents X , it can be said that P = (X1, X2, . . . Xn), where n is the number of all agents in a
single population. As each agent represents an attempted solution (s1, s2, . . . sN), of N solutions, for a
set of parameters (p1, p2, . . . pM), optimised for M dimensions, at every given iteration t, a population
contains agents with features for optimisation of a combination of parameters for a given solution.
Creating agents can be expressed as:

Xs,p = φ (up − lp) + lp (11)

In Eq. (11), lp and up are lower and upper bounds of the parameter p dimensions, while φ represents
a pseudo-random value. To ensure chaotic initialisation, using the OBL procedure, for every generated
agent, another one is generated for the opposite p dimension of the original Xs. This guarantees a
chaotic component and this process can be described with the following expression:

X o
s,p = lp + up − Xs,p (12)
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In Eq. (12), X o
s,p is an agent for the opposite parameter dimension p, created for the original agent

Xs,p. As a result of creating a complementary set of opposing agents, an oppositional population Po

is created, which is comprised of oppositional agents, and is hence defined as Po = (X o
1 , X o

2 , . . . X o
n ),

where each X o
i is a single agent created in opposition to the original Xi. Both populations are merged

into a single one:

P ← P ∪ Po (13)

In Eq. (13), the new population becomes the original population P, afterwards joined with the
opposing population Po. This union represents the new population of agents for the next iteration.

To incorporating the FS mechanism in the proposed modified WOA, �X(t + 1) is updated for a
given solution s, denoted as

−→
Xs(t + 1), according to the following expression:

−→
Xs(t + 1) = −→

Xs(t) + β0

1 + γ rs,p
2
(
−→
Xp − −→

Xs) + α(κ − 0.5) (14)

In Eq. (14), κ is a generalised Gaussian distribution, α is a control parameter of the FS mechanism,
whose dynamic change guarantees improved performance. It is gradually decreased from the initial
value, down to its minimum, over the course of the iterations. Parameters β0 and γ are control
parameters of randomisation.

−→
Xs is the current candidate solution agent,

−→
Xp is another candidate

with a modification of one or more parameters, rs,p is the distance between those two candidate agents,
which is calculated as:

rs,p=‖−→Xs − −→
Xp‖=

√√√√ |P|∑
i=1

(Xs,i − Xp,i)
2 (15)

In Eq. (15), the distance is calculated for each dimension of the given solution s and parameter p
on all agents of the population, where |P| is the number of agents in the population.

Inspired by introduced enhancements, proposed method is named chaotic oppositional WOA with
firefly search (COWOAFS-SVM).

The proposed modified WOA can be expressed with the pseudo-code depicted in Algorithm 1.

Algorithm 1: The COWOAFS-SVM pseudo-code
Initialize required control parameters α, β0 and γ for the FA.
P ← Initialisation of the starting population of agents.
Po ← Chaotic initialisation of the opposing population, based on the original population P.
P ← ∪ Po, join both populations into a single and evaluate each agent.
X ∗ ← Obtain the best agent using the fitness function.
while j < tmax do
α ← According to Eq. (5).
for each agent do
X(t + 1) ← According to Eqs. (7) or (9), dependent on A (per Eq. (3)).
end for
Evaluate X(t + 1)and update X ∗, using the fitness function.

P ← Spawn and mutate population, based on X ∗, according to Eqs. (10)–(13).
end while
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Experimental result cross-validation analysis is performed. These results are averaged to attain
the result for each of the datasets and aggregated by each of the features of these datasets. Results
are presented in the experimental results section and further explained in the discussion section of the
paper.

4 Experimental Setup, Comparative Analysis and Discussion

For this research, the original algorithm and the algorithm created using the meta-heuristic
approach with feature selection and simultaneous hyper-parameter tuning driven by the modified
swarm intelligence algorithm are evaluated. This approach was proven to give favourable results
in earlier research. Finally, both these algorithms were tested using 30 standard unconstrained
benchmarking functions. To test the modified algorithm, first a set of standard benchmark functions
retrieved from the well-known Congress on Evolutionary Computation (CEC) benchmark function
suite, and afterwards, the proposed method vas validated for SVM hyper-parameter tuning and feature
selection. In both experiments, proposed improved WOA was tested with the parameters as suggested
in the original paper.

4.1 Standard CEC Function Simulations

The proposed method is tested on a set of standard bound-constrained benchmarks from the
CEC benchmark suite [63]. Statistical results of these benchmarks are presented in the results section.
Functions with a single global optimum (F1–F7) are used to evaluate the capability of exploitation.
Functions with many local optimums (F8–F23) are used to evaluate the capability of exploration.
Functions (F24–F29) are used to evaluate the algorithms ability to escape local minima, as they are
a set of very challenging functions. The proposed algorithm was run 30 times for each benchmark
function, every time with a different population. Algorithms included in comparative analysis were
implemented for the purpose of this study and tested with default parameters. Opponent algorithms
include: Harris hawks’ optimisation (HHO) [64], improved HHO (IHHO) [65], differential evolution
(DE) [66], grasshopper optimisation algorithm (GOA) [67], grey wolf optimizer (GWO) [68], moth-
flame optimisation (MFO) [69], multi-verse optimizer (MVO) [70], particle swarm optimisation (PSO),
whale optimisation algorithm (WOA), sine cosine algorithm (SCA) [71] and firefly algorithm (FA).

This research utilizes the same approach presented. The research presented in reported the results
with N = 30 and T = 500. Since the proposed COWOAFS-SSVM algorithm uses more FFE in every
run, the max FFE was utilised as the finish criteria. All other methods use one FFE per solution during
the initialisation and update phase, and to provide fair analysis, max FFE was set to 15,030 (N + N·T).
The values of the control parameters for the other methods can be obtained from.

The reported results from the Tab. 1 show that the proposed COWOAFS-SVM metaheuristics
obtained the best results on 30 benchmark functions, and was tied for the first place on seven more
occasions. By conducting a comparison of the results of COWOAFS-SVM against the basic WOA and
FA, it is clear that hybrid algorithm outperformed basic versions on every single benchmark instance.
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On some functions, the proposed COWOAFS-SVM drastically improved the results of the basic
variants; such is the example of F1, where it obtained 1000 times better results than the basic WOA
and FA. Overall results indicate that the proposed COWOAFS-SVM outperformed significantly all
approaches covered by the research.

Dispersion of solutions over 50 runs for some algorithms and chosen functions are shown in Fig. 1.

Figure 1: Dispersion of solutions of benchmark functions F4, F5, F7, F9, F10 and F12

To statistically validate the significance of the proposed method, the Friedman test and the
two variance ranking analysis were performed. Tabs. 2 and 3 depict the results obtained by twelve
observed algorithms on the set of 30 CEC2017 benchmark functions for Friedman test ranks and
aligned Friedman ranks, respectively. It is clear from both tables that the proposed COWOAFS-SVM
significantly outperformed all other algorithms.

Table 2: Friedman test ranks for the compared algorithms over 30 CEC2017 functions

Function IHHO HHO DE GOA GWO MFO MVO PSO WOA SCA FA COWOAFS-SVM

F1 2 7 11 5 9 8 3 4 10 12 6 1
F3 1.5 7 10 3.5 8 12 3.5 6 11 9 5 1.5
F4 1 10 9 6 5 8 3 4 11 12 7 2
F5 2 9 11 5 4 8 3 6 10 12 7 1
F6 1.5 11 9 6 3 4 5 7 10 8 12 1.5
F7 8 11 12 4 5.5 7 3 2 9 10 5.5 1
F8 2 6.5 12 8 3 6.5 5 4 10 11 9 1
F9 8 10 12 5.5 3 9 1.5 1.5 11 7 5.5 4
F10 3 9 10 7 4 8 5 2 11 12 6 1
F11 3 6.5 4.5 8 12 10 4.5 1.5 9 11 6.5 1.5
F12 4 10 3 8 5 7 6 2 11 12 9 1
F13 3 11 2 10 7 9 4 5 8 12 6 1

(Continued)
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Table 2: Continued
Function IHHO HHO DE GOA GWO MFO MVO PSO WOA SCA FA COWOAFS-SVM

F14 1 5 3 9 10 12 8 4 11 7 6 2
F15 4 10 2 9 8 11 7 3 12 5 6 1
F16 5.5 11 4 1 7.5 10 9 2 12 5.5 7.5 3
F17 3 7 4.5 12 4.5 6 8.5 2 10.5 8.5 10.5 1
F18 3 7 2 5 11 10 8 4 9 12 6 1
F19 1.5 10 3 6 11 8 7 4 12 9 5 1.5
F20 2 12 3 10 5 8 6.5 4 11 9 6.5 1
F21 1.5 12 3 7.5 7.5 9.5 9.5 4 11 5.5 5.5 1.5
F22 2 5 3 10 4 8 6.5 6.5 12 11 9 1
F23 2 12 6.5 8 4.5 6.5 9 3 10 11 4.5 1
F24 3 12 1.5 6 7.5 9 7.5 4 10 11 5 1.5
F25 2 9 4 6.5 8 10 5 3 11.5 11.5 6.5 1
F26 2 12 3.5 5 10 7 8.5 3.5 11 8.5 6 1
F27 12 11 1.5 7 5 3 5 8 10 9 5 1.5
F28 4 10 3 5 11 2 8 6.5 12 9 6.5 1
F29 2 11 3.5 10 5 8 8 3.5 12 6 8 1
F30 2 11 3 6 7 8 4 9 10 12 5 1
Average Ranking 3.116 9.483 5.5 6.862 6.724 8.017 5.914 4.103 10.621 9.603 6.655 1.362
Rank 2 10 4 8 7 9 5 3 12 11 6 1

Table 3: Aligned Friedman test ranks for the compared algorithms over 30 CEC2017 functions

Function IHHO HHO DE GOA GWO MFO MVO PSO WOA SCA FA COWOAFS-SVM

F1 2 7 347 5 9 8 3 4 346 348 6 1
F3 56.5 63 327 58.5 323 334 58.5 61 328 326 60 56.5
F4 142 224.5 210 175 163 189 149 156 254 277 182 145
F5 138 213 242 191 174 205 168 195 239 245 197 134
F6 150.5 234 217 172 157 161 164 178 230 212 271 150.5
F7 192 264 267 144 154.5 184 140 136 244 248 154.5 130
F8 153 198.5 251 204 167 198.5 190 173 229 231 207 137
F9 158 310 318 89.5 80 286 78.5 78.5 313 92 89.5 82
F10 81 293 302 266 88 292 97 75 309 317 228 74
F11 114 159.5 127.5 185 300 272 127.5 104.5 265 281 159.5 104.5
F12 13 19 12 17 14 16 15 11 344 345 18 10
F13 43 331 40 324 54 321 45 46 314 337 53 39
F14 66 70 68 311 316 333 73 69 319 72 71 67
F15 52 329 49 322 303 335 65 51 336 55 62 48
F16 290.5 308 278 64 298.5 305 301 235 312 290.5 298.5 258
F17 123 224.5 182 270 182 206 240.5 113 262.5 240.5 262.5 103
F18 38 76 36 47 332 325 84 41 320 338 50 35
F19 28.5 44 30 33 330 37 34 31 339 42 32 28.5
F20 99.5 294 112 260.5 152 237.5 222 122 285 249.5 222 95
F21 101.5 282 129 226.5 226.5 252.5 252.5 162 273 208.5 208.5 101.5
F22 111 143 118 257 131 216 170.5 170.5 297 283 233 98
F23 126 280 202.5 222 179.5 202.5 237.5 135 249.5 260.5 179.5 99.5
F24 120 288 108 200.5 219 236 219 132.5 259 268.5 176.5 108
F25 117 243 169 214.5 232 256 196 141 275.5 275.5 214.5 91
F26 85 315 86.5 94 306 108 246.5 86.5 307 246.5 96 77
F27 284 279 120 176.5 147 132.5 147 200.5 268.5 219 147 120

(Continued)
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Table 3: Continued
Function IHHO HHO DE GOA GWO MFO MVO PSO WOA SCA FA COWOAFS-SVM

F28 139 287 125 166 289 93 255 193.5 296 274 193.5 83
F29 110 295 115.5 211 124 187 187 115.5 304 165 187 106
F30 21 342 22 25 26 27 23 340 341 343 24 20
Average Ranking 108.79 221.24 159 170.05 188.86 205.36 144.45 122.66 291.69 244.48 147.69 89.72
Rank 2 10 6 7 8 9 4 3 12 11 5 1

Finally, the Iman and Davenport test has also been conducted, as it can provide better results than
x2. The overview of the Iman and Davenport results is shown in Tab. 4. The obtained result of 38.39
was compared against the F-distribution critical value (F(9.9e10) = 1.82) and indicate that the result
is significantly higher.

Table 4: Result summary of the Friedman and Iman-Davenport statistical test (α = 0.05)

Friedman value x2 critical value p-value Iman–Davenport
value

F critical value

1.844 × 10+2 1.968 × 10+1 1.110 × 10−16 3.839 × 10+1 1.820

Additionally, Friedman statistics (184.40) is larger than the x2 critical value with ten degrees of
freedom (1.82) at the level of significance 0.05. As the result, null hypothesis can be rejected, indicating
that the proposed algorithm performs significantly better than other methods in the comparative
analysis.

As the null hypothesis has been rejected by both statistical tests that were executed, the non-
parametric Holm step-down procedure was also performed, and results are shown in Tab. 5.

Table 5: Holm step-down procedure results

Comparison p values Ranking α = 0.05 α = 0.1 H1 H2

COWOAFS-SVM
vs. HHO

0 0 0.00455 0.00909 True True

COWOAFS-SVM
vs. WOA

0 1 0.00500 0.01000 True True

COWOAFS-SVM
vs. SCA

0 2 0.00556 0.01111 True True

COWOAFS-SVM
vs. MFO

1.04 × 10−12 3 0.00625 0.01250 True True

COWOAFS-SVM
vs. GOA

3.15 × 10−9 4 0.00714 0.01429 True True

COWOAFS-SVM
vs. GWO

7.44 × 10−9 5 0.00833 0.01667 True True

(Continued)
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Table 5: Continued
Comparison p values Ranking α = 0.05 α = 0.1 H1 H2

COWOAFS-SVM
vs. FA

1.13 × 10−8 6 0.01000 0.02000 True True

COWOAFS-SVM
vs. MVO

7.65 × 10−7 7 0.01250 0.02500 True True

COWOAFS-SVM
vs. DE

6.21 × 10−6 8 0.01667 0.03333 True True

COWOAFS-SVM
vs. PSO

0.001894 9 0.02500 0.05000 True True

COWOAFS-SVM
vs. IHHO

0.029131 10 0.05000 0.10000 True True

4.2 Hyper Parameters Tuning and Feature Selection Experiments

This section first describes the SVM parameters that have been subjected to the optimisation
process, followed by the short description of the datasets, pre-processing and metrics utilised to
measure the performances. Lastly, in this section, results of the conducted experiments are presented,
with the comparative analysis against other current methods, tested on the same problem instances.

4.2.1 Experimental Setup

For the purpose of this study, all methods included in comparative analysis are implemented and
tested with control parameters, as suggested in the original paper [30]. All methods were tested over the
course of 150 iterations and the results are average of 10 independent runs, as per the restraints of the
experimental setup, suggested in [30]. The experiment was conducted in following the specifications
laid out in the proposed methodology, starting with the acquisition, normalisation and preparation of
all input datasets for the experiment, following a series of steps, as explained earlier, securing separate
training and testing sets, using the former in the proposed algorithm and the later to evaluate the
prediction results.

This section proposes the application of the devised COWOAFS-SVM algorithm to improve the
efficacy of the SVM model (with and without the feature selection) on three standard benchmark
medical diagnostic datasets, as described in the referred paper [5]. The datasets included in the research
deal with common illness, namely breast cancer, diabetes and erythemato-squamous (ES) disease.

Similarly as in [5], only two SVM hyper-parameters were considered: penalty parameter (C) and
kernel bandwidth of kernel function (γ ). Each agent is encoded as an array of two elements (C and
γ ). The search boundaries for C parameter are in range {2−7.5, 2−3.5, . . . , 27.5}, and for γ in range {2−7.5,
2−3.5, . . . , 27.5}.

This article presents the experimental results of the modified WOA on several datasets, inherited
from the original study. Datasets used for this experiment cover diseases affecting many people, such as
breast cancer, diabetes and erythemato-squamous. Breakthroughs in diagnostic and detection methods
for these diseases are unquestionably beneficial. All features commonly extracted from input sources,
used in the diagnostic of these diseases are available in digitised forms from different databases:

� The breast cancer dataset was acquired from the Wisconsin breast cancer database.
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� The database dataset was acquired from Pima Indian heritage and contains anonymized data
about their female patients.

� The dermatology database has clinical and histopathological data, acquired, normalised, and
prepared in the same manner as explained in [30].

The original study gives full descriptions and details of all three datasets.

Values from these datasets are normalised to [−1, 1] to avoid calculation issues and dominance
and drag that much lower or much greater values may have on results. This normalisation strategy
is performed on the dataset at the very beginning. Each dataset was split into ten segments to ensure
more reliable and stable experimental results. Each run was repeated ten times to improve these results.

The final results are averaged. To assure comparability of the results of this study with the results
reported in the earlier study, this setup was limited to the same parameters of the population, iteration
count, repetitions and segmentation of the datasets. This way, the hardware impact is eliminated and
only the final performance of the optimisation of the target function is measured.

The algorithm performance evaluation was inherited from the original research [30], to ensure
result comparability. These metrics are:

Accuracy = 100% (TP + TN)

TP + FP + FN + TN
(16)

Sensitivity = 100% TP
TP + FN

(17)

Specificity = 100% TN
FP + TN

(18)

In Eqs. (16)–(18), formulas are given for the classification accuracy, and measurements are the
sensitivity and the specificity, all referring to the tested algorithm. Values TP, TN and FN are numbers
of true positives, true negatives and false negatives, respectively. All values are expressed in percentage.

4.2.2 Experimental Results

The results of this experimental research are shown in this section. The performances of the
proposed COWOAFS-SVM method were compared to the results published in [30]. To provide valid
grounds for the comparisons, this research utilised the same experimental setup and datasets as in
[30]. The results for MWOA-SVM, WOA-SVM, BFO-SVM, PSO-SVM, GA-SVM and pure SVM
were also taken from [30].

Results Pertaining to Breast Cancer Diagnostics

The breast cancer dataset is comprised of 699 entries, 458 of which were benign, while 241 were
malignant. The performances of the proposed COWOAFS-enhanced SVM method without feature
selection are shown in Tab. 6 and with feature selection in Tab. 7. The results show average values
obtained through 10 independent runs of ten-fold CV. The results indicate that the SVM structure
generated by the COWOAFS-SVM algorithm outperforms all other SVM approaches, in terms of
accuracy, area under curve, sensitivity and specificity. COWOAFS-SVM achieved average accuracy
of 96.84%, together with the standard deviation that is smaller than the results of the MWOA-SVM
and other compared methods, indicating that the COWOAFS-SVM is capable of producing consistent
results.
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Table 6: Breast cancer-results without feature selection

Methods Metrics

(C, γ ) Accuracy Area under ROC Sensitivity Specificity

MWOA-SVM (31, 0.0543) 0.9681 ± 0.0013 0.9665 ± 0.0025 0.9707 ± 0.0013 0.9632 ± 0.0063
WOA-SVM (28.79, 0.2166) 0.9665 ± 0.0018 0.9644 ± 0.0030 0.9705 ± 0.0016 0.9573 ± 0.0064
BFO-SVM (22.342, 0.5456) 0.9562 ± 0.0096 0.9528 ± 0.0069 0.9651 ± 0.0212 0.9404 ± 0.0201
PSO-SVM (11.779, 0.075) 0.9604 ± 0.0157 0.9586 ± 0.0110 0.9585 ± 0.0307 0.9645 ± 0.0141
GA-SVM (25.557, 0.452) 0.9545 ± 0.0099 0.9538 ± 0.0083 0.9591 ± 0.0188 0.9484 ± 0.0211
SVM (1.000, 0.00000) 0.9319 ± 0.0176 0.9424 ± 0.0094 0.9434 ± 0.0193 0.9354 ± 0.0287
COWOAFS-
SVM

(30.5, 0.0678) 0.9684 ± 0.0012 0.9671 ± 0.0027 0.9711 ± 0.0012 0.9644 ± 0.0061

Table 7: Breast cancer-results with feature selection

Methods Metrics

(C, γ ) Accuracy Area under ROC Sensitivity Specificity

MWOA-SVM (31, 0.0678) 0.9697 ± 0.0008 0.9702 ± 0.0025 0.9693 ± 0.0022 0.9710 ± 0.0071
WOA-SVM (24.567, 0.221) 0.9678 ± 0.0014 0.9657 ± 0.0025 0.9662 ± 0.0014 0.9641 ± 0.0081
BFO-SVM (16.451, 0.065) 0.9573 ± 0.0082 0.9548 ± 0.0052 0.9674 ± 0.0192 0.9532 ± 0.0182
PSO-SVM (18.232, 0.562) 0.9655 ± 0.0097 0.9643 ± 0.0104 0.9603 ± 0.0246 0.9677 ± 0.0120
GA-SVM (21.5612, 0.39) 0.9634 ± 0.0084 0.9567 ± 0.0074 0.9652 ± 0.0136 0.9545 ± 0.0189
COWOAFS-
SVM

(30.56, 0.0685) 0.9704 ± 0.0006 0.9708 ± 0.0020 0.9698 ± 0.0014 0.9715 ± 0.0065

Similarly as in [30], the performances of the proposed COWOAFS-SVM method were further
enhanced by performing the optimisation of the SVM structure and feature selection together. The
proposed method once again outperformed all competitors, by achieving the accuracy of 97.04%,
the best values for area under curve, sensitivity and specificity, while having the smallest standard
deviation.

Results Pertaining to Diabetes Diagnostics

The second dataset related to the diabetes diagnostics consisted of 768 entries, 268 belonging to
the diabetic patients, while 500 were normal healthy instances. The results of the proposed approach
without feature selection are shown in Tab. 8. It can be clearly seen that the proposed COWOAFS-
SVM approach outperformed all other competitors, for which the results were taken from paper [30].
The average metrics of ten runs show the accuracy of 77.59%, which is slightly better than MWOA-
SVM, and significantly better than other compared methods. Other metrics are also in favour of the
proposed COWOAFS-SVM method, including the smallest standard deviation values.
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Table 8: Diabetes-results without feature selection

Methods Metrics

(C, γ ) Accuracy Area under ROC Sensitivity Specificity

MWOA-SVM (35, 0.0639) 0.7745 ± 0.0033 0.7232 ± 0.0015 0.5731 ± 0.0092 0.9012 ± 0.0075
WOA-SVM (27.688, 0.542) 0.7685 ± 0.0046 0.7213 ± 0.0040 0.5431 ± 0.0102 0.8901 ± 0.0053
BFO-SVM (19.621, 0.032) 0.7604 ± 0.0059 0.7121 ± 0.0074 0.5382 ± 0.0131 0.8861 ± 0.0067
PSO-SVM (15.321, 0.934) 0.7586 ± 0.0057 0.7146 ± 0.0046 0.5418 ± 0.0135 0.8874 ± 0.0071
GA-SVM (25.542, 0.45) 0.7589 ± 0.0061 0.7114 ± 0.0062 0.5412 ± 0.0113 0.8816 ± 0.0074
COWOAFS-
SVM

(34.4, 0.0651) 0.7759 ± 0.0031 0.7266 ± 0.0012 0.5793 ± 0.0098 0.9048 ± 0.0065

Tab. 9 depicts the results obtained by the proposed COWOAFS-SVM approach with feature
selection, from ten runs of ten-fold CV. Once again, the results clearly indicate that the proposed
method outperformed other Metaheuristic based approaches in terms of accuracy, area under curve,
sensitivity and specificity, while having the smallest values of the standard deviation.

Table 9: Diabetes-results with feature selection

Methods Metrics

(C, γ ) Accuracy Area under ROC Sensitivity Specificity

MWOA-SVM (28, 0.0548) 0.7800 ± 0.0031 0.7312 ± 0.0019 0.5809 ± 0.0064 0.9042 ± 0.0065
WOA-SVM (24.567, 0.431) 0.7745 ± 0.0042 0.7248 ± 0.0034 0.5552 ± 0.0412 0.8968 ± 0.0041
BFO-SVM (18.447, 0.076) 0.7635 ± 0.0039 0.7211 ± 0.0061 0.5432 ± 0.0114 0.8892 ± 0.0054
PSO-SVM (16.467, 0.873) 0.7612 ± 0.0037 0.7135 ± 0.0038 0.5469 ± 0.0126 0.8946 ± 0.0051
GA-SVM (21.661, 0.28) 0.7609 ± 0.0041 0.7135 ± 0.0058 0.5492 ± 0.0110 0.8957 ± 0.0031
COWOAFS-
SVM

(28, 0.0539) 0.7822 ± 0.0025 0.7351 ± 0.0016 0.5826 ± 0.0055 0.9079 ± 0.0062

Results Pertaining to ES Disease Diagnostics

The ES disease dataset consisted of 358 instances with 34 features and six classes of diseases. As in
paper [30], the only metric that was utilised is the accuracy, because of the multi-classification nature of
the challenge. Tabs. 10 and 11 contain results attained using the proposed COWOAFS-SVM method
compared to competitor approaches, averaged on 10 runs of 10 ten-fold CV, without and with feature
selection, respectively.

In both cases, the proposed method outperformed other competitors both in terms of high-
est accuracy achieved and smallest standard deviation, indicating consistent performances of the
approach.
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Table 10: ES-results without feature selection

Methods Metrics

Accuracy (C, γ )

MWOA-SVM 0.9865 ± 0.0026 (18, 0.031)
WOA-SVM 0.9804 ± 0.0031 (22.37, 0.341)
BFO-SVM 0.9754 ± 0.0045 (19.35, 0.089)
PSO-SVM 0.9760 ± 0.0049 (17.81, 0.954)
GA-SVM 0.9700 ± 0.0053 (15.12, 0.531)
SVM 0.9643 ± 0.0104 (1.00, 0.00)
COWOAFS-SVM 0.9874 ± 0.0023 (17.5, 0.039)

Table 11: ES-results with feature selection

Methods Metrics

Accuracy (C, γ )

MWOA-SVM 0.9887 ± 0.0026 (21, 0.225)
WOA-SVM 0.9862 ± 0.0027 (28.47, 0.031)
BFO-SVM 0.9832 ± 0.0037 (17.65, 0.097)
PSO-SVM 0.9801 ± 0.0035 (18.72, 0.831)
GA-SVM 0.9731 ± 0.0041 (19.29, 0.049)
COWOAFS-SVM 0.9893 ± 0.0024 (20.8, 0.232)

4.3 Discussion

The presented research proposed a novel WOA method, enhanced with chaotic initialisation,
opposition-based learning and firefly search, which was later utilised to improve the performances
of the SVM for medical diagnostics. The experimental findings listed in the preceding section plainly
show that the proposed COWOAFS-SVM enhanced SVM model obtained superior performances
than other modern approaches subjected to the comparative analysis [5]. The proposed COWOAFS-
SVM is capable of constructing a superior SVM with higher accuracy and consistency than other
competitor methods. It is particularly interesting to compare the results of the proposed COWOAFS-
SVM against the CMWOAFS-SVM, which obtained the best results in [5]. It is possible to conclude
from the presented results that the proposed COWOAFS-SVM achieved significantly enhanced
performances than CMWOAFS-SVM on all datasets used in the experiments. The improvement were
observed both for the accuracy and other indicators (area under curve, sensitivity and specificity), as
well as for the consistency of the results, that is reflected in the smaller average standard deviation.

To gain better insights into methods’ performance, convergence speed graphs for all methods
included in comparative analysis with respect to accuracy are shown in Fig. 2.
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Figure 2: Average convergence speed graphs for classification error rate metrics for 150 iterations

5 Conclusion

In this paper, an improved model for simultaneous feature selection and hyper-parameter tuning
for SVM is proposed. The algorithm that was utilised for improving SVM performances was based on
the WOA SI metaheuristics. The proposed method was then used to improve the SVM for medical
diagnostics of breast cancer, diabetes, and erythemato-squamous illnesses. COWOAFS-SVM was
evaluated and compared to other state-of-the-art metaheuristics based approaches, and achieved
superior performances both in terms of higher accuracy and consistency reflected through smaller
values of the standard deviation on all three observed datasets. The achieved promising results indicate
the possible direction of the future research, which will focus on validating the proposed model on
other datasets from different application domains. The other direction of the possible future work is
to apply the proposed COWOAFS-SVM metaheuristics in solving other challenging problems from
wide spectrum of application domains, including cloud computing, optimisation of the convolutional
neural networks, and wireless sensor networks.
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