
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.024692

Article

Modified Harris Hawks Optimization Based Test Case Prioritization for
Software Testing

Manar Ahmed Hamza1,*, Abdelzahir Abdelmaboud2, Souad Larabi-Marie-Sainte3,
Haya Mesfer Alshahrani4, Mesfer Al Duhayyim5, Hamza Awad Ibrahim6,

Mohammed Rizwanullah1 and Ishfaq Yaseen1

1Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University,
AlKharj, 16278, Saudi Arabia

2Department of Information Systems, College of Science and Arts, King Khalid University, Mahayil Asir, 62529,
Saudi Arabia

3Department of Computer Science, College of Computer and Information Sciences, Prince Sultan University,
P.O.Box No. 66833, Rafha Street, Riyadh, 11586, Saudi Arabia

4Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman
University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia

5Department of Natural and Applied Sciences, College of Community-Aflaj, Prince Sattam bin Abdulaziz University,
16278, Saudi Arabia

6College of Computer at Al-Gunfudah, Umm Al-Qura University, Al-Gunfudah, 24382, Saudi Arabia
*Corresponding Author: Manar Ahmed Hamza. Email: ma.hamza@psau.edu.sa

Received: 27 October 2021; Accepted: 05 January 2022

Abstract: Generally, software testing is considered as a proficient technique
to achieve improvement in quality and reliability of the software. But, the
quality of test cases has a considerable influence on fault revealing capability
of software testing activity. Test Case Prioritization (TCP) remains a chal-
lenging issue since prioritizing test cases is unsatisfactory in terms of Average
Percentage of Faults Detected (APFD) and time spent upon execution results.
TCP is mainly intended to design a collection of test cases that can accomplish
early optimization using preferred characteristics. The studies conducted
earlier focused on prioritizing the available test cases in accelerating fault
detection rate during software testing. In this aspect, the current study designs
a Modified Harris Hawks Optimization based TCP (MHHO-TCP) technique
for software testing. The aim of the proposed MHHO-TCP technique is
to maximize APFD and minimize the overall execution time. In addition,
MHHO algorithm is designed to boost the exploration and exploitation
abilities of conventional HHO algorithm. In order to validate the enhanced
efficiency of MHHO-TCP technique, a wide range of simulations was con-
ducted on different benchmark programs and the results were examined under
several aspects. The experimental outcomes highlight the improved efficiency
of MHHO-TCP technique over recent approaches under different measures.

Keywords: Software testing; harris hawks optimization; test case prioritiza-
tion; apfd; execution time; metaheuristics

http://dx.doi.org/10.32604/cmc.2022.024692
mailto:ma.hamza@psau.edu.sa

1952 CMC, 2022, vol.72, no.1

1 Introduction

The increasing importance of software testing adds significant value to the quality of software and
indirectly towards social development and national economy. Inappropriately-developed and tested
software might lead to serious issues, especially in issues concerning national security, etc., Further, it
also brings high maintenance costs and huge amount of property loss [1]. Software testing is considered
as a significant process to assure the trustworthiness and consistency of a software. Particularly,
Automated Software Testing (AST) can improve testing efficiency, shorten testing time, and greatly
reduce the manual workforce in this domain. Over the last few years, AST has gained a considerable
interest in the field of both academics and industry. In general, test data automatic generation is a
challenging and key task in AST [2]. A relevant test dataset can increase fault exposure probability
and can efficiently reduce the testing execution time. In addition to these two problems discussed
above, coverage ratio is a crucial index to estimate the quality of test dataset [3]. In comparison with
functional testing, structural testing is a cost-efficient process in fault detection of programs. So, this
process is extensively studied and applied.

Current software testing methods are mostly used for deterministic programs [4]. Indeed, there are
several kinds of uncertainties experienced in real-time programs, for instance fuzziness/randomness,
which suggest that the behaviour of these programs are not certain. Particularly, in case of a program
with uncertainty and when a program is repeatedly run with a similar test data point, it might
cover different statements or even different outputs, or sometimes traverse different paths too. In this
scenario, prior test adequacy condition remains inappropriate. Now, the outcomes from few studies
focused on testing a program with non-determinism. However, some of the studies focus on programs
that is composed of randomness. Alternatively, the programs with randomness exist extensively in
real-time applications like network software, game software, and Windows operating system [5].

Although software testing is recurrently performed, it is mostly performed in a hurried manner,
owing to fixed resources and time constraints. As a result, it can be described that Test Case
Prioritization (TCP) application can improve test feasibility from ST activity [6]. But, the studies in
literature employed prioritization on test cases that passed with test case selection. Two researchers
namely, Harold and Rothermel evaluated the concept in a wide context and proposed a novel method.
TCP is an NP-Hard problem since it needs to check each feasible permutation sequence. Similarly, the
rapid expansion of software makes one to resort to metaheuristics optimization algorithm to resolve
the problems within a certain period of time [7]. Hence, the authors started looking into nature on how
nature maintains an optimal balance. At present, several attempts are being made to find an optimum
ordering through nature-inspired algorithm.

With this motivation, the current study designs a modified Harris Hawks Optimization-based
TCP (MHHO-TCP) technique for software testing. The aim of the proposed MHHO-TCP technique
is to maximize APFD and minimize the overall execution time. In addition, MHHO algorithm is
also designed to boost both exploration and exploitation abilities of conventional HHO technique.
The design of MHHO technique for TCP in software testing shows the novelty of current work. In
order to validate the enhanced efficiency of MHHO-TCP technique, a wide range of simulations was
conducted upon different benchmark programs and the results were investigated under several aspects.

Rest of the paper is arranged as follows. Section 2 briefs about related works, Section 3 introduces
the proposed model, Section 4 discusses about performance validation, and Section 5 concludes
the study.

CMC, 2022, vol.72, no.1 1953

2 Related Works

Spieker et al. [8] presented Retecs, a novel methodology to manually learn TCP and perform CI
selection for the purpose of reducing round-trip time among developers’ feedback on failed test cases
and code commits. Retecs technique use RL algorithm for both selection and prioritization of test
cases based on failure history, duration, and last implementation status. Panwar et al. [9] proposed
CS and M-ACO algorithms to conclude the test cases in an enhanced order under time-constraint
environments. Since this method is dependent on individual parameters, cuckoo search algorithm is
preferred which is different from other optimization methods and is very effective and easy to perform.

Miranda et al. [10] presented the FAST family of TCP methods which radically changes the land-
scapes through borrowing algorithms, widely used in big data, to find relevant items. FAST technique
provides scalable similarity-based TCP in white-box and black-box methods. The experimental results
from practical Java and C subjects show that the fastest member of the family outperformed other
black-box methods in terms of efficacy without considerable impact on efficiency. Further, it also
outperformed white-box approach. Ali et al. [11] proposed a relevant solution and examined the
prevailing problems towards regression testing in agile practices. The presented method has 2 stages
while in initial phase, test case is prioritized through clustering while this test case changes frequently. If
it is a tie, then the test case is prioritized according to their corresponding coverage criteria and failure
frequencies. In the next phase, test cases with coverage criteria/high frequency of failure are elected.
The presented method was authenticated through experimental research on three industrial subjects.

Hajjaji et al. [12] presented a similarity-based prioritization that is effectively employed on product
samples. In this method, different products are gradually chosen based on the feature to be tested
next, so as to increase the feature interaction coverage as soon as possible in product-wise testing.
Xing et al. [13] adapted an advanced SI method—Artificial Fish School Algorithm to resolve the TCP
problems. Particularly, the coding algorithm of artificial fish school was developed along with test
case set; effective execution time and the average percentage of test-point coverage were chosen for
optimization of strategies such as tail-chase, cluster, and forage behaviours of artificial fish school; the
optimum solutions were attained through population iterations.

Gokilavani et al. [14] presented a multi-objective-based TCP and test case selection for distributed
cloud platforms. Resemblance-Based Cluster Head (RBCH) method was presented in this study to
select the CH based on total similarity among other test cases. Sivaji et al. [15] proposed a new
African Buffalo-based Convolution Neural Slicing (AB-CNS) algorithm to reduce both resource
and time consumption, when implementing regression testing. At first, the presented approach was
implemented in test case minimalization task. It was prioritized using the FF of AB-CNS. Khalilian
et al. [16] introduced an improved version of the methods discussed above in two ways. Firstly, the
authors introduced a novel prioritization formula by gaining a variable coefficient as per the available
historical efficiency data that act as feedback from previous test session. Next, a set of exhaustive
research works has been carried out in the evaluation of system performances.

3 The Proposed Model

In this study, a novel MHHO-TCP technique is designed for TCP on software testing. The aim
of the proposed MHHO-TCP technique is to maximize APFD and minimize the overall execution
time. In addition, MHHO algorithm is designed to boost both exploration and exploitation abilities
of conventional HHO algorithm.

1954 CMC, 2022, vol.72, no.1

3.1 Design of MHHO Algorithm

HHO is a metaheuristic technique and is applied as a competent solution to difficult issues. HHO
is simulated by the attitude of Harris hawks, an intelligent bird. This species follows a process that
empowers them to catch a prey, even there are chances for the prey to escape. Being a procedure
modelled under mathematical process, it allows their computational execution. HHO has a stochastic
technique which explores difficult search spaces for finding the optimum solution. The fundamental
steps of HHO are attained under different conditions of energy. The exploration stage is inspired from
the process where Harris’s hawk cannot track the prey exactly. The hawks arbitrarily perch at distinct
places and wait for its prey utilizing two operators that are chosen on the fundamental of probability
q as provided in Eq. (1), where q < 0.5 implies that the hawks perch at the place of another population
member and its prey (for instance, rabbit). When q ≥ 0.5, the hawk is at arbitrary place nearby the
population range. In order to facilitate the reason of HHO, a record of symbols utilized from this
technique is determined as follows.

The exploration stage is determined as follows

X(t + 1) =
{

Xrand(t) − r1|Xrand(t) − 2r2X(t)| q ≥ 0.5
(Xrabbit(t) − Xm(t)) − r3(LB + r4(UB − LB)) q < 0.5 (1)

The average place of Hawks Xm is demonstrated as given herewith

Xm(t) = 1
N

N∑
i=1

Xi(t) (2)

where X(t) illustrates the places from iteration to all Hawks, t and N identifies with the entire number
of Hawks. The average place is attained by utilizing distinct techniques though this is the simplest rule.
There is a need to achieve optimum transition from exploration to exploitation. At this point, shift
is expected amongst the varying inspired exploitative performances that depend upon the escaping
energy factor, E of the prey that reduces dramatically in the escaping performance.

E = 2E0

(
1 − t

T

)
(3)

where, E0, and T imply the primary escape energy and the maximal amount of iterations correspond-
ingly.

Soft besiege is a vital phase in HHO which can be demonstrated, when r ≥ 0.5 and |E| ≥ 0.5. In
this condition, the rabbit has enough energy. If it follows, the rabbit carries out an arbitrary misleading
shift to escape. However, during the metaphor, it could not do so. Besiege stage is determined based
on the subsequent rule.

X(t + 1) = �X(t) − E|JXrabbit(t) − X(t)| (4)

�X(t) = Xrabbit(t) − X(t) (5)

where �X(t) signifies the variance place of the vector to every rabbit and current place from the
iteration t, and J = 2(1 − r5). The rabbits exhibit unplanned jumping capability throughout the escape
stage. The J value differs arbitrarily from all iterations to represent the performance of rabbit. In
extreme siege phase, if r ≥ 0.5 and |E| < 0.5. The prey becomes tired and does not possess escape
strength anymore [17]. During this analysis, the present place is modified as given herewith.

X(t + 1) = Xrabbit(t) − E|�X(t)| (6)

CMC, 2022, vol.72, no.1 1955

As in the performance of hawks from real life, it slowly performs an optimum dive towards the
prey, when it is required to capture a particular prey under competitive conditions.

Y = Xrabbit(t) − E|JXrabbit(t) − X(t)| (7)

Soft besiege, projected from the preceding in Eq. (7), is carried out from progressive quick dive,
only if |E| ≥ 0.5 but r < 0.5. During this analysis, the rabbit possess sufficient energy to escape. So, it
is implemented as a soft siege previously while the attack comes as a surprise. Fig. 1 demonstrates the
flowchart of HHO technique.

Z = Y + S × LF(D) (8)

where S stands for arbitrary vector sized 1×D and LF represents Levy Fight purpose which is utilized
in Eq. (9):

LF(x) = 0.01 × u × σ

|ν| 1
β

, σ =
(

�(1 + β) × sin
(

πβ

2

)
�

(
1+β

2

) × β × 2
(

β−1
2

)1
1
β

)
(9)

Figure 1: Flowchart of HHO

At this point, u, v refer to arbitrary values amongst 0 and 1, β signifies the default constant which is
fixed at 1.5. The last phase from the procedure is to update the places of hawks based on the equations
given below.

X(t + 1) =
{

y if F(Y) < F(X(t))
Z if F(Z) < F(X(t)) (10)

where y and Z refer to the attained outputs utilized in Eqs. (7) and (8).

1956 CMC, 2022, vol.72, no.1

In this progressive fast dive, HHO represents the already hard-pressed one, where it occurs if |E| <

0.5 and r < 0.5. At this point, the strength of rabbits to escape is insufficient. So, hard siege was
proposed before many surprise attacks were made for catching as well as killing the prey. During this
phase, the Hawks seek to reduce different distances between their prey and their average place.

X(t + 1) =
{

Y if F(Y) < F(X(t))
Z if F(Z) < F(X(t)) (11)

The values of y and Z are presented with the help of novel rules in Eqs. (12) and (13), where X(t)
demonstrates the value attained, utilizing Eq. (2).

Y = Xrabbit(t) − E|JXrabbit(t) − Xm(t)| (12)

Z = Y + S × LF(D) (13)

In literature [18], it is demonstrated that HHO outperformed many advanced techniques and it
addresses many optimization problems. But, a new adapted MHHO method is presented in current
research work to promote search efficiency of HHO so as to attain fast convergence speed, robustness,
and better solution accuracy. It is not challenging to define the modifications in E which could generate
a major difference in simulation result. Thus, a novel E upgrading system is deployed in MHHO for
promoting both exploitation and exploration abilities of HHO. The complete modifications made so
far are given herewith.

Generally, two optimization approaches are followed in each metaheuristic algorithm such as
exploitation and exploration. Exploration represents a global search in searching space; and exploita-
tion represents the local optimum solution. From an algorithmic point of view, E is a connection
between exploitation and exploration. When |E| ≥ 1, the Harris hawks adapt a global search method
to search for prey. On the other hand, when |E| > 1, local searching model is employed to hunt the
prey. Moreover, when |E| < 0.5, ‘Hard besiege’ strategy is performed; when 1 ≥ |E| ≥ 0.5, ‘Soft
besiege’ system is elected by the hawks. The drawbacks of the original E upgrade system are stated.

Based on the last value of E1, under the approach 6, is not zero. In approach 6, after the iteration,
consider that the prey must have energy to escape and so the performances of the model can be
improved. In the next half of iteration, |E| could never be more than 1 in 1, 2, and 4 strategies. But,
in the 1st half of the iteration, approach 4 is extremely exploratory, approach 1 follows, and the last is
approach 2.

E1 = 1 − t
T

(14)

E1 =
(

1 − t
T

)2

(15)

E1 =
(

1 − t
T

) 1
2

(16)

E1 = 1
2

sin
(

2π × t
T

)
+

(
1 − t

T

)
(17)

E1 = 1
2

sin
(

π + 2π × t
T

)
+

(
1 − t

T

)
(18)

CMC, 2022, vol.72, no.1 1957

E1 = e− t
T (19)

E = 2E0 × E1 (20)

whereas E0 represents an arbitrary value in the range of (−1, 1); sin and cos represent sine and cosine
functions, correspondingly [19]. The amount of iterations is represented by t while T is the maximal
amount of iterations. e denotes the base amount of exponential functions, and the value is around
2.71828. The major time complexity of MHHO and HHO is based on three methods namely, fitness
evaluation, hawk updating, and random initialization. Thus, it is formulated as follows.

O(MHHO) = O(random initialization) + O(fitness evaluation) + O(hawk updating)

= O(N) + O(T × N) + O(T × N × Dimension)

= O(N × (1 + T × (1 + Dimension)))

= O(HHO)

In which N represents the population size, T denotes the overall number of iterations and
Dimension denotes the amount of decision parameters.

3.2 Application of MHHO Algorithm for TCP

Assume that there are five test cases to be prioritized while the possibility of having the optimal
prioritized arrangement is (1/5!) factorials as shown in Fig. 2. Every test case performs as firefly agents,
when the distances among every test case represent the attractiveness functions amongst firefly agents.
To identify the best-prioritized arrangement, the proposed method is utilized by string metrics as
a FF. In this work, the real outcome of the distance estimated for every standard program is not
demonstrated. Because, the amount of test cases and their corresponding content is too lengthy and
huge in size to be sufficiently demonstrated. In fact, to demonstrate how distance is estimated in
this study, five dummy test cases were generated. ‘Edit distance’ includes the evaluation of string
characters, in which the quantified values represent the minimum number of replacements, insertions,
and deletions to convert 1st into 2nd string. Edit distance is set to include only the least conversion of
1st into 2nd string.

Figure 2: Test cases

1958 CMC, 2022, vol.72, no.1

In TFIDF, term frequency, tf, first computation is initiated with the help of elected string/term
frequency in a document. In other words, tf represents the number of terms t that exists within d
document. While, the equation for inverse document frequency, idf handles the importance of terms
in a pool of documents. Then, TFIDF is formulated as follows.

TFIDF(t) = t/T × logN/nt (21)

In which: T = term frequency in each document; t = term frequency in one document; N = number
of term that exist all over the documents; and nt = amount of documents has t term. These 2-string
metrics are later utilized in the calculation of weight and distance of dummy test case table [20]. TF-
IDF is a standout system among commonly-used term weighing systems in data retrieval methods.
Based on this ability, TF-IDF is frequently used in research works. The weight amongst test cases is
employed to assign brightness amongst firefly agents in MHHO-TCP.

The election of the next test case, in movement upgradation, depends on the weights of test cases
that perform as brightness over distances among the test case, in which the maximum value gets elected
as the following move. In arithmetical equation, the brightness of test case on distance estimation is
represented as follows.

Weight of current Test case
Distance to Next Test case

(22)

As the weights of each dummy test case remains the same, the shortest distance is the only
metric taken into account, because of the analogous weights of each dummy test case. But, in
benchmark program/actual case study, the same weight problem reduces and the distance becomes
heavily dynamic. Next the test case distance is evaluated by edit distance with the help of TFIDF
string metrics. The total distance traveled denotes the prioritized test cases. The short distances of
whole sequences of the test case are taken into account as the optimal distance. The optimal ones are
chosen based on MHHO-TCP technique.

4 Experimental Validation

The proposed MHHO-TCP model was validated for its performance under different aspects and
the results are discussed in this section. The results were investigated under varying iterations and
benchmark functions namely, Gzip, Grep, TCAS, and CSTCAS.

Tab. 1 and Fig. 3 shows the results from detailed Average Percentage of Faults Detected (APFD)
analysis accomplished by MHHO-TCP model against existing methods under Gzip benchmark
function. The figure shows that Greedy technique accomplished a poor performance with least APFD
values. Simultaneously, PSD technique gained somewhat improved APFD values. Moreover, LBS and
FA techniques reached moderately closer APFD values. However, the proposed MHHO-TCP model
outperformed existing techniques and achieved the maximum APFD values under all iterations.

Table 1: Results of the analysis of MHHO-TCP techniques in terms of APFD under Gzip dataset

Number of
iterations

MHHO-TCP FA PSD LBS GREEDY

1 95.243 94.984 93.923 93.900 92.226
2 95.090 94.654 94.029 94.678 92.367

(Continued)

CMC, 2022, vol.72, no.1 1959

Table 1: Continued
Number of
iterations

MHHO-TCP FA PSD LBS GREEDY

3 95.161 94.630 93.876 93.723 93.098
4 95.467 95.232 93.487 95.255 92.957
5 95.373 95.031 94.135 94.619 92.226
6 95.397 95.232 92.921 93.640 92.426
7 95.184 94.996 94.831 94.925 93.428
8 95.031 94.654 94.218 94.395 93.216
9 95.444 95.243 93.982 94.477 92.249
10 95.432 95.161 94.760 95.137 93.122
11 95.326 94.418 93.758 93.640 93.428
12 95.491 95.361 93.699 94.902 93.216
13 95.232 94.666 93.275 93.628 94.076
14 95.291 94.854 94.406 94.619 92.992
15 95.408 95.043 93.004 94.454 93.393
16 95.432 95.161 93.593 93.699 92.167
17 95.408 94.913 93.876 94.654 93.063
18 95.727 95.573 94.619 94.277 92.414
19 95.715 95.538 94.124 94.772 93.369
20 95.456 94.890 94.430 94.996 94.230
21 95.538 94.654 93.911 93.805 93.122
22 95.467 95.232 93.499 95.279 92.957
23 95.349 95.055 94.194 94.630 92.261
24 95.408 95.125 92.992 93.676 92.403
25 95.326 94.937 94.866 94.890 93.381
26 95.514 95.385 93.699 94.925 93.204
27 95.408 94.666 93.251 93.617 94.076
28 95.585 95.349 93.640 94.960 93.263
29 95.385 94.654 93.216 93.581 94.124
30 95.397 94.819 94.430 94.666 92.921

Tab. 2 and Fig. 4 shows the results achieved by the presented technique in a detailed APFD
analysis against existing approaches under Grep benchmark function. The figure demonstrates that
Greedy method accomplished the least performance with minimum APFD values. In addition,
PSD technique gained slightly improved APFD values. Moreover, LBS and FA methods attained
moderately closer APFD values. However, the presented technique outperformed the existing methods
with maximum APFD values under all iterations.

Fig. 5 offer a detailed overview of the results from APFD analysis of MHHO-TCP model
against existing methods under TCAS benchmark function. The figure shows that Greedy system
accomplished the least performance with low APFD values. Also, PSD technique gained somewhat
enhanced APFD values. Moreover, LBS and FA techniques reached moderately closer APFD values.
However, the presented technique outperformed the existing techniques with maximum APFD values
under all iterations.

1960 CMC, 2022, vol.72, no.1

Figure 3: APFD analysis of MHHO-TCP method under Gzip dataset

Table 2: Results of the analysis of MHHO-TCP techniques in terms of APFD under GREP dataset

Number of
iterations

MHHO-TCP FA PSD LBS GREEDY

1 95.511 95.057 94.603 95.188 94.447
2 95.894 95.751 94.842 94.435 92.474
3 95.715 95.332 93.777 93.861 92.294
4 95.535 94.961 94.495 94.818 93.048
5 95.751 95.499 93.933 95.045 93.335
6 95.631 95.296 94.925 95.284 93.275
7 95.392 94.734 93.108 94.567 93.323
8 95.559 95.308 94.375 93.765 92.546
9 95.643 95.428 93.586 95.476 93.048
10 95.523 94.794 94.112 94.854 92.534
11 95.822 95.679 94.232 94.985 93.538
12 95.476 95.081 94.052 94.794 93.227
13 95.476 95.200 93.108 94.638 93.490
14 95.260 94.782 93.395 93.801 94.172
15 95.093 94.567 93.885 93.777 93.550
16 95.535 95.380 94.064 94.579 92.318
17 95.607 95.069 94.985 95.009 93.502
18 95.476 95.165 94.304 94.770 92.318
19 95.392 94.794 94.017 93.861 93.156
20 95.547 95.320 93.096 93.765 92.450
21 95.619 95.428 93.574 95.368 93.060
22 95.404 94.770 94.124 94.854 92.522
23 95.822 95.691 94.244 94.973 93.526
24 95.667 95.057 94.029 94.806 93.203

(Continued)

CMC, 2022, vol.72, no.1 1961

Table 2: Continued
Number of
iterations

MHHO-TCP FA PSD LBS GREEDY

25 95.571 94.997 94.531 94.830 93.024
26 95.703 95.523 93.849 95.057 93.359
27 95.559 95.188 93.108 94.603 93.538
28 95.380 94.758 93.347 93.706 94.220
29 95.416 94.543 93.945 93.909 93.562
30 95.583 95.452 94.100 94.638 92.306

Figure 4: APFD analysis of MHHO-TCP method under Grep dataset

Figure 5: APFD analysis of MHHO-TCP method under TCAS dataset

1962 CMC, 2022, vol.72, no.1

Fig. 6 shows the results achieved by MHHO-TCP model from a detailed APFD analysis con-
ducted against existing methods under CS-TCAS benchmark function. The figure shows that Greedy
technique accomplished a poor performance with low APFD values. At the same time, PSD technique
reached somewhat enhanced APFD values. Moreover, LBS and FA methods reached moderately
closer APFD values. Finally, the presented technique outperformed all other existing techniques with
the highest APFD values under all iterations.

Figure 6: APFD analysis of MHHO-TCP method under CS-TCAS dataset

Tab. 3 and Fig. 7 portrays the outcomes achieved by MHHO-TCP model in average execution time
analysis against existing techniques under various benchmark functions. The results showcase that the
proposed MHHO-TCP model achieved the least average execution time compared to other approaches
under all benchmark functions. For instance, with GZIP benchmark function, MHHO-TCP model
attained a low average execution time of 2.103 mts whereas Firefly, PSO, LBS, and Greedy techniques
took high average execution times such as 3.053, 4.980, 2.960, and 3.637 respectively. At the same time,
with GREP benchmark function, the presented technique attained a minimal average execution time of
2.693 mts, whereas Firefly, PSO, LBS, and Greedy techniques consumed high average execution times
namely, 3.647, 5.677, 3.780, and 3.950 respectively. Moreover, with TCAS benchmark function, the
proposed MHHO-TCP method achieved the least average execution time of 5.283 mts, whereas other
techniques such as Firefly, PSO, LBS, and Greedy obtained the maximal average execution times such
as 6.460, 13.293, 6.627, and 7.617 correspondingly. Furthermore, with CS-TCAS benchmark function,
MHHO-TCP approach reached a lesser average execution time of 8.230 mts, whereas Firefly, PSO,
LBS, and Greedy techniques accomplished superior average execution times namely, 9.627, 19.980,
9.960, and 10.793 respectively.

An extensive mean APFD analysis was conducted between MHHO-TCP method and existing
techniques and the results are shown in Tab. 4 and Fig. 8. The outcomes show that MHHO-TCP
approach produced an effective outcome with increased mean APFD values. For instance, with Gzip
benchmark function, MHHO-TCP model attained an increased mean APFD of 95.390, whereas
firefly, PSO, LBS, and Greedy techniques resulted in reduced mean APFD of 95.004, 93.888, 94.414,
and 93.046 respectively. Moreover, with CSTCAS benchmark function, the presented system attained
a high mean APFD of 93.413, whereas firefly, PSO, LBS, and Greedy methodologies produced low
mean APFD values such as 92.973, 92.571, 91.897, and 91.591 correspondingly.

CMC, 2022, vol.72, no.1 1963

Table 3: Execution time analysis results of MHHO-TCP technique against existing approaches

Methods Average time execution (min)

GZIP GREP TCAS CS-TCAS

MHHO-TCP 2.103 2.693 5.283 8.230
Firefly 3.053 3.647 6.460 9.627
PSO 4.980 5.677 13.293 19.980
LBS 2.960 3.780 6.627 9.960
Greedy 3.637 3.950 7.617 10.793

Figure 7: Average execution time analysis results of MHHO-TCP method

Table 4: Mean APFD analysis results of MHHO-TCP method against existing approaches

Mean APFD

Methods Gzip Grep TCAS CSTCAS

MHHO-TCP 95.390 95.552 93.479 93.413
Firefly 95.004 95.153 92.972 92.973
PSO 93.888 93.992 92.238 92.571
LBS 94.414 94.601 91.910 91.897
Greedy 93.046 93.146 90.433 91.591

1964 CMC, 2022, vol.72, no.1

Figure 8: Mean APFD analysis results of MHHO-TCP method against existing approaches

5 Conclusion

In this study, a novel MHHO-TCP technique is designed for TCP on software testing. The aim
of the proposed MHHO-TCP technique is to maximize APFD and minimize the overall execution
time. In addition, MHHO algorithm is designed to boost both exploration and exploitation abilities
of conventional HHO technique. The design of MHHO technique for TCP in software testing
helps in achieving the maximum APFD and minimum execution time. In order to validate the
enhanced efficiency of MHHO-TCP technique, a wide range of simulations was conducted upon
different benchmark programs and the results were examined under several aspects. The experimental
outcomes demonstrate the increased efficacy of MHHO-TCP technique against recent approaches
under different measures. In future, HHO algorithm can be utilized replacing other metaheuristic
algorithms to further boost the overall performance.

Acknowledgement: The authors would like to acknowledge the support of Prince Sultan University
for paying the Article Processing Charges (APC) of this publication.

Funding Statement: The authors extend their appreciation to the Deanship of Scientific Research at
King Khalid University for funding this work under Grant Number (RGP.1/127/42). Princess Nourah
bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R237),
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] D. Hao, L. Zhang and H. Mei, “Test-case prioritization: Achievements and challenges,” Frontiers of

Computer Science, vol. 10, no. 5, pp. 769–777, 2016.
[2] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, H. N. A. Hamed and M. D. M. Suffian, “Test case

prioritization using firefly algorithm for software testing,” IEEE Access, vol. 7, pp. 132360–132373, 2019.

CMC, 2022, vol.72, no.1 1965

[3] B. Balakiruthiga, P. Deepalakshmi, S. N. Mohanty, D. Gupta, P. Pavan Kumar et al., “Segment routing
based energy aware routing for software defined data center,” Cognitive Systems Research, vol. 64, pp. 146–
163, 2020.

[4] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu et al., “To be optimal or not in test-case prioritization,” IEEE
Transactions on Software Engineering, vol. 42, no. 5, pp. 490–505, 2016.

[5] V. Porkodi, A. R. Singh, A. R. W. Sait, K. Shankar, E. Yang et al., “Resource provisioning for cyber–
physical–social system in cloud-fog-edge computing using optimal flower pollination algorithm,” IEEE
Access, vol. 8, pp. 105311–105319, 2020.

[6] W. Jun, Z. Yan and J. Chen, “Test case prioritization technique based on genetic algorithm,” in 2011 Int.
Conf. on Internet Computing and Information Services, Hong Kong, China, pp. 173–175, 2011.

[7] S. K. Lakshmanaprabu, S. N. Mohanty, S. S. Rani, S. Krishnamoorthy, J. Uthayakumar et al., “Online
clinical decision support system using optimal deep neural networks,” Applied Soft Computing, vol. 81,
pp. 105487, 2019.

[8] H. Spieker, A. Gotlieb, D. Marijan and M. Mossige, “Reinforcement learning for automatic test case
prioritization and selection in continuous integration,” in Proc. of the 26th ACM SIGSOFT Int. Symp.
on Software Testing and Analysis, Santa Barbara CA USA, pp. 12–22, 2017.

[9] D. Panwar, P. Tomar and V. Singh, “Hybridization of Cuckoo-ACO algorithm for test case prioritization,”
Journal of Statistics and Management Systems, vol. 21, no. 4, pp. 539–546, 2018.

[10] B. Miranda, E. Cruciani, R. Verdecchia and A. Bertolino, “FAST approaches to scalable similarity-based
test case prioritization,” in Proc. of the 40th Int. Conf. on Software Engineering, Gothenburg Sweden,
pp. 222–232, 2018.

[11] S. Ali, Y. Hafeez, S. Hussain and S. Yang, “Enhanced regression testing technique for agile software
development and continuous integration strategies,” Software Quality Journal, vol. 28, no. 2, pp. 397–423,
2020.

[12] M. A. Hajjaji, T. Thüm, M. Lochau, J. Meinicke and G. Saake, “Effective product-line testing using
similarity-based product prioritization,” Software and Systems Modeling, vol. 18, no. 1, pp. 499–521, 2019.

[13] Y. Xing, X. Wang and Q. Shen, “Test case prioritization based on artificial fish school algorithm,”Computer
Communications, vol. 180, pp. 295–302, 2021.

[14] N. Gokilavani and B. Bharathi, “Multi-objective based test case selection and prioritization for distributed
cloud environment,” Microprocessors and Microsystems, vol. 82, pp. 103964, 2021.

[15] U. Sivaji and P. S. Rao, “Test case minimization for regression testing by analyzing software performance
using the novel method,” Materials Today: Proceedings, pp. S2214785321009792, 2021.

[16] A. Khalilian, M. A. Azgomi and Y. Fazlalizadeh, “An improved method for test case prioritization by
incorporating historical test case data,” Science of Computer Programming, vol. 78, no. 1, pp. 93–116, 2012.

[17] E. H. Houssein, M. E. Hosney, M. Elhoseny, D. Oliva, W. M. Mohamed et al., “Hybrid Harris hawks
optimization with cuckoo search for drug design and discovery in chemoinformatics,” Scientific Reports,
vol. 10, no. 1, pp. 14439, 2020.

[18] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja et al., “Harris hawks optimization: Algorithm
and applications,” Future Generation Computer Systems, vol. 97, pp. 849–872, 2019.

[19] Y. Zhang, X. Zhou and P. C. Shih, “Modified harris hawks optimization algorithm for global optimization
problems,” Arabian Journal for Science and Engineering, vol. 45, no. 12, pp. 10949–10974, 2020.

[20] J. H. Kwon, I. Y. Ko, G. Rothermel and M. Staats, “Test case prioritization based on information retrieval
concepts,” in 2014 21st Asia-Pacific Software Engineering Conf., Jeju, South Korea, pp. 19–26, 2014.

	Modified Harris Hawks Optimization Based Test Case Prioritization for Software Testing
	1 Introduction
	2 Related Works
	3 The Proposed Model
	4 Experimental Validation
	5 Conclusion

