Computers, Materials & Continua & Tech Science Press

DOI: 10.32604/cmc.2022.024065
Article

Detection and Classification of Diabetic Retinopathy Using DCNN and
BSN Models

S. Sudha®, A. Srinivasan and T. Gayathri Devi

Department of ECE, SRC, SASTRA Deemed University, Kumbakonam, India
*Corresponding Author: S. Sudha. Email: mcvsudha@src.sastra.edu
Received: 02 October 2021; Accepted: 21 December 2021

Abstract: Diabetes is associated with many complications that could lead
to death. Diabetic retinopathy, a complication of diabetes, is difficult to
diagnose and may lead to vision loss. Visual identification of micro features in
fundus images for the diagnosis of DR is a complex and challenging task for
clinicians. Because clinical testing involves complex procedures and is time-
consuming, an automated system would help ophthalmologists to detect DR
and administer treatment in a timely manner so that blindness can be avoided.
Previous research works have focused on image processing algorithms, or
neural networks, or signal processing techniques alone to detect diabetic
retinopathy. Therefore, we aimed to develop a novel integrated approach to
increase the accuracy of detection. This approach utilized both convolutional
neural networks and signal processing techniques. In this proposed method,
the biological electro retinogram (ERG) sensor network (BSN) and deep con-
volution neural network (DCNN) were developed to detect and classify DR.
In the BSN system, electrodes were used to record ERG signal, which was pre-
processed to be noise-free. Processing was performed in the frequency domain
by the application of fast Fourier transform (FFT) and mel frequency cep-
stral coefficients (MFCCs) were extracted. Artificial neural network (ANN)
classifier was used to classify the signals of eyes with DR and normal eye.
Additionally, fundus images were captured using a fundus camera, and these
were used as the input for DCNN-based analysis. The DCNN consisted
of many layers to facilitate the extraction of features and classification of
fundus images into normal images, non-proliferative DR (NPDR) or early-
stage DR images, and proliferative DR (PDR) or advanced-stage DR images.
Furthermore, it classified NPDR according to microaneurysms, hemorrhages,
cotton wool spots, and exudates, and the presence of new blood vessels
indicated PDR. The accuracy, sensitivity, and specificity of the ANN classifier
were found to be 94%, 95%, and 93%, respectively. Both the accuracy rate and
sensitivity rate of the DCNN classifier was 96.5% for the images acquired from
various hospitals as well as databases. A comparison between the accuracy
rates of BSN and DCNN approaches showed that DCNN with fundus images
decreased the error rate to 4%.
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1 Introduction

Diabetes is caused by an insulin deficiency, which affects the body’s ability to metabolize glucose.
The risk of developing diabetes is gradually increasing. Therefore, it is necessary to provide machine
learning-based solutions, to save time for frequent medical check-ups. Diabetes affects most of the
organs in our body, and the damage it causes to the eye is called diabetic retinopathy (DR). Firstly,
the disease symptoms are difficult to identify, causing delayed diagnosis; consequently, vision loss or
blindness may occur. In an early stage (non-proliferative DR [NPDRY]), lesions that appear in fundus
images are as follows: microaneurysms, which appear as tiny blood clots in the retina; hemorrhages,
blood leakage sometimes shows flame-shaped appearance; exudates, yellowish deposits in the retina;
and cotton wool spots, fluffy white structures. In the advanced stage (proliferative DR [PDR]), thin
and fragile, new blood vessels grow in the retina. Over time, blood leakage in the retina causes total
blindness.

Deep convolution neural network (DCNN) involves pre-processing and feature extraction, and
biological electroretinogram signal (ERG) sensor network (BSN) involves filtering and mel frequency
cepstral coefficient (MFCC) feature extraction. After the features are extracted, classifiers such as
DCNN and artificial neural network (ANN) would be trained. Subsequently, patient fundus images
and biological ERG signals will be tested to determine whether an eye has DR or is normal.

Accuracy of image processing may be unsatisfactory, and therefore, DCNN and BSN were
introduced. In DCNN, thirteen layers (convolutional) are used for feature extraction, and the last
three layers are fully connected. It is followed by connecting output from the last fully connected
layer to a five-way softmax layer, which computes probability distribution and presents a class label
output. Output can be any one of the five class labels: class 1, normal fundus image; class 2, mild
DR; class 3, moderate DR; class 4, severe DR; and class 5, PDR with new fragile blood vessels.
Generally, increasing the number of convolutional layers in the DCNN can reduce the number of
features. This image classification task achieves the best result with 13 convolutional layers. Adding
more convolutional layers increases the depth of the network.

Only the proposed system focuses on all early and late signs of DR (novelty). It increases the
accuracy rate, despite the direct application of non-dilated raw input images and biological ERG sensor
signals. The error rate of the proposed algorithm was reduced to 4%. This system enhances the idea
of detecting DR both from fundus images and ERG signals.

2 Related Works

The application of convolutional neural networks (CNNs) for the detection of DR has been
explained briefly in a previous report [1]. Public image datasets were reviewed, and different stages and
the various performance measures for DR detection were analyzed. The author proposed a deep neural
network (DNN) model [2] for the identification of lesions. It operates on image patches, and under-
sampling of images reduces the complexity and computation time. Sensitivity was calculated as 94%.
Deep learning is discussed [3] with regard to handwritten text recognition. Lexicon based architectures
and recurrent neural networks were used for this process. Input to the algorithm is handwritten
text, and output is symbol streams. Pre-processing eliminates the requirement of symbol alignment
in the algorithm. This algorithm is outstanding for both lexicon-based and arbitrary symbol-based
recognition. The proposed DNN model can detect 110 symbols, and there is no constraint that output
words should be in a predefined lexicon. The first trial of hierarchical CNNs [4] was proposed to
classify apparel categories. It has not been recommended previously for image classification, and
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this is a knowledge-based embedded classifier whose output is hierarchical information. VGGnet
H-CNN is implemented with the fashion MNIST dataset, and this shows that the loss is lower and
the accuracy and performance are better than those of the preliminary basic model. Traditional max
pooling is avoided by fractional max-pooling [5]. DCNN with artificial neural network classifier layers
is trained to extract features. For the classification of DR into five categories, 34,124 images from the
Kaggle database were used for training, and 1000 and 53572 images were used for validation and
testing, respectively. The observed highest recognition rate was 86.17%. A deep retina application was
developed that operates with a cloud computing platform. It helps users upload fundus images of
themselves into the server and to obtain the result. It is suitable for self-exams at home as well as for
remote care.

A spatial analysis-based DCNN was proposed [6], and it achieved a high accuracy rate of 94%—
96%. Unlike conventional techniques, the algorithm uses a simple pre-processing technique, and
DCNN was tested with images from public databases like STARE, DRIVE, and Kaggle. DR is a
serious complication of diabetes [7], and manual diagnosis of this complication is difficult because it
is time-consuming. The author introduced automated CNNs for detecting DR. All CNNgs, including
VGGNet and Alexnet, were used for testing DR, and the performances were compared among the
models. The highest classification accuracy of 95.68% was obtained through the hyperparameter
tuning and transfer learning approach. Kaggle datasets are used for training the DCNN. In a previous
study [8], three large fine art datasets were obtained, and the fine-tuning experiments were carried out
to perform the task of related art image classification. Five classifications were performed using CNNs.
In particular cases, where there were only a small number of images/class but there were many classes,
a pre-trained model initialization could be preferred. A previous study compared [9] various image
processing algorithms, neural network approaches, and fuzzy logic-based detection and classification
of DR and its stages.

Early diagnosis using DCNNs for the classification of retinal images can facilitate [10] timely
initial clinical treatment and recovery from vision loss. The diagnostic accuracy was noted to be
94.5%, which is superior to that of the classical approach. To outperform the detection and rating
of DR, a fully connected CNN with the dropout layer was trained, and it can be applied for any image
classification task. The number of training images was 35,000, and with a drop out layer, classification
accuracy had been improved. It can be used as a mobile app for easy detection and timesaving. A hybrid
method using [11] both image processing and DCNN was proposed. Image processing algorithms
include histogram equalization and CLAHE (contrast-limited adaptive histogram equalization).
Classification was carried out using DCNN with 400 retinal images from the MESSIDOR database,
and the parameters evaluated were accuracy (97%), sensitivity (94%), and specificity (98%). A detailed
review of DR is presented elsewhere [12].

In a previous study [13], a CNN model with data augmentation was proposed for extracting
complicated and detailed features and classifying DR and its severity. It classifies DR images into
microaneurysms, exudates, and hemorrhages. Training of the network was performed using a high-end
graphics processing unit (GPU) with a Kaggle dataset containing 80,000 images, and validation was
performed using 5000 images. This system achieved 95% sensitivity and 75% accuracy. Because most of
the works are related to manual extraction of features, some investigators [14] suggested that automatic
diagnosis and disease classification into stages be performed using a GPU-driven DCNN. The
accuracy rate of the single model was 0.386, and a combination of three models (ensembling) showed
an improved accuracy of 0.3996. A previous study carefully analyzed [1 5] the various image processing
algorithms based on the detection of DR and deep convolutional network-based classification of DR
stages. In another study, a detailed summary [16] of wearable sensors and their advancement towards
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continuous monitoring without hospitalization was described, and various issues and challenges were
focused on.

Previously, a review [1 7] analyzed body sensor networks and their architecture in detail, with focus
on their usage in areas such as medicine and sports. Design consideration [18] factors, the part played
by sensors, and advantages and drawbacks of sensors were analyzed. Additionally, some investigated
research problems, along with solutions, were also elaborately discussed.

3 Proposed Methodology

The block diagram of the proposed method is shown in Fig. 1. Inputs were fundus images and
biological ERG sensor signals. The DCNN processed the fundus images, and the ANN classifier
processed the biological ERG signals. Unlike AlexNet, VGGNet 16 uses 3 x 3 filters over the
entire path of the network, and these small-sized filters can trace the entire data sample rapidly.
Using two 3 x 3 filters required 18 weight parameters, and using a 5 x 5 filter required 25 unique
weight parameters. Therefore, the number of weights to be used and updated was reduced, which
further reduced computation. A comparative table for a family of VGGNets and the corresponding
performance levels is shown (Tab. 1). From the experimental results, it is clear that VGGNet 16 reduced
the false detection and achieved an 8.8% error rate, which is lesser than that of other VGGNets.
VGGNet 16 improves the accuracy of detection. An object in the image that must be detected may
appear with a different scale, and training the network with the same scale may sometimes cause
failure to hit and lead to poor classification accuracy. Therefore, multiscale training and multiscale
testing were preferred in this proposed method. A biological ERG sensor signal was pre-processed,
and MFCCs were extracted to train and test an ANN classifier. Finally, a comparison was made
between the accuracies of the two approaches.

| Input | Biological ERG Sensor Signal
Fundusimage
Y h 4
Pre-processing (Imageresizing Pre-processing (Filtering)
and channel separation)
' ‘
CNN (VGG net) Fast Fourier Transform (FFT)
Score of the class MFCC extraction
\ Classiﬁer
h 4
PDE. (Advanced /\
NFPDR (Eatly stage)(Class 3)
stage) | DR ‘ [ Normal
Class1 Class2 Class3 Class4
(Normal image) (MildDR) (Moderate DR) (Severe)

Figure 1: Block diagram of the proposed method
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Table 1: Comparison of performance of VGG (Visual Geometry Group) net-single scale

S. no. VGGNet Error rate (%)
1 VGG-11 10.4%
2 VGG-13 9.9%
3 VGG-16 8.8%
4 VGG-19 9.0%

Fundus images larger than 3000 x 2000 were captured and surrounded by black borders, but
Convnet requires square images (3000 x 3000); therefore, insertion of additional black borders helped
resize the images to 120 x 120 x 3. The workflow consisted of eight stages, as shown in Fig. 2.
Regarding VGG architecture, an RGB input image of size 120 x 120 x 3 was applied to a set of
convolutional small-size filters (3 x 3). The 5 max-pooling layers (2 x 2) helped achieve spatial pooling,
followed by 3 fully connected layers and one softmax layer. DCNN architecture is shown in Fig. 2.
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Figure 2: (a) Workflow of DCNN, (b) architecture of DCNN, and (c) architecture of ANN
The details of the layers are as follows:

Image input layer: 120 x 120 x 3 images with “zero center” normalization
Convolution layer: 20, 3 x 3 convolutions with stride [1 1] and padding [0 0]
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ReLU: Rectified Linear Unit

Max pooling: 2 x 2 max pooling with stride [2 2] and padding [0 0]
Fully connected layers: 3

Classification layer: soft max

The input image and pre-processing outputs are shown in Fig. 3. The pre-processing stage includes
a) image resizing and b) channel separation.

red channhel image
e

(b)

green channel image

(d

Figure 3: (a) Input image, (b) resized input image, (c) red channel image, (d) green channel image, (e)
blue channel image, (f) convolutional layer weights

Feed forwarding input images through a set of convolution layers with 3 x 3 filters helped
extract features from the images. Convolution between image I: (n,, n,, n.) and filter F: (k, k, n,) is
expressed as

ny ne

np
Comv(I,F)y D D" Fruw Lipiyiais (1)
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where nh, nw, and nc are the height, width, and channels of the image, respectively, and k is the size of
the filter. Rectified linear input (ReLU) converted negative values to zero and preserved positive value
features as

ro={ o g

Max pooling (down sampling) reduced the dimension using a filter moving across the feature
parameters and used only the maximum value; the remaining values were discarded. Output formula
for max pooling is (DI — Df)/S + 1, where DI and Df are the dimensions of input and the max pooling
filter, respectively, and S is the stride. Operations were carried out as indicated in Fig. 2, and each
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layer was responsible for identifying different features from the raw input images. Feature learning
was followed by classification, and the classification layer is a fully connected layer whose outputs
are N-dimensional vectors, where N is the number of classes that must be predicted. Moreover, the
softmax activation exponential function reserved the probabilities that the input raw image belongs
to a particular class. If softmax input is extensive, class score probability will also be high or low. The
softmax activation function is presented as follows:

Softmax(x) = exp(x)/sum(exp(x)) 3)

The algorithm used for training CNN is given below:

Input:
X_train: training features and labels
Parameters:
n: current time of training.
n_max: the maximum value of the training cycle, weights, and bias are updated.
Loss(n): computes loss function after simulation.
m:number of training samples at each instant.
N: total number of samples used for training.
target: the result of the training with m samples (prediction).
train_err: minimum training error.
label: class label of input x,.
Initialize:
Initialize the CNN parameters
Initialize n=1
Loss(n)=1
Begin:
While n < n_max and Loss(n) > train_error
for all training samples:
predict class label based on x_train

end for

N
calculate loss function, Loss(n) = 1/2 > (target(m) — label (m))*

m=1

update weights and bias
n++

end while

End
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3.1 Biological ERG Sensor Network (BSN)

In biological ERG sensor signal system, there are two main types of electrodes: contact lens type
and non-contact lens type; the types of electrodes include jet electrodes (disposable), skin electrodes,
cotton wick electrodes, Burian-Allen electrodes, Mylar electrodes, Dawson-Trick-Litzkow electrodes,
and teflon insulated thin metal-wire electrodes. The types of equipment involved in the BSN include
a light source, sensors, amplifiers, filters, processor, and a display unit. During the recording of the
ERG signal, noise due to head movements or eye blinking is added to the recorded signal. It may
cause the recorded signal to exceed the predefined level. Therefore, pre-processing was performed.
Signal averaging helped reduce high frequency noise intensities, and the signals were smoothened by
convolving the signal with Gaussian filters and followed by first-order Savitzky Golay filters. The ERG
signal in the time domain was converted to the frequency domain, and MFCCs were extracted. These
features were used to train an ANN classifier. In the testing stage, from the features of the test ERG
sensor signal, the ANN classifier classifies signals into DR and normal signals. For training the ANN
classifier, 200 signals were used, and the other 100 signals were used for testing. Fig. 4 shows the input
ERG signal, pre-processed filtered signal, and classifier output of the BSN system. Discrete cosine
transform (DCT) computation is one of the steps involved in MFCC feature extraction. In feature
extraction, DCT was computed for the logarithm of filter bank energies. It helps retain the first few
important features/coefficients and compresses the higher order coefficients that are not required.

OFIGIMAL SIGHMAL

FILTERED SIGMAL

0 06

= e | S
DIABETIC EYE DISEASE

oo

Amplitude (volls) —»

o 06 1 1.8 -3
Time period (us) —ap

CFRICHPLAL SICEILAL FILTERED SiCGraL

CEEE)

3
L- N5 ooz
Given signal is normal
e
°
.08
; & 57 38 E = .

Time Period (us) —»

Amplitude (volts) —»

Figure 4: Input ERG signal, filtered signal, and ANN classifier output

The steps involved in MFCC feature extraction are as follows:

1) Converting the recorded signal into short frames

2) Calculating power spectrum

3) Applying mel filter banks and summing up the energy
4) Taking logarithm and DCT to filter energies

5) Extracting DCT coefficients.
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The pseudocode for the ANN classifier is as follows:

Inputs:
x: input: feature set
N: number of neurons
R: max repeat rate
Begin
create MFCC feature set
Training
For feature set x =1 to end of input do
for all neurons do
for repeat R do
Train ANN classifier
end for
end for
ANN_store: find ANN based on best predictions and save it.
end for
return ANN_store

end

4 Results and Discussion

The proposed system is a machine learning and deep learning-based system that can be used to
detect and classify DR. It differs from the conventional method in that no segmentation process is
involved, and DCNN itself extracts features, which play a vital role in classification. Large numbers of
features and layers tune the accuracy rate to 96%. In DCNN, features were extracted by in-depth
analysis of the image. Therefore, accuracy is comparatively better than those of image and signal
processing techniques. In image processing, colored fundus images were converted into gray scale
images. Mostly, a single channel was processed by image processing techniques, and the only 1D signal
was processed by signal processing algorithms.

The prediction percentage and the top three predictions for an input image are shown in Fig. 5.
As shown in Fig. 5, the prediction percentage and top three predictions are high for hemorrhages.
Therefore, DCNN shows that the input image being tested is a hemorrhage image. The severity of the
disease and stage of DR are shown in Fig. 6.

The sample inputs and outputs from DCNN are shown in Fig. 7.

The performance measures of DCNN and ANN classifiers used in this study were sensitivity,
specificity, and accuracy, as displayed in (Tab. 2), and the values were determined using the following
equations,

Sensitivity = True positive/(True positive + False negative) 4)
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Table 2: Performance measure of DCNN and biological ERG sensor ANN classifier system

Classifier Input images Training stage Testing stage Accuracy Sensitivity Specificity
(%) (%) (70)
Total no Total no of Total no of  Total no of
of inputs correct trained inputs correct test
outputs o/p
DCNN Normal 300 300 275 266 96.7 96.5 96.7
Early-stage DR 350 350 275 265 96.3
Advanced-stage 350 350 275 266 96.7
DR
Biological ERG Normal 200 200 100 95 95 95 93
sensor ANN
classifier
DR 200 200 100 93 93
Specificity = True negative/(True negative 4+ False positive) (&)
The accuracy rate was defined as,
Accuracy = (number of correct outputs/Total number of test inputs) x 100 (6)

The accuracy, sensitivity, and specificity of DCNN classification were assessed to be 96.5%, 96.5%,

and 96.7%, respectively (Fig. 8).

The accuracy, sensitivity, and specificity of the biological ERG sensor ANN classifier were found

to be 94%, 95%, and 93%, respectively.
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Figure 8: Performance measure of DCNN and ANN classifier

5 Conclusions and Future Enhancements

The proposed system extracts features from raw fundus input images and biological ERG sensor
signals. Subsequently, it classifies them into normal, early-stage DR or NPDR, and advanced-stage
DR or PDR signals. This is the only system that focuses on all early-and late-stage signs of DR
(novelty). It increases the accuracy rate, despite the direct application of non-dilated raw input images
and biological ERG sensor signals. The error rate of the proposed algorithm was reduced to 4%.
This system enhances the idea of detecting DR using both fundus images and ERG signals. The
computation time for the proposed work was 9300s for DCNN and 3200s for BSN. Smart phone-
based retinal imaging systems and handheld or portable retina cameras are now available in the market,
for people that have no time to visit hospitals for dilation and eye testing. With the help of cameras and
machine learning techniques, patients can undergo self medical screening and maintain the diabetic
level under control. Nowadays cloud-based services also enhance self-screening. Patients have to
upload retinal imaging into the cloud service platform. This automated system can be improvised
in the future to decrease system complexity and computation time.
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