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Abstract: The near future has been envisioned as a collaboration of humans
with mobile robots to help in the day-to-day tasks. In this paper, we present a
viable approach for a real-time computer vision based object detection and
recognition for efficient indoor navigation of a mobile robot. The mobile
robotic systems are utilized mainly for home assistance, emergency services
and surveillance, in which critical action needs to be taken within a fraction
of second or real-time. The object detection and recognition is enhanced
with utilization of the proposed algorithm based on the modification of You
Look Only Once (YOLO) algorithm, with lesser computational requirements
and relatively smaller weight size of the network structure. The proposed
computer-vision based algorithm has been compared with the other con-
ventional object detection/recognition algorithms, in terms of mean Average
Precision (mAP) score, mean inference time, weight size and false positive
percentage. The presented framework also makes use of the result of efficient
object detection/recognition, to aid the mobile robot navigate in an indoor
environment with the utilization of the results produced by the proposed
algorithm. The presented framework can be further utilized for a wide variety
of applications involving indoor navigation robots for different services.

Keywords: Computer-vision; real-time computing; object detection; robot;
robot navigation; localization; environment sensing; neural networks; YOLO

1 Introduction

Predicting the Future has always been difficult; estimating social change or future innovations is
a risky affair. Yet, with the current developments in Artificial intelligence, it can be readily envisioned
that robotic technology will rapidly advance in the coming decade, expanding its control over our
lives. Industrial robots, which were once exclusive for huge factories, have already expanded into small
businesses. Even with service robots, a 32% growth rate was witnessed in 2020 [1]. The trends reflect
that by 2025, robots will be part of the ordinary landscape of the general population doing the most
mundane household activities, sharing our house and workspace. This will allow them to grow bigger
than the internet. Not only will they give access to information, but they will also enable everyone to
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reach out and manipulate everything. However, manipulating the objects requires object detection and
recognition in real-time while navigating in physical space, especially for time-critical services, such as
surveillance, home assistance, emergency response, etc., that needs real-time data analysis.

The robot seamlessly navigating through the workspace requires accurate object identification
without confusing that object with the other objects. Robots are equipped with sensors like a video
camera to detect and recognise objects [2]. The majority of research in the field is focused on refining
the existing algorithms for the analysis of the sensor data to obtain accurate information regarding
the objects. Fortunately, object recognition is one of the most advanced areas of deep learning, which
helps a system establish and train a model for identifying objects under multiple scenarios, making it
useful for various applications.

Object detection and recognition are accomplished through computer vision-based algorithms.
The CNN (Convolutional Neural Network) is the most common technique to extract features from
an image. It was designed as an improvement to deep neural networks with the purpose of enhancing
the processing of 1D information [3]. Various models have been developed based on CNN like YOLO
(You Only Look Once) [4], RPN (Region Proposal Network) and Regions with CNN (R-CNN).
Amongst these bounding box algorithms, YOLO maintains the right balance amongst increased
precision of object detection & localisation in real-time while providing less inference time and retains
the information. The framework consists of an efficient end to end pipeline for feeding the actual
frames from the camera feed to the neural system and utilises the obtained outcomes to guide the
robot with customisable activities which correspond to the detected class labels.

Once the objects are identified, the next major task of a mobile robot is to localise the position of
the robot on the map of the unknown environment. SLAM (Simultaneous Localisation and Mapping)
is one of the most widely used algorithms that use sensors such as ultrasonic sensors or laser scanners
to map an unfamiliar environment while localising the position of the robot on the map [5-7]. With
the advancements in sensor technology, the use of SLAM in emergencies like disaster management
has increased in the past few years [8].

Keeping in view the requirements of a Service Robot navigating in an Indoor Environment. This
article is focused upon:

e Designing a computer vision-based framework for a robot, navigating in an indoor environ-
ment.

e Proposing an improved navigation algorithm for robots, through the development of a novel
YOLO architecture-based model for object detection and recognition.

e Evaluating the performance of the proposed model in contrast to the state of the art algorithms,
through standardised parameters of mean Average Precision (mAP) Score, mean inference time,
weight size and false-positive percentage.

The rest of the paper is organized as follows. Section 2 describes the related work in the field
of object detection/recognition and navigation for a mobile robot. The computer-vision based object
detection/recognition algorithm is proposed in Section 3, along with SLAM based indoor naviga-
tion. Section 4 illustrates the experiment design and the results of the experiment being conducted
are described in Section 5. Finally, the concluding remarks and future scope are mentioned in
Section 6.
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2 Related Work

Many modern-day camera-based multimedia applications require the ability to identify different
objects & their location in images, usually put in a bounding box. One of the most popular applications
utilising this ability is the gesture-based selfie that can identify faces in the camera feed and track the
gestures made by the user to trigger capturing of the image. This ability refers to object detection and
is commonly based on either Region-based [9-1 1] or single shot [4,12] based techniques. Region-based
techniques involve proposing the region (bounding box) containing any potential object in the scene
and classifying the objects after that. A faster response is obtained from the region-based convolutional
neural networks by utilising the entire network for the image instead of dedicating to regions. The
authors in [13] confirm near real time performance on a graphical processing unit (GPU) running a
frame rate of 5 frames per second (FPS). To reduce the delays associated with sequential division of
object detection into region proposal & subsequent classification, the authors in [4] proposed YOLO,
achieving comparable performance at a much higher frame rate of 30 FPS, owing to its simpler efficient
architecture that unifies region proposal & classification. Furthermore, the authors in [14], extend the
state-of-the-art real-time object recognition algorithm proposed in [4] to a faster, improved YOLOV2
algorithm, finding special applications in robotic platforms like in [15]. Neural Networks were
tested for on board processing using a couple of Raspberry pi microprocessors, resulting in abysmal
performance. Processing time reduced substantially when using NVIDIA’s Graphical Processing Units
(GPUs) (GTX750TT and 860 M); it took less than 0.5 s to process each picture on the GPU, whereas
on the Intel i7 Central Processing Unit (CPU), the processing time was 9.45 s. The test demonstrates
the need of great processing capabilities, in particular the impact of using a graphic card for real time
object recognition applications.

The authors in [16] develop an application which solely depends on depth information. Microsoft
Kinect returns the depth information about a pair of legs using YOLOvV2 to develop an image.
The authors established successful execution of YOLOvV2 on NVIDIA Jetson TX2 with satisfactory
detection efficiency, while subjecting the system to a varying (low to medium) traffic.

The authors in [ 7] incorporate developing a map of the surroundings, as well as the positions of
items trained previously for identification by the neural network, for the robot to follow. The authors
utilize YOLO algorithm was for the detection of objects, together with a 2D laser sensor, odometers,
an RGB-D camera & furthermore, a camera having depth sensor that had a higher processing capacity
than the Microsoft Kinect.

NAO humanoid robot developed by the authors in [18] utilized YOLO for object identification
and tracking the neural network significantly assisted the robot in real-time object identification and
tracking, according to certain testing results. In another instance, the YOLO algorithm demonstrated
a real-time tennis ball recognition by a service bot developed by the authors in [19] for retrieval in a
tennis court.

The authors in [20] used YOLO to compute correlation between humans & objects based on their
spatial separation. YOLO perfectly detected whether or not a person in an image consisting of a person
& a cup of coffee, is drinking coffee. Similarly the authors in [21] detect & classify household objects
& furniture for localization & mapping using YOLO & SLAM running in a Robot Operating System
(ROS) application.

Real-time object identification on resource-constrained systems has attracted several Neural
network based solutions usually compressing a pre trained network or directly training a small
network [22,23]. The reduced size & complexity result in reduced accuracy. The MobileNet [24] for
example suffers significant loss in accuracy while employing depth-wise separable convolutions to
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reduce computational size & complexity. Enabling real time object detection on resource-constrained
systems therefore requires load resolution to cloud based computing solutions to avoid the inherent
accuracy trade-off in built-in systems. The Application Programming Interfaces (APIs) in [25-27]
provide machine learning based web solutions for object detection, but are limited to applications
involving image analysis at a frame rate much lower than real time tasks. The authors in [28] analyse
the performance of standard object detection algorithms for feed captured by drones, to confirm the
feasibility of real time object tracking, although, the work remains devoid of real-world problems like
impact of communication protocols (errors, power consumption & latencies), techniques like multi-
threading to lower computational latencies. In a nutshell, the different parameters of efficient object
detection/recognition are elucidated in Tab. 1, in terms of detection, learning and output.

The authors in [29] developed a robotic navigation system for environments like hospital & home.
The authors in [30] developed a robotic obstacle avoiding navigation system using ultrasonic sensors.
The authors in [31] suggest using multiple sensors to improve precision of navigation while utilising
an RGB-D camera in their robot. The work in [32] utilises an object tracking system for dynamic path
planning by predicting the future locations of the object. One of the notable works in robot mapping
& navigation, SLAM, has been enhanced by the authors in [21] for household indoor environments.
The work in [33] exploits sensor fusion of numerous odometer methods to develop a vision based
localisation algorithm for curve tracking. The authors in [34] develop a low-cost autonomous mapping
& navigation robot based on ROS.

The authors in [35] develop an easy & sophisticated adoption of the Potential fields’ method, one
of the most appreciated techniques for controlling mobile autonomous robot, for navigation. Similar
performance was attained for theoretical & practical implementation of the proposed method with
an exception for environmental ambiguity, where the performance would plummet. The work in [36]
exploited Numerical Potential Field method to develop a superior robot navigation path planner by
reducing the computational delays associated with the global path planning techniques. The authors
in [37] develop & confirm the efficacy of a fuzzy logic based artificial potential field for mobile robot
navigation through an omnidirectional mobile robot. The proposed work remains constrained to
a limited obstacle environment. The authors in [38] model a multi-objective optimization problem
targeting maximization of the distance travelled, reduction of distance to destination & maximization
of distance to nearest obstacle, and test performance over ten diverse routes along with three different
positions of obstacles.

Table 1: Taxonomy of existing methods for object detection/recognition

S. No. Parameter Components

1 Detection Settings Bounding box [39], Pixel mask [40]
Paradigms One stage [41],Two stage [41]
Backbone ResNet [42], DetNet [43], MobileNet
Architecture [44], DenseNet [45]
Proposal Generation  Anchor based [46], Keypoint based
Methods [47], Computer vision based [48]
Feature Multi Scale [49], Region [50],
Representation Contextual [51], Deformable [52]

(Continued)



CMC, 2022, vol.72, no.1 201

Table 1: Continued
S. No. Parameter Components

2 Learning Training Data Augmentation [53], Imbalance
sampling [54], Localization
refinement [55], Cascade learning [56]

Testing Duplicate removal [57], Model
acceleration [58]
3 Output Application Face detection [59], Object detection
[60], Pedestrian detection [61]
Benchmarks KITTI [62], ETH [63], FDDB [64],

Pascal VOC [65], MSCOCO [40]

A potential field technique-based robot for a dynamic environment with mobile targets &
stationary obstacles, was introduced in [66]. The authors created a hybrid controller that combines
potential fields with Mamdani fuzzy logic to define velocity and direction. Simulations were used
to validate performance. The hybrid approach overcomes local minima in both static and dynamic
environments. Similarly, prospective route planning capabilities for mobile robots were utilized in
various environments by authors in [67]. Main disadvantage was local minima. By not considering the
global minimum, the robot became trapped in a local minimum of the potential field function. The
increase in attraction force to robots with distance implied a high risk of collision with the obstacles.

To aid physiotherapists with determination of posture-related issues, the authors in [68] used the
Microsoft Kinect sensor to collect anthropometric data and the accompanying software programme to
evaluate the body measurements with depth information. Microsoft Kinect suffers significant accuracy
errors in the depth information although satisfactory results were obtained from mathematical models.
The proposed work concentrates on finding posture related inconsistencies such as one shoulder being
lower than the other in order to make it easier for experts in the field to work. The authors in [69]
developed a MATLAB based control system in conjunction with Microsoft Kinect that identifies the
objects in image & calculates the distance based on sensor data. Similarly the authors in [70,71] used
Microsoft Kinect sensor for robotic applications.

3 Proposed Methodology

The framework designed for computer vision based navigation for indoor environments is shown
in Fig. 1. The robot named MAI is equipped with various sensors for making efficient object detection
and recognition, and actuators for navigating inside a closed space, while avoiding various obstacles to
reach the destination through a planned path. The proximity sensor, RGB-D camera, and microphone
provide environmental data to the robotic operational control unit to drive the computer vision
algorithms for object detection and recognition. The information related to detected and recognized
objects are passed on to the navigation block, which generates a path for robot navigation in the indoor
environment. This also takes into account real-time data from the proximity sensor to avoid obstacles
while navigating on the planned path. The actuators take the instructions from the robot operation
control based on the inputs received from computer vision and navigation blocks to drive the robot
in motion towards the destination. The detailed description of our proposed methodology is given in
the following subsections.
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Figure 1: Navigation framework of MAI

3.1 Proposed Computer Vision Based Object Detection and Recognition

For an indoor mobile robot, there are many applications to object detection and recognition, such
as obstacle detection and avoidance, staircase detection, edge detection, etc. The localization of the
detected objects and its recognition/classification of the objects are the integral parts of the vision
based object detection and recognition algorithm. The YOLO algorithm, developed by Redmon et
al. [4], has evolved as a new approach for efficient object detection. YOLO models object detection
in a frame as a regression problem. The input image is split in the form of an n x n grid. The cell of
the grid containing the center of an object in input image is responsible for its detection. Thereafter,
bounding boxes are predicted along with their respective class probabilities & confidence scores from
grid cells to yield final detections. The confidence scores indicate the confidence of the algorithm over
presence of object in the grid cell. Zero confidence score would imply absence of any object in the
grid cell. Simultaneous prediction of multiple bounding boxes and their respective class probabilities
through convolutional neural networks make YOLO extremely fast by avoiding the complex pipelines
that limit the performance of traditional detection algorithms. As compared to the conventional two-
step CNN-based object detection algorithms, YOLO provides good object detection results utilizing a
single neural network to predict the bounding boxes, different classes, and the associated probabilities,
with fast speed. The base YOLO algorithm includes a single neural network that uses full-scale pictures
to predict bounding boxes and class probabilities in one cycle of assessment. The base YOLO algorithm
is capable of handling the image processing with a speed of 45 FPS, quite faster compared to the
industry standards. Furthermore, the base YOLO algorithm can be optimized directly on the object
detection performance, as it utilizes only a single network.

For the mobile robot, which is navigating in an indoor environment, it needs to detect and localize
the object, so as to further take the actions on the basis of label and location of object. In line with the
aforementioned problem statement for the underlying system, the proposed algorithm takes the real-
time video stream from the RGB-D camera mounted on the robot as input. The proposed algorithm
outputs the class label of the detected object along with its location. The bounding boxes drawn over
the detected objects are then utilized for drawing inferences from the robots’ perspective. Further, these
inferences are utilized by the robot to take certain actions based on the objects’ classes. The YOLO
algorithm extracts features from the input images (broken down from the video stream) by using the
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convolutional neural networks, which are connected to the fully-connected neural network layers to
predict the class probabilities and coordinates for the objects being detected.

To increase the speed of the base YOLO algorithm on the real-time video stream, the proposed
algorithm utilizes smaller sizes of the filters of convolutional layers, with minimal loss of the overall
accuracy. The modification of the base algorithm has been governed by two factors, that is, weight
quantization and reduction in the number of filters of convolutional layers. Without a significant loss
in the overall accuracy of the algorithm, weight size of the neural network being used can be reduced
to mitigate the large memory consumption and longer loading time. This is accomplished by replacing
floating-point computations to much faster integer computations, with a trade-off for reduction in the
overall accuracy.

Also, the proposed algorithm utilizes only 16 convolutional layers with a maxpool layer of 2 x 2
of stride 2. This layer structure is then connected to 3 fully-connected neural network layers to return
the final output. This proposed algorithm has been compared with other algorithms such as RFCN,
YOLOvV3 and Faster RCNN, in Section 4. The output of the proposed modified YOLO-based object
detection algorithm is the bounding box and the class tag for the detected object. The proposed
algorithm utilizes independent logistic classifiers to predict the likeliness of the detected object for
a specific class. The resultant box of prediction can be given as:

b.=0o(1)+c, b, = p.exp(t,) 0
b,=0(t)+c b, = p,exp(t,)

The prediction of multiple bounding boxes is performed by the YOLO algorithm per grid cell.
In order to calculate the true positive for loss, the ground truth with the highest IoU (intersection
over union) is selected. This strategy leads to specialism among prediction of the bounding boxes.
The sum-squared error between the ground-truth and predictions is used by YOLO to calculate loss.
The function of loss comprises of the classification loss, the localization loss which refers to the errors
between the ground truth and predicted boundary boxes, and the confidence loss which refers to the
box objectness, which are given as

Lossclassificalion = Z I?bj Z (pi(c) —]3,-(6))2

i=0 ceclasses
; 2
LOSSI()(‘a/i:ation = Z lgbj[(bx - Ix)z + (b} - Iy)z + (bw - Iw)z + (bh - Ih)2]
0bj=0

where, b,, b, 1s the predicted value of center coordinates while 7., I, is the real value, b,, b, is the width
and height of predict bounding box, while I, I, is the real value, p;(c) denotes the conditional class
probability for class ¢ in cell i. The underlying algorithm’s workflow is defined as the following:

Algorithm 1: Real-time object localization and recognition Algorithm

Input: Camera live/real-time video stream with minimum frame rate of 10 FPS
Output: Bounding box coordinates, values of confidence and object labels

1: Initialize a vacant Queue

2: Acquire feed from RGB-D camera

3: Calculate the frame rate Fr

4: Link the feed of video to the computer-vision based system

(Continued)
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Algorithm 1: Continued

5: while capturing of frame is on do
6: for every new frame Fn do

7: if system is active then

8: Save frame Fn in the Queue

9: else

10: Run the model for network with Fr as input for inferring
11: Send values of confidence, coordinates for bounding boxes and output labels
12: Send Fn overlapped with output of model

13: end if

14: if (Length_Queue > max{5, Fr}) then

15: Skip every frame in Queue

16: end if

17: end for

18: end while

The algorithm utilizes neural networks which are fed by the frame-wise images extracted from the
real-time video, to return the coordinate list in terms of x and y for the bounding boxes of bottom-
right and top-left corners, in addition to the equivalent label of class for each of the objects detected.
For high frame rate and/or longer computation time in inferencing, few frames are skipped to match
with the real-time processing of the video, and mitigating the errors caused due to delayed detection
results being relayed to the robot for action and indoor navigation.

3.2 Navigation in an Indoor Environment

The indoor navigation of the mobile robot is governed by simultaneous localization and mapping
(SLAM) algorithm, which defines the navigation environment map. The data from the RGB-D
camera and proximity sensors, after object detection/recognition is utilized by SLAM algorithm to
plan the navigation path for the robot. The time progression for the robot navigation is defined as
te{l,2,..., T}, where last time step of the robot is given by T'. The pose function of the mobile robot
is defined in the terms of speed, position, direction, and transmission range of robots, denoted as

Yo =f(C(x,»),v,6,L) 3)

where, Y (x, y) denotes the position of the robot, v denotes the speed, 6 denotes the direction and L
denotes the transmission range of robot at discrete-time instance ¢. The area in which the robot has to
navigate is further divided into a matrix of cells, given as g x &, with g and / being the whole numbers.
Each cell of the matrix so created can be illustrated as

U= U,.z(g, h) “4)

The advantage of SLAM is its high convergence and its ability to efficiently handle the uncertainty
makes it useful for the map building applications [72]. In order to represent the map in terms of the
finite vector, a graph-based SLAM approach is utilized, which records corresponding observations e,
from the on-board proximity sensors. The distance measurements (g,) are performed at discrete-time
steps ¢ to find a new pose function v,,, of the robot, which is denoted as

= (ww) ©)
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where, v, and .., denotes the before- and after-movement poses of the mobile robot navigating in
indoor environment. At discrete-time instance ¢, the probabilistic form of the evaluated joint posterior
over the map is expressed as [73]

& (V1> bleoss qoi1> Yo) (6)

In order to store the overall data for the map in each iteration, the maximume-likelihood is re-
evaluated while integrating each sensor data, which is expressed as

% (¥, bleo.s, qo., Vo) = // e / 9 (U, bleos, qoir, Vo) d Y dyr, - - - dr,_ (7

So, the graph-based SLAM is a two-step procedure for the map construction. The first step is the
description and integration of the sensor-dependent constraints, depicted as front-end, and the second
step is the abstract depiction of sensor-agnostic data, depicted as back-end [74,75].

4 Experiment

In order to test the implementation of the proposed framework with computer vision based
navigation for indoor environments we deployed MAI Robot [76] in an indoor environment of Block 1,
Chandigarh University (CU) which is a nonprofit educational organization located at Mohali, India.
The ground truth images of the indoor environment at CU with map and robot navigation trail is
shown in Fig. 2.

Figure 2: Ground truth images of indoor environment at CU with map and robot navigation trail

In order to avoid the experimental bias, we positioned some common furniture items of different
shapes and sizes at the test scenarios. This experiment is designed for participants in an indoor
environment scenario where they share the space with a service robot. The participants were made
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aware about the test task before conducting the experiment. However, they did not possess any
technical knowledge about programming and operating a robot. The whole experiment revolves
around the theme of a future smart home where robots will be part of the ecosystem and will share
common space with humans. These robots will perform the daily mundane jobs like answering door
bells, serving guests etc. where real time object recognition and navigation will decide their effectiveness
in that environment.

The robot designed for conducting the experiment is named as MAI as shown in Fig. 3 which is
equipped with a single-board computer (Quad-core Cortex-A72 processor, 4 GB RAM, and 2.4 GHz
and 5.0 GHz IEEE 802.11ac wireless connectivity) for performing computations. MAI has proximity
sensors, a Microsoft XBOX 360 Kinect RGB-D based camera along with RGB camera for detecting
obstacles and conducting navigation.

Figure 3: MAI: Robot developed and used for conducting experiments

At the beginning of the experiment MALI self-located itself at the start of the main entrance of
the corridor at CU. Based upon the target coordinates and topology semantics, MAI planned an
optimum path based on the previous information of the map available which was developed using
SLAM algorithm. The MAI navigated on its own without any intervention of manual control. In
case when MAI encountered some obstacles like walking people, furniture or walls, it avoided those
obstacles and re-planned its path in order to reach the destination.

The video stream from the camera is fed frame by frame to the neural network of YOLO algorithm
in form of matrix which returns inference in terms of bounding boxes of different colors with labels
for different objects as shown in Fig. 4. These labels are fed back to the MAI in order to take the
programmable action to support the navigation as per the objects detected. In case, if the frame rate
of video input feed is too high from the camera, the intermittent frames are dropped in pursuit of
preserving the sanctity of navigation in real time.
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Figure 4: Results for object detection using YOLO in different rooms and corridor of CU

5 Result Discussion

The results for the experiment carried out in the indoor environment of CU with the proposed
YOLO model have been presented from two points of view. Firstly, the proposed YOLO architecture
with weight size 89.88 MB has been compared with state of the art algorithms named Faster RCNN
[13], RFCN [77] and YOLOV3 [14] as depicted in Fig. 5. It can be observed from the results that
proposed YOLO architecture performed considerably well in terms of mAP scores, mean inference
time and weight size. Here, mAP score are the mean average precision score that compares the
bounding box of ground truth image to the detected box and returns a score, where higher score
represents better object detection. It can be connoted from Fig. 5 that the proposed computer-vision
based modified YOLO algorithm illustrates 50% lesser mAP score. Mean inference time refers to the
time taken by the algorithm to make the prediction where less the time better supports the real tile
scenarios. The proposed algorithm takes 70% less time to compute inference. The weight size refers to
the memory space and algorithm takes, which is 84% smaller for proposed algorithm as compared to
Faster-RCNN and RFCN.

Secondly, we tested the proposed YOLO architecture for calculating the accuracy of the algorithm
along with comparison of false positive percentage (which refers to how inaccurate the algorithm is in
terms of detection) for other algorithms as well. The proposed algorithm very effectively detected
different objects like chairs, doors, plants, TV screen and humans as shown in Tab. 2. It can be
seen that output of the proposed algorithm is satisfactory for different objects except TV screens.
Furthermore, Fig. 6 shows the comparison of the proposed algorithm with other algorithms in terms
of false positive rate percentage, where less the percentage better the algorithm. It can be observed
from the results that the proposed YOLO architecture performs considerably well in terms of false
positive rate percentage. The proposed algorithm illustrates a false positive percentage of 4%, in
comparison to 3.5% of RFCN algorithm. Considering the weight-size of the proposed algorithm
which is approximately 7 times lesser than RFCN, the false positive percentage is quite acceptable
for its implementation for various applications on low-computing devices. Furthermore, the mean
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inference time of the proposed algorithm is minimum as compared to other algorithms, which makes
it the best candidate for implementation on low-computing devices.
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Figure 6: False positive percentage for different algorithms

Table 2: Verification results for different objects

Object Verification Successful verification  Success rate (Yoage)
(Number of times) (Number of times)
Person 110 82 74.55
Amirah 110 75 68.18
Door 110 76 69.09
Plant 110 81 73.64
Chair 110 85 77.27
TV screen 110 68 61.82

6 Concluding Remarks

Service robots are going to be integrated into our daily lives and will share space with us. They
will be part of our homes, shopping malls, government offices, schools and hospitals. In this paper
a framework has been designed for computer vision based navigation for indoor environments to
implement the functionalities of service robots. The robot named MAI makes use of SLAM for
navigation and a YOLO based model has been proposed for computer vision based object detection
and recognition. The proposed algorithm has been compared with state of the art algorithms named
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Faster RCNN, RFCN and YOLOV3. The proposed algorithm takes least mean inference time and it
has the smallest weight size as compared to other algorithms. Furthermore, its false positive percentage
is comparable to state of the art algorithms. Our experimental results show that the proposed algorithm
detects most of the obstacles with desired reliability. In future, we plan to test the MAI in public spaces
with better proximity sensors to further enhance the navigation reliability as well.
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