
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.021410

Article

Weighted-adaptive Inertia Strategy for Multi-objective Scheduling in
Multi-clouds

Mazen Farid1,3,*, Rohaya Latip1,2, Masnida Hussin1 and Nor Asilah Wati Abdul Hamid1

1Department of Communication Technology and Networks, Universiti Putra Malaysia (UPM), Serdang, 43400, Malaysia
2Institute for Mathematical Research (INSPEM), Universiti Putra Malaysia (UPM), Serdang, 43400, Malaysia

3Faculty of Education-Saber, University of Aden, Aden, 2408, Yemen
*Corresponding Author: Mazen Farid. Email: mazenfareed7@yahoo.com

Received: 02 July 2021; Accepted: 11 October 2021

Abstract: One of the fundamental problems associated with scheduling work-
flows on virtual machines in a multi-cloud environment is how to find
a near-optimum permutation. The workflow scheduling involves assigning
independent computational jobs with conflicting objectives to a set of vir-
tual machines. Most optimization methods for solving non-deterministic
polynomial-time hardness (NP-hard) problems deploy multi-objective algo-
rithms. As such, Pareto dominance is one of the most efficient criteria for
determining the best solutions within the Pareto front. However, the main
drawback of this method is that it requires a reasonably long time to provide
an optimum solution. In this paper, a new multi-objective minimum weight
algorithm is used to derive the Pareto front. The conflicting objectives consid-
ered are reliability, cost, resource utilization, risk probability and makespan.
Because multi-objective algorithms select a number of permutations with an
optimal trade-off between conflicting objectives, we propose a new decision-
making approach named the minimum weight optimization (MWO). MWO
produces alternative weight to determine the inertia weight by using an adap-
tive strategy to provide an appropriate alternative for all optimal solutions.
This way, consumers’ needs and service providers’ interests are taken into
account. Using standard scientific workflows with conflicting objectives, we
compare our proposed multi-objective scheduling algorithm using minimum
weigh optimization (MOS-MWO) with multi-objective scheduling algorithm
(MOS). Results show that MOS-MWO outperforms MOS in term of QoS
satisfaction rate.

Keywords: Multi-cloud environment; multi-objective optimization; Pareto
optimization; workflow scheduling

1 Introduction

The cloud environment provides a platform where servers in a data center can be accessed in shared
mode when users request services [1]. Cloud computing architecture is composed of three distinct

http://dx.doi.org/10.32604/cmc.2022.021410
mailto:mazenfareed7@yahoo.com

1530 CMC, 2022, vol.72, no.1

layers, namely Infrastructure as a Service (IaaS), Software as a Service (SaaS) and Platform as a Service
(PaaS). SaaS integrates three different organizations: cloud providers, software providers and users.
A multi-cloud system involves the collaboration of multiple cloud infrastructure providers (such as
Microsoft Azure, 2018; Amazon EC2, 2018 and Google Compute Engine, 2018) that configure their
computing needs using a wide range of cloud-based IaaS. They provide their virtual machines at a
price using “pay as you go” models which is one of the most popular ways to share resources between
cloud providers. [2,3].

The workflow is a common method for modeling most distributed systems used in scientific
applications. It is typically represented as an acyclic graph where the relation between tasks is shown
on the edges of each node. Usually, the number of tasks is greater than the number of virtual machines
(VMs) available. This necessitates the use of an appropriate scheduling policy for task assignments.
Recently, workflow scheduling in the cloud has been a subject of focus due to the importance of
workflow applications. Therefore, selecting the near-optimal schedules in such scenarios is generally
NP-hard.

Most of the recently proposed solutions have only taken one of the qualities of service (QoS)
requirements into account. For example, the workflow completion time is considered when investigat-
ing makespan. Other important factors related to QoS include cost, cloud security, performance and
reliability. Hence, an efficient task scheduling algorithm must strike a balance between several QoS
objectives. This is known as multi-objective task scheduling. One way of striking such a balance is the
use of Pareto optimal algorithms that allow users to select the best result within an acceptable set of
solutions.

A Pareto optimal solution simultaneously optimizes conflicting objectives. If the optimal solution
has a number of candidates, the set is known as the Pareto front. No solution is considered dominant
within the Pareto front. Since heuristic algorithms are generated, it becomes difficult to choose the
appropriate permutation for service providers [4]. The main drawback of the Pareto optimization
method is that it needs a longer time to make a better final decision [5]. The authors of [6] used a
well-known decision-making process called weighted aggregated sum product assessment (WASPAS).
This method enables service providers to communicate their needs and give specific weight to objectives
based on consumers’ preferences. It selects the best solution from the optimal Pareto set with respect
to a given priority.

In this article, we propose a multi-objective workflow scheduling algorithm with minimum weight
optimization (MWO) method. A Pareto front is used to reveal all possible solutions and determine
an optimal solution. This way, both the service provider and customer needs can be catered for
simultaneously. The introduced algorithm utilizes the MWO method to meet the following five
requirements.

1. Minimum workflow time (makespan).
2. Minimum cost.
3. Maximum resources utilization.
4. Maximum workflow reliability.
5. Minimum risk probability of workflow.

In real-time applications, some users may be concerned with makespan reduction, some other
users may care about the cost of paying VMs while others focus on high workflow reliability. In
contrast to these users’ concerns, VM providers aim at maximizing the utilization of their resources and

CMC, 2022, vol.72, no.1 1531

minimizing risk probability. Therefore, a multi-objective method of optimization is needed to achieve
an almost optimum trade-off between these conflicting concerns and satisfy them simultaneously.

In this article, the main contributions are:

1. Presenting a multi-objective method for scheduling workflow in a cloud environment based
on the particle swarm optimization (PSO) algorithm.

2. Defining a fitness function that simultaneously considers the interests of users and service
providers (by decreasing makespan, cost and risk probability and increasing resource utiliza-
tion and reliability).

3. Deploying a newly proposed decision-making method called minimum weight optimization to
choose a feasible solution and illustrating the solution using the Pareto front based on users’
preferences.

4. Using alternative weight values to determine the inertia weight by deploying an adaptive
strategy to increase the convergence of the PSO in the first few iterations of the algorithm.

The rest of this paper is organized thus: Section 2 presents an overview of the related works. Section
3 defines the scheduling model and explains the problem and network model formulation. Section 4
discusses the multi-objective optimization methods. Section 5 presents the proposed algorithm and
details its implementation while Section 6 elaborates the experimental setup and simulation results.
Section 7 discusses the performance measurement and Section 8 concludes this article.

2 Related Work

Finding the most suitable workflow scheduling solution is an NP-hard problem. A workflow
scheduling method is generally aimed at achieving one specific or multiple objectives. It balances
the trade-off between conflicting objectives. One of such multi-objective scheduling methods is the
aggregation method. This strategy tackles a multi-objective scheduling problem by converting it to
a single objective. The weight is taken into account for each objective and the number of weighted
objectives is optimized. In [7], a multi-objective problem was transformed into a single objective
problem using cost-conscious scheduling. The system was designed to maximize makespan and
minimize cost. Jeannot et al. [8] proposed a scheduling strategy that increases performance and
reliability using the aggregation method. During runtime, the dynamic level strategy (DLS) introduced
in [9], can changes the task priority. Doǧan et al. [10] enhanced the DLS method with a genetic
algorithm and proposed Bi-objective Dynamic Level Scheduling (BDLS).

The Pareto approach differs from the aggregation approach as it leads to a trade-off between unde-
sired objectives that should be reduced (e.g., cost) and desired objectives that should be maximized.
Such algorithms are assisted by solutions that are non-dominant in the Pareto front. Adopting this
approach, Sagnika et al. [11] introduced a Cat Swarm Improvement algorithm to schedule workflows
in the cloud. The algorithm reduces the time consumption, cost and processor’s idle time. The
authors compared the proposed method with multi-objective particle swarm optimization (MOPSO)
algorithm and the results revealed that the proposed algorithm performs better than MOPSO.

A multi-objective scheduling method was proposed by Udomkasemsub et al. [12] using the Pareto
optimizer algorithm with the Artificial Bee Colony (ABC) algorithm to minimize cost and makespan.
Similarly, Wu et al. [13] proposed an RDPSO algorithm for managing workflows in the cloud to
reduce cost or makespan. In [14], a new multi-objective scheduling approach that uses the Gray
Wolf algorithm was introduced with a focus on cost, makespan and resource efficiency. Another
multi-objective approach using the MODPSO algorithm was proposed by Yassa et al. [15] to reduce

1532 CMC, 2022, vol.72, no.1

cost, energy and makespan. Dynamic voltage and frequency scaling was used to minimize cost. The
proposed scheduling algorithm was compared with the Heterogeneous Earliest Finish Time (HEFT)
algorithm.

Considering more than two significant scheduling factors, [16] deployed a heuristic black hole
multi-objective Pareto-based algorithm. They proposed a suitable approach for analyzing the problem
of cloud scheduling to reduce cost and makespan and increase resource efficiency. Kaur et al. [17]
proposed an incremented frog slipping algorithm for scheduling workflows to reduce the execution
cost while meeting the task deadline. Simulation, using WorkflowSim, reveals that the proposed
scheme outperforms the PSO-based approach with respect to minimizing the overall workflow
execution cost. Khalili et al. [14] focused on preserving the QoS requirement for service providers
by developing a multi-objective scheduling algorithm using the Grey Wolf and Pareto optimizers to
decrease makespan, time and cost. The algorithm increases throughput, which is a fundamental service
requirement, compared to the Strength Pareto Evolutionary Algorithm 2 (SPEA2).

An adaptive multi-objective scheduling method for mapping workflow at the IaaS level was
proposed by Zhang et al. [18]. Their goals are to reduce user resource costs and balance loads on
VMs without violating the deadline constraint of the workflow. The Non-dominated Sorting Genetic
Algorithm-2 (NSGA2) extension, which uses mutation and crossover operators, was used to achieve
Pareto-front and search diversity. The authors deployed Inverted Generational Distance (IGD) which
measures the minimum Euclidean distance and calculated the diversity and convergence of a collection
of Pareto solutions. In an attempt to reduce costs, makespan time and the use of cloud energy related
to the workload deadline, a new approach to workflow scheduling was suggested by Singh et al. [19].
The authors grouped users using machine learning technology. Thereafter, time, cost and negotiation-
based policies were considered. Simulation results from CloudSim indicated that the proposed strategy
is consistent with other methods in relation to the three objectives studied.

Verma et al. [20] proposed Hybrid PSO (HPSO) by incorporating budget and deadline con-
strained heterogeneous earliest finish time algorithm (BDHEFT) to schedule multi-objective work-
flows with budget and deadline constraints. MOPSO is used to reduce resources cost and workflow
makespan during the scheduling process. The original solution can be generated through BDHEFT
and other randomly selected initial solutions. During the MOPSO implementation cycle, optimal (non-
dominated) solutions are maintained as the Pareto front. The final solution is the ultimate Pareto set.
Dharwadkar et al. [21] introduced a new programming method, called Horizontal Reduction (HR),
to minimize failure, execution costs, scheduling overhead and makespan by integrating control point,
replication and PTE algorithms. The findings revealed that the suggested approach outperforms other
methods in terms of the three objectives studied.

In [16], a new multi-objective hyper-volume algorithm that expands the black hole detection
algorithm was proposed. The algorithm uses a dominant strategy that increases its flexibility and
convergence towards the Pareto optimum. The conflicting objectives optimized are resource utiliza-
tion, resource cost and makespan (completion time). Durillo et al. [22] presented a list-based multi-
objective workflow scheduling algorithm. A single-objective Pareto optimizer was used to minimize
the resource utilization cost and makespan. Another new multi-objective scheduling approach called
Multi-objective HEFT (MOHEFT) [22] was also presented. [23] further proposed an improvement of
[24], called the Pareto Multi-objective List Scheduling Heuristic (PMLSH), for estimating solutions
when ranking in HEFT. A consistency metric, Crowding Distance (CD), was deployed to maximize
various objectives. CD is a test to assess the solutions around a particular population of solutions. In

CMC, 2022, vol.72, no.1 1533

each iteration of the algorithm, one can choose nearer optimal solutions. Hypervolume was used as a
benchmark to test the proposed algorithm.

Yu et al. [25] used a multi-objective evolutionary algorithm (MOEA) to solve issues regarding
workflow planning. The strategy was applied to reduce two conflicting issues which are the costs
of utilizing services and the time of implementation. In addition to that, they established objective
functions that are compatible with the constraints. Similarly, Kalra et al. [26] put forth a workflow
scheduling method by integrating Intelligent Water Drop and Genetic Algorithms (IWD-GA). The
method reduces makespan and execution cost and offered a variety of solutions with respect to
reliability and deadline constraints. IWD-GA helped consumers to flexibly select solutions based on
their requirements.

From the above, it is clear that multi-objective workflow scheduling algorithms take many
objectives into consideration to provide effective scheduling. In this regard, an accurate selection
(of objectives) is required to effectively allocate tasks to the virtual machines. Most of the previous
studies in related literature used Pareto optimality approach [14,26]. However, increasing the number
of conflicting objectives increases the Pareto computation cost and completion time. Other methods
like aggregation and hypervolume are not scalable when the number of objectives are increased [8,16].
In order to address these limitations, we develop the minimum weight approach that reduces the cost
and time of the scheduling process and improves the scalability even with a higher number of objectives.
Thus, this paper introduces a new multi-objective scheduling minimum weight optimization (MOS-
MWO) algorithm for scheduling scientific workflow in a multi-cloud environment using the MWO
process. This is targeted at reducing workflow costs, risk probability and makespan and increasing
reliability and resource utilization within the set reliability constraints.

3 Scheduling Model

This section discusses the workflow scheduling model and metrics with special attention to
reliability, makespan, cost, workflow model, multi-cloud model, resource utilization, risk probability
and problem formulation. The proposed MOS-MWO algorithm considers five QoS requirements:
cost, risk probability, makespan, resource utilization and reliability. The schedule model is provided in
Fig. 1 while the notations used in this study are defined in Tab. 1.

The first phase involves designing the cloud user workflow application structure. Workflows are
distributed to a suitable cloud infrastructure that meets workflow requirements and VM types. Each
cloud provider has a task queue and these tasks are executed according to the workflow structure. Since
cloud users have access to an infinite number of VM resources, simultaneous services are provided
for concurrent tasks based on dependence relationships. It is vital to know that every cloud service
provider has its own performance and price trends in the multi-cloud environment.

3.1 Workflow Model

A sequence of scheduled activities is necessary to achieve a defined objective. These activities
are known as workflows. Workflows provide sets of basic processes designed to address a more
complicated problem [27]. These processes must follow a standard pattern to ensure coherence and
to improve the efficiency of executing the desired tasks. A workflow aims to decide how various tasks
can be configured, performed and monitored.

1534 CMC, 2022, vol.72, no.1

Figure 1: Scheduling model

Table 1: Notations and their meanings

Notation Meaning

ti Task ti of workflow
D(tj, ti) Size of data transmission from task ti to tj

W(ti) Workload of task ti

pre(ti) Predecessor set of ti

succ(ti) Successor set of ti

(Continued)

CMC, 2022, vol.72, no.1 1535

Table 1: Continued
Notation Meaning

n Number of workflow tasks
VM(m) VM type set of cloud IaaS platform m
VM(m, k) Type of VM k in IaaS platform m
P(m, k) Processing capacity of VM(m, k)

c(m, k) Cost per unit time of VM(m, k)

Bm Bandwidth of cloud IaaS platform m
Bmm′ Bandwidth between platform m and m′

Ttrans(ti, tj) Transmission time from ti to tj

Texec(ti, VM(m, k)) Execution time of ti on VM(m, k)

Tstart(ti) Start time of task ti

Tend(ti) End time of task ti

Trent(ti, VM(m, k)) VM rent time of task ti on VM(m, k)

cost(ti, VM(m, k)) VM rent cost of task ti on VM(m, k)

rel(ti) Reliability of task ti

cost Cost of workflow
makespan Makespan of workflow
reliability Reliability of workflow
relc Reliability constraint of workflow
VMsrequestedMIPS Total processing capacity of requested

VM(m, k)

VMsavailableMIPS Total available processing capacity
utilization Total resource utilization of workflow
srl

i Required security level of lth security
service

sll
i The levels of security services

P(ti) The risk probability of a task ti

P(T) The workflow risk probability
x̄ij The value of each attribute
W Weighted sum model
max.risk.prob Maximum risk probability
max.utilization Maximum utilization
max.reliability Maximum reliability
Inert Inertia weight

Workflow can be modeled with nodes and edges as a direct acyclic graph (DAG). It can be
expressed as W = (T, E), where the task set consists of T = {t0, t1, . . . , ti, . . . , tn − 1}. A number of
arcs E = {(ti, tj)|ti, tj ε T} represents the task dependencies. Each workflow has the entry task Tentry

and exit task Texit. In addition, each task has a predecessor set pre(ti) and a successor set succ(ti). Each
task is executed after its predecessor has been executed. Task ti has an assigned weight W(ti) which
denotes its workload and is quantified in terms of compute unit (CU). D(ti, tj) denotes the output data
size of tasks ti that must be transferred to the task tj.

1536 CMC, 2022, vol.72, no.1

3.2 Multi-cloud Architecture

This paper considers three providers of cloud services: Google Compute Engine, Amazon EC2 and
Microsoft Azure. Here, we discuss the multi-cloud architecture that gives users access to VMs from
multiple cloud providers with different pricing models. For example, (Amazon EC2, 2018) rate is based
on operating hours. Every partial clock gradually hits full hours. Likewise, (Azure, 2018) consumers
pay per minute. (Google Compute Engine, 2018) charges per minute after the first ten minutes the VM
instances are launched. The various types of VMs are shown in Tabs. 2–4.

Table 2: Different types of VMs in Amazon EC2

VM type VM type no. Compute unit Cost per hour ($)

m1.small 1 1.7 0.06
m1.medium 2 3.75 0.12
m1.large 3 7.5 0.24
m1.xlarge 4 15 0.45
m3.2xlarge 5 30 0.9

Table 3: Different types of VMs in google compute engine

VM type VM type no. Compute unit Cost per hour ($)

n1-highcpu-2 1 2 0.07
n1-highcpu-4 2 4 0.14
n1-highcpu-8 3 8 0.28
n1-highcpu-16 4 16 0.56
n1-highcpu-32 5 32 1.12

Table 4: Different types of VMs in microsoft azure

VM type VM type no. Compute unit Cost per hour ($)

B2S 1 1 0.0496
B2MS 2 2 0.0912
B4MS 3 4 0.182
B8MS 4 8 0.365
B16MS 5 16 0.73

Different IaaS platforms can be provided in a multi-cloud environment for a collection of VMs
where VM(m) = {VM(m, 1), . . . ,VM(m, k), . . . , VM(m, ks)}, m = 1, 2, . . . ,M. Let (m|m = 1, 2 and 3),
where m represents various IaaS cloud providers (i.e., Amazon, Microsoft and Google). The VM(m,
k) is the instance VM specified by the IaaS cloud provider m. P(m, k) is its processing power, hourly
costs are denoted by C(m, k) and CU refers to the VM CPU computing capacity [28–30]. We assume
the various cloud providers can supply end users with an unlimited number of VMs. Bm indicates the
bandwidth of cloud platform m and Bmm’ is a bandwidth between two cloud platforms m and m’.

CMC, 2022, vol.72, no.1 1537

3.3 Makespan Computation

In a multi-cloud environment, workflow/tasks on various IaaS platforms can be delegated and
executed. Other VMs need to wait before tasks are received. This is because VMs transfer many copies
of their output to other VMs. The nature of the receiver’s performance depends on the task order.
Eq. (1) defines the group sorting process of workflow/tasks in set A.

A =
∑

tj∈pre(ti)

succ(tj). (1)

The sequence of the tasks in partial set B is the same as the previous tasks ti in A. If A = {t1, t3, t4,
t2}, then B = {t1, t3} if ti = t4. The start time of the task ti is represented as Tstart(ti) in Eq. (2) and the
end time is Tend(ti).

Tstart(ti) = maxtj∈pre(ti){Tend(tj) + Twait(tj, ti)}, (2)

where Twait(tj, ti) is the waiting time for ti to receive input data from task tj. This is presented as follows:

Twait(tj, ti) =
∑
tz∈B

Ttrans(tj, tz). (3)

Note that if ti = tentry, then Tstart(ti) = 0.

In order to calculate the transmission time, we have

Ttrans(ti) = maxtj∈pre(ti){Tend(tj) + Twait(tj, ti)} + Ttrans(tj, ti), (4)

where the transmission time between ti and tj is Ttrans(tj, ti).

Ttrans =
{

D(tj, ti)/Bm,

D(tj, ti)/Bmm′ , m �= m′ (5)

As a result, task ti has a receiving time given by

Trece(ti) = Ttrans(ti) − Tstart(ti). (6)

The time of execution of each task ti depends on the output data size for each task [31,28]. The
execution time to perform different tasks on a different VM(m, k) can be determined using the
following equation.

Texec(ti, VM(m, k)) = W(ti)

P(m, k)
. (7)

The processing capacity of VM(m, k) in CU can be taken for the end time of each task. Therefore,

Tend(ti) = Tstart(ti) + Trece(ti) + Texec(ti, VM(m, k)). (8)

Then,

makespan = Tend(texit). (9)

Makespan is the last task’s end time (texit) and deadline is the time required to finish the scheduling
using VMs with minimum processing capacity.

1538 CMC, 2022, vol.72, no.1

3.4 Cost Computation

IaaS platforms have unique pricing methods that follow the multi-cloud model. The existing
workflow algorithms compute the rental time of the VM by taking the interval from start time to
finish time [28,30–32]. When the task is done, the VM stops and the task output is transferred to its
successor. Data transfer priority depends on the task order. The time of sending task ti can be specified
as:

Tsend(ti) =
∑

tj∈succ(ti)

Ttrans(ti, tj). (10)

The rental time of the task ti for the VM running on VM(m, k) is specified in Eq. (11).

Trent(ti, VM(m, k)) = Trece(ti) + Texec(ti, VM(m, k)) + Tsend(ti). (11)

The VM rental cost for task ti on each IaaS platform is calculated below.

For Amazon EC2 which charges per hour, task ti cost on VM(1, k) is expressed in Eq. (12).

cost(ti, VM(1, k)) = [Trent(ti, VM(1, k))/Tminute] . C(1, k), (12)

where Tminute = 60.

Microsoft Azure charges per minute, task ti execution cost on VM(2, k) is stated in Eq. (13).

cost(ti, VM(2, K)) = Trent(ti, VM(2, k)).C(2, k)/Tminute. (13)

Google charges the instance per minute after the first ten minutes. This is indicated as the task
cost on VM(3, k) in Eq. (14), where Tten = 10.

cost(ti, VM(3, k)) =
{

Tten.C(3, k)/Tminute, if Trent(ti, VM(3, K)) ≤ Tten

Trent(ti, VM(3, k)).C(3, k)/Tminute, otherwise (14)

The cost of the workflow can be calculated using Eq. (15).

cost =
∑
ti∈T

cost(ti, VM(m, k)). (15)

The budget constraint can be calculated during workflow scheduling using VMs with the
maximum price in a critical path.

3.5 Resource Utilization Computation

Scheduling plays a crucial role in efficiently allocating resources for cloud operation. Many
scheduling processes are also conducted by assigning tasks to strike a balance between cost-
effectiveness, resource utilization and makespan [33]. It takes more time for cheaper resources to
complete task execution than expensive ones. This means that a VM’s CPU achieves better resource
efficiency at the expense of cost. The total capacity of a requested VM is calculated in Eq. (16).

VMsrequestedMIPS =
∑

P(m, k). (16)

The workflow utilization percentage for each workflow can be determined using Eq. (17).

utilization = VMsrequestedMIPS

VMsavailableMIPS

∗ 100. (17)

CMC, 2022, vol.72, no.1 1539

Since users always assume that they are working with a service provider that provides high resource
utilization, the value of max.utilization is set to 100 in Eq. (32).

3.6 Reliability Computation

Cloud computing failures are unavoidable. Failures may result from within (for example, software
faults, hardware failures, power defects, etc.) [34,35] or outside (for example, harmful web attacks)
[36,37]. Short-term failures also occur thereby causing failure during task workflow. The case of failure
can be based on the Poisson distribution [8,38,39]. It is determined by computing the exponential of
the reliability that task ti is performed correctly in VM(m, k) as follows:

rel(ti) = exp(− λm.Trent(ti, VM(m, k))), (18)

where the cloud service provider failure coefficient λm > 0 (m = 1, 2, 3).

Every IaaS platform also has a specific multi-cloud failure coefficient. If there are problems during
the rental period, the mission may fail. So long as the failures are independent, the reliability of the
workflow is determined by Eq. (19).

reliability =
∏
ti∈T

rel(ti). (19)

Suppose λmax = max{ λm|m = 1, 2, 3} indicates the maximum failure coefficient and λmin = min{
λm|m = 1, 2, 3} refers to the minimum failure coefficient, the resulting scheduling workflow for the
reliability can be Maximum (relmax) or Minimum (relmin). In addition, different workflow results are
generated in different clouds according to the task scheduling process. Consequently, cloud users
must set appropriate reliability constraint relc for the scientific workflow application, i.e., relc ∈ [relmin,
relmax].

3.7 Workflow Risk Probability

Workflow applications are run in a non-risk-free cloud computing environment and thus, security
awareness is critical for quantitative assessment of services. The risk analysis model determines the risk
rate throughout the workflow [36]. The model assumes that the probability of risks is determined by
the level of security and that the distribution of the risk for any fixed interval is based on the Poisson
probability distribution. The risk probability of the security service lth for the task can therefore be
defined by an exponential distribution as follows [40,41]:

P(ti, sll
i) =

{
0, if srl

i ≤ sll
i

1 − exp(−λl(srl
i − sll

i)), otherwise, l ∈ {a, g, c}
(20)

a, g and c represent the services of authentication, integrity and confidentiality, respectively.

Three major cloud threats are snooping, altering and spoofing, and the three security services
used to secure scientific workflow applications are authentication service, integrity service and
confidentiality service [42]. Users flexibly merge these security services to provide a robust defense
against different risks and attacks. The designed model assumes that a typical task will involve three
types of security services with different user-defined security rates. For example, sri is the set of security
requirements of task ti that can be specified as a q-tuple sli = [sl1

i , sl2
i , . . . , sll

i , . . . , slq
i], where srl

i

represents the required security level of lth security service and q = 3.

1540 CMC, 2022, vol.72, no.1

The risk coefficient λl differs for various cloud environments. For example, 3 snooping attacks, 2.5
alterations and 1.8 spoofing attacks can be carried out in the data center within a time interval. The
negative exponent shows that a probability of failure increases with the difference between srl

i and sll
i .

The risk could be caused by serious network attacks or by security barricade inaccessibility. Therefore,
by considering all security services, the risk probability of a task ti may be obtained below.

P(ti) = 1 −
∏

l∈{a,g,c}
(1 − P(ti, sll

i)). (21)

The workflow risk probability P(T) with task set T can be calculated according to Eq. (22).

P(T) = 1 −
∏
ti∈T

(1 − P(ti)). (22)

This workflow risk probability will be used as a QoS constraint for problem formulation in
the next section. The confidentiality, availability and integrity algorithms are shown in Tabs. 5–7
[36,42,43]. Based on the cryptographic algorithm efficiency, a security level of 0.08 to 1 is assigned
to each algorithm. Let the set sli = [sl1

i , sl2
i , . . . , sll

i , . . . , slq
i] reflect security services levels for task ti,

where sll
i indicates the level of the lth security service that task ti has received.

Table 5: Cryptographic algorithms for confidentiality [36]

Algorithms slc
j : Security levels

IDEA 1.00
DES 0.90
Rijndael 0.64
RC5 0.46
Knufu/Khafre 0.40
Blowfish 0.36
RC4 0.14
SEAL 0.08

Table 6: Cryptographic algorithms for availability [43]

Algorithm sla
j : Security levels

(5, 2) RS code 1.00
(5, 3) RS code 0.67
(5, 4) RS code 0.33

3.8 Deadline

For each objective, there is a corresponding user-defined scheduling requirement. The constraint
is referred to as a hard requirement. Most of the previous studies [2,44] used the deadline constraint
as the user-defined hard requirement. But in our experiments, we determined the deadline as the
completion time of the workflow scheduling process using a critical path with the lowest processing
capacity of VMs.

CMC, 2022, vol.72, no.1 1541

Table 7: Cryptographic algorithms for integrity [43]

Algorithm sli
j: Security levels

TIGER 1.00
RIFDMD-160 0.77
SHA-1 0.63
RIFDMD-128 0.36
MD5 0.26

3.9 Budget

Budget constraint is another user-defined hard requirement. Budget is determined in our exper-
iments as the maximum cost of the critical path for scheduling workflow using VMs with the most
expensive price.

3.10 Total Reliability

The probability that task ti will be performed correctly on any VM is calculated using the
exponential distribution as shown in Eq. (18). According to Eq. (19), the reliability of the workflow
is calculated as the product of task reliabilities. Thus, workflow reliability becomes smaller. For this
reason, we use the mean reliability of each workflow to get the workflow total reliability as shown
below.

total_reliability =
∑

ti∈T rel(ti)

no. of tasks
∗ 100 (23)

Since users always assume that they are working with a service provider that provides high resource
utilization and high reliability, the value of max.utilization and max_reliability are set to 100 in Eq. (32).

3.11 Problem Description

The focus of this paper is to maximize resource utilization and reliability and reduce risk
probability, makespan and cost. Thus, the workflow is represented as WF = (T, E). The primary
objective is scheduling Γ = (Loc, Ord, R), where Loc = {loc(t0), loc(t1), . . . , loc(tn − 1)} is the workflow
task to be executed, Ord = {ord(t0), ord(t1), . . . , ord(tn − 1)} is the task’s data transfer order used
primarily to determine the tasks waiting time (the tasks order must also reflect dependence relations),
R = {R0, R1, . . . , Ri, . . . , Rn − 1} is a set of resources for the whole workflow where Ri = (ti, VM(m; k),
Tstart (ti), Tend(ti)). Next, we formally describe the multi-objective optimization problem.

Minimize : F(Γ) = (makespan, cost, risk probability). (24)

Maximize : F ′(Γ) = (resource utilization, total reliability). (25)

Subjectto : reliability ≥ relc . (26)

Some previous studies have designed scheduling methods for task execution [28,31,36] but the data
transmission order has not been prioritized. Meanwhile, this is particularly important in the design of
a scheduling strategy. The scheduling results would be different if different tasks are executed in the
same location. We, therefore, take into account the priority of data transmission.

1542 CMC, 2022, vol.72, no.1

4 Multi-Objective Optimization Methods

In this section, two algorithms (MOS [45] and MOS-MWO) by which the Pareto frontier set can
be derived are discussed. Similarly, the effectiveness of these multi-objective optimization methods is
compared. According to [46], the Pareto optimal solutions must be preferably accurate and uniformly
distributed. Thus, three common effectiveness metrics (distance distribution, coverage ratio and
maximum distribution ratio) are used for comparing the collections of archives (Pareto front) in the
proposed algorithm.

4.1 Particle Swarm Optimization (PSO)

PSO was invented in 1995 by Kennedy and Eberhart. It is a swarm intelligence-based computa-
tional method that works by the principle of evolution [47]. PSO simulates birds’ hunting behaviour.
Initially, the PSO algorithm was used to solve single-objective optimization problems. Its great
search capacity motivated its exploration for solving multi-objective problems [48–50]. PSO’s basic
component is the particle moving through the search area. The direction and velocity of the particle
are used to determine the movement of the particle. The velocity is generated by integrating the best
historical locations with random perturbations. Eqs. (27) and (28) provide the velocity and position
update functions, respectively.
⇀
vi ← Inert .

⇀
vi + ϕ1.rd1.

(
⇀
pi − ⇀

xi

)
+ ϕ2.rd2.

(
⇀
gi − ⇀

xi

)
, (27)

⇀
xi ← ⇀

xi + ⇀
vi, (28)

where Inert is an inertia weight determined by Eq. (36), ϕ1 and ϕ2 are positive integers and rd1, rd2 ∈ [0,
1] are numbers chosen randomly from a uniform distribution [51]. Each PSO particle is represented
by a three-dimensional vector: the best local position

⇀
pi, the current position

⇀
xi and its velocity

⇀
vi.

Position
⇀
xi specifies a PSO algorithm-determined filter solution. Whenever the fitness value for the

current position
⇀
xi is better than the fitness value of the previous position, the current position is

stored in the vector
⇀
pi. The best global position

⇀
gi for all particles is eventually calculated based on

how the particles communicate [52].

4.2 Weighted Sum Function

The weighted sum function method is employed to integrate the features of a multi-objective
problem into one feature with weighted sum factors. The weighted sum method is especially efficient
and easier to apply compared to the Pareto optimality approach. However, a prior understanding
of the relationship between the derived objectives is required. Also, it does not include details of the
influence of the variable on particular design objectives.

This study deploys the MOS algorithm with a new decision-making method (i.e., MWO). The
proposed algorithm can produce solutions showing various cost-makespan trade-offs and reliability-
resource utilization relationships from which cloud users can select. The first step is weight determi-
nation of each alternative. We adopt the normalization function for the values of each attribute in
accordance with Eq. (29) if xij is considered a beneficial metric and Eq. (30) if it is not.

x̄ij = 1 − xij

Max xij

(29)

x̄ij = xij

Max xij

(30)

CMC, 2022, vol.72, no.1 1543

The weighted sum model (WSM) is calculated using Eq. (31) for all alternatives.

W =
n∑

j=1

x̄ij (31)

After the candidate alternatives are weighed based on the W -values, the member with the lowest
W -value is assigned higher priority among the group members. MWO is advantageous because
users or experts do not need to determine the weight for each attribute as required in multi-criteria
decision-making (MCDM). Eq. (32) shows how to normalize the makespan, cost, resource utilization,
reliability and risk probability. For the case with different constraints, we normalize the execution
cost by cost/budget; makespan by makespan/deadline; resource utilization by (1-utilization/maximum
utilization); reliability by (1-reliability/maximum reliability) and risk probability by (risk probability/-
maximum risk probability). After normalization, all values should not be greater than one if they meet
their respective constraints. Then, we can easily determine the alternative particle/schedule with the
optimal solution.

W = cost
budget

+ makespan
deadline

+ risk.prob
max.risk.prob

+
(

1 − utilization
max.utilization

)
+

(
1 − total_reliability

max.reliability

)
(32)

Let budget, deadline, max.risk.prob, max.utilization and max.reliability denote budget, deadline,
maximum risk probability, maximum utilization and maximum reliability constraints, respectively.
These constraints (cost, makespan, risk.prob, utilization, reliability)are defined as the scheduling
objectives. The workflow is said to be a feasible schedule if and only if it satisfies Eq. (33):

cost ≤ budget ∧ makespan ≤ deadline ∧ risk.prob ≤ max.risk.prob ∧ utilization ≤
max.utilization ∧ total reliability ≤
max.reliability

(33)

The MOS-MWO algorithm solves PSO multi-cloud workflow scheduling problems. Therefore,
we compare our proposed method with the MOS algorithm and show that the proposed MOS-MWO
algorithm outperforms the MOS algorithm.

4.3 QoS Satisfaction Rate (QSR)

The QoS satisfaction rate (QSR) is used to evaluate the performance of multi-objective opti-
mization approaches in a multi-cloud environment. In our study, we calculate the weight of each
alternative (workflow) and the algorithm chooses the alternative with the minimum weight which
is considered as the best alternative. According to the MWO method, the minimum weight implies
a higher performance indicating a higher satisfaction and vice versa. Thus, the key factor that
affects satisfaction is the discrepancy between the received and offered performance. Satisfaction is
formulated in Eq. (34) based on the Oliver Theory of Expectancy Disconfirmation [53,54].

QSR = e
−

∣∣∣∣ Rk−Ok

Ok

∣∣∣∣ (34)

where QSR denotes the QoS satisfaction rate of the alternative for the kth attribute, Rk is the received
performance of the alternative for kth attribute and Ok is the offered performance for kth attribute.

Similarly, we used the minimum weight to denote high performance. Thus, the above equation is
modified to suit the minimum weight. The satisfaction rate is then formulated as Eq. (35).

QSR = e
−

(
1−

∣∣∣∣ Rk−Ok

Ok

∣∣∣∣
)

(35)

1544 CMC, 2022, vol.72, no.1

Example:

In a five-objective case study, the operation of the proposed algorithm is explained using different
values of the attributes of two workflows that are described in Tab. 8. The selection of the alternative
according to weight and the evaluation of the QSR is shown below.

Table 8: The solution and the evaluation results of the example

Makespan
(H)

Cost ($) Reliability
%

Resource
utilization
%

Risk
probability %

MW QSR

x 19.31 16.25 99.00 95.08 0 0.7 87%
y 28.41 16.56 96.00 88.39 9.25387E-36 0.9 83%

Assuming the deadline is 80 and the budget is 40 in the scenario above, the minimum weight value
MW of each workflow is computed using Eq. (32) as shown below.

wx =
(

19.31
80

)
+

(
16.25

40

)
+

(
1 −

(
99

100

))
+

(
1 −

(
95.08
100

))
+

(
0

100

)
= 0.7

wy =
(

28.41
80

)
+

(
16.56

40

)
+

(
1 −

(
96
100

))
+

(
1 −

(
88.39
100

))
+

(
9.25E − 36

100

)
= 0.9

Workflow x will be selected because its weight Wx is less than Wy. Also, the QSR of the workflow
with the minimum weight is high according to Eq. (35).

4.4 Adaptive Inertia Weight Strategy

The inertia weight plays an important role in balancing the exploration and exploitation processes.
The contribution rate of a particle’s previous velocity to its velocity at the current time is determined
by the inertia weight. There is no inertia weight in the basic PSO presented by Kennedy et al. in 1995
[55]. Shi et al. [56] later introduced the concept of inertia weight in 1998. They concluded that a large
inertia weight makes a global search easier while a small inertia weight makes a local search easier.
Other scholars that proposed dynamic inertia weight include Eberhart et al. [57]. They suggested a
random inertia weight strategy that improves PSO convergence in early iterations of the algorithm.

In our experiment, we used a random inertia weight strategy by considering the weight of the
alternative as a random value as shown below.

Inert = 0.5 + Random
2

(36)

where

Random = Weight of Alternative(W) (37)

High inertia weight indicates that the solution is not optimal and that more exploration in global
search space is required to obtain a good solution. Whereas, low inertia weight indicates that the
solution is nearly optimal and that more exploitation in local search space is required to refine the
solution and avoid large jumps in the search space.

CMC, 2022, vol.72, no.1 1545

5 The Proposed Algorithm

In this study, we propose a PSO-based algorithm (MOS-MWO) to optimize the multi-cloud
scheduling process while considering different attributes. The algorithm adopts a new decision-making
method (MWO) to obtain a better set of solutions in the Pareto front. MOS-MWO involves three
main procedures: encoding and initial swarm generation, fitness evaluation and selection and particle
updating. In the course of encoding and initial swarm generation procedure, all scheduling solutions
are properly represented and the first set of solutions are generated. The fitness evaluation and
selection step involves evaluating and selecting best solution from the set of solutions generated. Lastly,
the particle updating procedure involves the evolution of the PSO particles. All the procedures are
executed using Algorithms 1, 2 and 3 which are integrated to obtain near-optimal multi-objective
solutions.

5.1 Coding Strategy

The coding strategy is illustrated in Eq. (38). The order of each task is determined and such a
task is assigned to an optimal location for data transmission. This way, the multi-objective scheduling
problem can be solved as mentioned earlier. Tab. 9 shows the search space for different VM types of
the three IaaS platforms considered in this study.

Γc = (loc(t0), loc(t1), . . . , loc(tn−1), ord(t0), ord(t1), . . . , ord(tn−1)). (38)

Table 9: Search space for different VM types

Number VM location VM type no. Compute unit Cost per hour
($)

1 Cloud (m = 1) 1 1.7 0.06
2 Cloud (m = 1) 2 3.75 0.12
3 Cloud (m = 1) 3 7.5 0.24
4 Cloud (m = 1) 4 15 0.45
5 Cloud (m = 1) 5 30 0.9
6 Cloud (m = 2) 1 2 0.07
7 Cloud (m = 2) 2 4 0.14
8 Cloud (m = 2) 3 8 0.28
9 Cloud (m = 2) 4 16 0.56
10 Cloud (m = 2) 5 32 1.12
11 Cloud (m = 3) 1 1 0.0496
12 Cloud (m = 3) 2 2 0.0912
13 Cloud (m = 3) 3 4 0.182
14 Cloud (m = 3) 4 8 0.365
15 Cloud (m = 3) 5 16 0.73

From Eq. (38), the number of parameters in Γ c shows the dimension of the particle, i.e., Ω =
2·n. 0 to n − 1 positions determine the kinds of VMs that are assigned to the tasks. For every task,
loc(ti) takes into account the VM type and the execution location. The order of tasks ord(ti) affects
the waiting time of the task. Fig. 2 shows the workflow encoding plan.

1546 CMC, 2022, vol.72, no.1

Figure 2: Encoding approach of workflow

5.2 MOS-MWO Algorithm

The proposed MOS-MWO algorithm is described in Algorithm 1. Note that Algorithms 1, 2 and
3 are integrated to get near-optimal multi-objective solutions.

Algorithm 1: MOS-MWO
BEGIN
1. Set the number of particles Np;
2. Set A = ∅; // initially empty archive, record non dominated solution

3. initialize
{

⇀
vi , �xi , �pi , �gi

}
N
i=1 ; // random location and velocity

4. initialize {total reliability = makespan = cost = utilization = Random = 0};
5. Set {�pi = �xi, �gi = , �xi }N

i=1 ;
6. calculate {pi, gi}N

i=1;
7. While idx < NIT // NIT is the number of iteration time
8. for each particle i to NP

9. �vi ← inert.�vi + ϕ1. rd1 .(�pi − �xi) + ϕ2.rd2.(�gi − �xi); // update velocity
10. �xi ← �xi + �vi; // update position
11. Call Algorithm (2);
12. Define θ(�xi) = max(0 , relc − reliability)
13. If θ(�xi) == 0 ∧ θ(�pi) == 0 // �xi and �pi are all feasible solutions
14. If W�xi < W�pi // update personal �pi

15. Set �pi = �xi;
16. Set Random = W�xi

17. end if
18. else
19. Set �pi = �x′ = argmin{θ(�xi), θ(�pi)};
20. Set Random = W�x′ ;
21. end if
22. If θ(�xi) == 0 // only the feasible solution will be added to A
23. for ∀ �x ∈ A ∧ W�xi < W�x // update A
24. A = { �x ∈ A| W�x > W�xi}; // remove points from A
25. A = A ∪ �xi; // add �xi to A
26. end for
27. end if
28. idx + +

(Continued)

CMC, 2022, vol.72, no.1 1547

Algorithm 1: Continued
29. end for
30. Select global optimal position �gi;
31. end while
END

MOS-MWO scheduling algorithm involves estimating the fitness of each particle. Scheduling
parameters and PSO parameters are initialized (lines 1–6). MOS-MWO calls Algorithm 2 to calculate
the QoS parameters (line 11). There are two reliability constraints for selecting the viable solution
[58]: 1) The optimal solution within the set of possible solutions (lines 13–17). In this case, a Random
variable takes the weight of the optimal solution. 2) If not all solutions are feasible, the best solution
and the Random value shall be chosen with the least reliability constraint (lines 18–21) [38]. So,
only feasible solutions are stored (lines 22–27). The selected method is used to evaluate the optimal
location (line 30) for multi-objective problems according to the weight of the alternative. The algorithm
continues until the final condition is fulfilled (line 7).

Algorithm 2: Scheduling generation
BEGIN
1. for task ti in Ord // traverse tasks in order usimg Algorithm 3
2. if ti = t0 // entry task
3. Set Tstart(ti) = 0; // this is also the start time of workflow
4. else
5. Set Tstart(ti) according to Eq. (2);
6. end if
7. Compute Trece(ti) based on Eq. (6);
8. Compute Texec(ti) based on Eq. (7);
9. Compute Tend(ti) based on Eq. (8);
10. Compute Task risk probability P(ti) based on Eq. (21)
11. Compute the rel(ti) based on Eq. (18);
12. end for
13. Calculate makespan according to Eq. (9);
14. Calculate cost according to Eq. (15);
15. Calculate resource utilization according to Eq. (17);
16. Calculate workflow risk probability according to Eq. (22);
17. Calculate workflow reliability according to Eq. (19);
18. Calculate total reliability according to Eq. (23);
19. Calculate workflow weight according to Eq. (32);
END

The output parameters are evaluated by scheduling generation (Algorithm 2) (lines 7–18) and
tasks are traversed in order (line 1) using Algorithm 3 during the workflow scheduling process. The
start time is calculated to find the makespan for each task (lines 2–6). Next, receiving data time Trece(ti),
task execution time Texec(ti) and end time Tend(ti) are calculated (lines 7–9). The risk probability
and reliability of the task (lines 10–11) then cost, reliability, resources utilization, risk probability
and makespan of the workflow are determined (lines 13–18). The total reliability is calculated using

1548 CMC, 2022, vol.72, no.1

Eq. (23) (line 18) and the minimum weight using Eq. (32). Finally, the weight of the workflow is
calculated (line 19).

Algorithm 3: Order of tasks
BEGIN
1. Initialize
2. α = {ti}; // schedulable entry task t0

3. γ = β = ∅; // the set of scheduled tasks and temporary tasks
4. flag = 0; // record location in search space
5. space = [0, 0] // search space
6. end Initialize
7. while α �= ∅
8. flag = flag + |α|;
9. for ti in α

10. Put all succers of task ti into β;
11. �vi ← inert.�vi + ϕ1. rd1 .(�pi − �xi) + ϕ2.rd2.(�gi − �xi);
12. �xi ← �xi + �vi;
13. if xi /∈ space
14. xi = (x′

i : min(|x′
i − xi|, xi ∈ space)

15. end if
16. space = space − {xi};
17. γ = γ + {ti}; // add task to the set of scheduled tasks
18. α = α − {ti}; // remove task from α

19. end for
20. for ti in β

21. if pre(ti) ∈ γ

22. α = α + {ti}; // add new task to α

23. end if
24. end for
25. Clear β;
26. space = [flag , flag + |α| − 1]; // update the search space
27. end while
END

Algorithm 3 identifies task order according to the dependencies between tasks, that is, task t1

must be executed before task t2 if it precedes task t2 in string Ord. Firstly, the scheduled tasks are
initialized, i.e., α = {t0} (line 2). In line 3, two sets of scheduled tasks are set as γ and β. Waiting
tasks are set to empty and the flag records the search area location (line 4). space = [0, 0] is used to
indicate an unchanged entry task position (line 5). The Euclidean distance is used in lines 11–15 and
the correct solution is selected from the search area in line 16. Tasks are finally tested and mapped to
the schedulable set α (lines 20–24). The search space is updated sequentially (line 26) to ensure there
is a more confined search space for each task in the current schedulable task α.

6 Experimental Setup and Simulation Results
6.1 Experimental Setup

CMC, 2022, vol.72, no.1 1549

Fig. 3 shows the structure of the scientific workflow. Experiments were carried out using an i7 6
cores computer with a 16 GB RAM CPU. The proposed algorithm was implemented in Workflowsim
1.0 using four real-world scientific workflows; SIPHT, montage, LIGO and CyberShake. Random rd1

and rd2 values were generated by uniform distribution in the range [0, 1] with [1,32] computing units;
respectively. The various cloud failure coefficients for Amazon EC2, Google Compute Engine and
Microsoft Azure were identified as λ1 = 0.001, λ2 = 0.003 and λ3 = 0.002, respectively. The bandwidth
was set to 0.1 G/s if the VMs are located within the same cloud while the bandwidth of the VMs was set
to 0.05 G/s if they are located in different clouds. In the multi-objective problem, the reliability of the
workflow should be equal or greater than the reliability constraint according to Eq. (26). Maximum
reliability can be calculated by Eq. (19).

n∏
i=1

relmax(ti) = relmax. (39)

Figure 3: Structure of scientific workflows [45]

In MOS-MWO, ϕ1 = ϕ2 = 2.05, and the number of particles NP = 50. For the MOS-MWO
algorithm, the number of compensation solutions NS = 15, the repeat time NIT = 1000 and repeat
programming is 20 times. Besides the maximum workflow reliability, we also measured the minimum
workflow reliability (relmin) to provide sufficient reliability. Users can set the reliability of workflow as
follows:

relc = relmin + ρ.(relmax − relmin) (40)

where ρ ε [0, 1].

In our experiments, we set the reliability constraint coefficient ρ as 0.2.

6.2 Simulation Results

This section discusses the results obtained from the experiments above with two and five conflict-
ing objectives. The simulations were carried out under reliability constraint on four scientific workflow
applications (Montage, LIGO, SIPHT and CyberShake) using MOS-MWO and the original MOS
algorithms. The purpose of each algorithm is to optimize the QoS constraints. Feasible solutions were
determined according to the minimum weight of the alternatives.

1550 CMC, 2022, vol.72, no.1

6.2.1 The Two-Objective Case Study

This scenario minimized two objectives, makespan and cost, to get the best trade-off during the
scheduling process. The results are shown in Fig. 4. Makespan and cost are two non-beneficial metrics
so they are normalized according to Eq. (30) and the minimum weight is calculated using Eq. (41)
below.

W = cost
budget

+ makespan
deadline

(41)

Figure 4: Makespan-cost trade-off on real world scientific workflow in the case of two objectives

By applying our proposed algorithm in Fig. 4a, makespan and cost reduced by 26% and 21%,
respectively compared to original-MOS. In Fig. 4b, it can be observed that MOS-MWO scheduling
on LIGO yields better makespan and cost as it achieves 15% and 21% reduction, respectively. Fig. 4c
shows that when MOS-MWO was applied on CyberShake, the makespan reduced by 12% while cost
also reduced by 24% as compared to the original MOS algorithm. The result of the makespan-cost
trade-off on SIPHT workflow (Fig. 4d) indicates that the makespan is reduced by 39% and the cost
reduced by 30% using MOS-MWO. Overall, applying our proposed MOS-MWO algorithm minimized
makespan and cost and performs better than original-MOS.

6.2.2 The Five-Objective Case Study

We consider a scenario consisting of five important objectives in real-life applications: makespan,
cost, resource utilization, reliability and risk probability. Resource utilization and risk probability are

CMC, 2022, vol.72, no.1 1551

vital to the resource provider while the other objectives are particularly of concern to the users. This
section discusses the results obtained from the experiments with these five conflicting objectives. Fig. 5
shows the results of deploying MOS-MWO and original-MOS algorithms for the different scientific
workflows to obtain their optimum solutions. Results from the Montage workflow in Fig. 5a show that
the MOS-MWO algorithm yields the best set of makespan-cost trade-offs as compared with original-
MOS algorithm. With MOS-MWO, makespan is reduced by 28% as compared to the original MOS
and cost is also reduced by 4%. Similarly, Fig. 5b shows that MOS-MWO produced the best set of
alternatives in terms of makespan-cost trade-off on LIGO. It reduced makespan and cost by 35% and
8%, respectively when compared to original-MOS.

Figure 5: Makespan-cost trade-off on real world scientific workflow in case of five objectives

Looking at the two algorithms applied on CyberShake in Fig. 5c, results show that MOS-MWO
produced solutions with the best makespan-cost trade-off. As compared to original-MOS, MOS-
MWO reduced makespan and cost by 41% and 20%, respectively. This is also observed in the graphs
for the SIPHT workflow (Fig. 5d). On applying MOS-MWO on SIPHT, we get a better makespan-cost
trade-off and the makespan and cost reduced by 30% and 12%, respectively. Deductively, MOS-MWO
outperforms original-MOS that applies the Pareto dominance method.

1552 CMC, 2022, vol.72, no.1

Fig. 6 shows the relationships between resource utilization and reliability. MOS-MWO and
original-MOS algorithms are applied to various scientific workflows. Similar to Fig. 5, the results show
that the MOS-MWO achieves the best performance (i.e., higher resource utilization and reliability)
in comparison with the original MOS algorithm. This is an indication of the efficiency of our new
decision-making method.

Figure 6: The relation between resource utilization and reliability

Fig. 6a shows that using MOS-MWO for scheduling Montage scientific workflow can produce
better results in terms of reliability and resource utilization than original-MOS. The resource uti-
lization and reliability increased by 13% and 15%, respectively when compared with original-MOS.
Applying MOS-MWO on LIGO in Fig. 6b increased the resource utilization of MOS by 4%. The
reliability also increased by 5% more than the original MOS. Fig. 6c shows that working with MOS-
MWO on CyberShake gives best results in terms of resource utilization and reliability, so the resource
utilization is 6% more than the original MOS and the reliability increased by about 4% more than
original-MOS. As for SIPHT (Fig. 6d), we can see that MOS-MWO produced better results in terms
of resource utilization with a 3% increase. Also, the reliability increased by 3% as compared to original-
MOS.

Tab. 10 shows the results for the two multi-objective scheduling algorithms studied in this article.
Both algorithms were executed in 1000 iterations to obtain the solutions with the highest reliability.
With the conflicting attributes (makespan, cost, risk probability, reliability and resource utilization),

CMC, 2022, vol.72, no.1 1553

the table shows that MOS-MWO yields the best results while working with all workflows. MOS-MWO
performs better than the original MOS algorithm for all attributes. We noticed in Tab. 10 that in the
case of SIPHT, original-MOS produces less cost as compared with MOS-MWO. This does not affect
the overall performance because we are concerned about the general optimization of the scheduling
process considering all the existing attributes. Nevertheless, MOS-MWO yields an optimal solution
when compared with the original MOS algorithm.

Table 10: The scheduling results of different objectives

Workflow Algorithm Makespan
(H)

Cost ($) Resource
utilization %

Reliability % Risk
probability
%

Montage MOS-MWO 16.97646 16.25947 98.1552 100 0
ORIGINAL-
MOS

28.41862 16.56222 88.391 96.00078 9.25E −
36

CyberShake MOS-MWO 13.25704 14.60733 91.548 99.94592 0.000839
ORIGINAL-
MOS

21.87111 14.72884 85.00771 99.89295 0.015951

LIGO MOS-MWO 17.37589 17.76025 89.2026 90.37384 6.87E −
21

ORIGINAL-
MOS

25.08614 19.89861 84.278 88.69139 0.029631

SIPHT MOS-MWO 7.99 8.66 80.03467 72.79165 0.012041
ORIGINAL-
MOS

15.09 8.579409 60.00867 71.72216 0.025741

7 Performance Measurement

Fig. 7 shows the QoS satisfaction rate achieved by both MOS-MWO and original-MOS for all
scientific workflows used in this study. As observed in Fig. 7a, MOS-MWO achieves the best QSR
when dealing with Montage compared to original-MOS algorithm as it uses a number of iterations
under the reliability constraint. MOS-MWO achieves a 2% improvement with respect to QSR while
using 200 iterations and it achieved around 4% improvement of QSR when the number of iterations is
600. With 1000 iterations, MOS-MWO improved the satisfaction rate by 5% as compared with original-
MOS. While increasing the number of iterations, we can get better QSR by using MOS-MWO.

Fig. 7b illustrates the results of scheduling LIGO scientific workflow by using both MOS-MWO
and original-MOS under the reliability constraint. With 200 iterations, MOS-MWO yields about
3% QSR improvement as compared to MOS. By increasing the number of iterations to 1000, QSR
increased by 4% when compared with original-MOS. Using MOS-MWO to schedule CyberShake in
200 iterations, the QSR improved by 3% more than original-MOS as shown in Fig. 7c. When the
number of iterations increased to 1000, MOS-MWO improved QSR by 5% more than original-MOS.

Fig. 7d illustrates the results of scheduling SIPHT scientific workflow using both MOS-MWO and
original-MOS algorithms under the reliability constraint. As compared to original-MOS, MOS-MWO

1554 CMC, 2022, vol.72, no.1

achieves about 3% QSR improvement with 200 iterations. By increasing the number of iterations to
1000, the QSR increased to 5% in comparison with original-MOS.

Figure 7: QoS satisfaction rate with five studied objectives

Examining just one of the aspects related to efficiency is unlikely to give a decisive test on
multipurpose solutions. Thus, three metrics are used in this study: Q-metric, S-metric and FS-metric.
These metrics are used to evaluate the quality of the Pareto fronts obtained by different algorithms
[49]. Q-metric can be deployed [59,60] as shown in Eq. (42) to determine the particular degree of
convergence of multi-objective algorithms A and B.

Q(A, B) = |Ψ |/|Y |. (42)

� = ϒ ∩ SA and Y is the set of SA ∪ SB. Two sets of Pareto optimum results for two multi-
objective algorithms A and B are indicated by SA and SB. Algorithm A is better than Algorithm B

CMC, 2022, vol.72, no.1 1555

only if Q(A, B) > Q(B, A) or Q(A, B) > 0.5. The Pareto front space size is determined by the FS metric
as computed in Eq. (43) [61].

FS =
√√√√ m∑

i=1

min
(x0,x1)∈SA×SA

(fi(x0) − fi(x1))
2, (43)

where fi(x0) and fi(x1) are two values of one objective function. A larger FS value means a greater
diversity in the Pareto front. We adopt the S-metric as calculated in Eq. (44) in order to determine the
level of uniformity of solutions [30].

s =
√√√√ NP∑

i=1

(d ′
i − d ′)

2
/NP, (44)

where the number of Pareto solutions is NP and d ′
i calculates the distance between the members of

Pareto front set.

d ′ =
(

NP∑
i=1

d ′
i

)
/NP. (45)

A smaller S-metric implies that the algorithm has found a uniform solution, as opposed to FS-
metric and Q-metric, where a greater value is preferred.

Figs. 5 and 6 show the trade-off between makespan and cost and the relation between reliability
and resource utilization for MOS-MWO and original-MOS algorithms. Obviously, the MOS-MWO
algorithm yields the optimal results for all objectives considered. The multi-objective performance
metrics in Figs. 5 and 6 are illustrated in Tab. 11. If the Q-metrics of MOS-MWO is set to true, that
implies that its performance is better than the original-MOS algorithm. Tab. 11 shows that the value
of Q-metrics is true Q(MOS-MWO, MOS) for all scientific workflows. This shows that the solutions
of MOS-MWO are always better than the original MOS, which means that MOS-MWO provides the
best result in terms of multi-objective convergence.

Table 11: Multi-objective performance metrics

Workflow Q-metric MOS-MWO Original-MOS

Montage MOS-MWO - True
FS-metric 1.07 1.05
S-metric 0.32 0.40

LIGO MOS-MWO - True
FS-metric 0.58 0.25
S-metric 0.24 0.48

SIPHT MOS-MWO - True
FS-metric 0.55 0.51
S-metric 0.22 0.15

CyberShake MOS-MWO - True
FS-metric 0.28 0.70
S-metric 0.25 0.52

1556 CMC, 2022, vol.72, no.1

With regards to the Montage workflow, the FS-metric value for MOS-MWO is 1.07 which is
greater than that of original-MOS algorithm. This means MOS-MWO achieves a higher diversity
when compared to the original MOS algorithm. The S-metric for MOS-MWO is smaller than that of
original-MOS algorithm by 0.02, which means MOS-MWO produces better uniformity in the Pareto
front than the original MOS algorithm. As for the LIGO workflow, the FS-metric of MOS-MWO is
0.58 and that is higher than original-MOS algorithm thus, indicating that the MOS-MWO is better
than original-MOS algorithm in terms of diversity. The value of the S-metric of MOS-MWO is lesser
than that of the MOS algorithm by 0.24, which indicates the uniformity in the Pareto front of MOS-
MWO is better than the original MOS algorithm.

In Tab. 11 we can see that applying MOS-MWO on SIPHT produced an FS-metric value of 0.55
which is better than the original MOS. In contrast, the S-metric of MOS-MWO is 0.22 which is higher
than the original MOS algorithm. This implies that the uniformity produced by the original MOS is
better than MOS-MWO algorithm. Looking at the results from the CyberShake, it can be observed
that the FS-metric of MOS-MWO is 0.28 which is less than the original MOS algorithm that has 0.70
FS-metric value. This implies that original MOS produced a better diversity compared to the MOS-
MWO algorithm. The S-metric value of MOS-MWO is 0.25 which is smaller than the original MOS.
As such, MOS-MWO produces better uniformity when compared to original-MOS algorithm.

8 Conclusion

In this article, the MOS-MWO algorithm is presented and its efficiency in handling scheduling
problems with multiple QoS constraints and objectives in a multi-cloud environment is demonstrated.
The proposed MOS-MWO algorithm uses a novel decision-making method (MWO) to solve workflow
scheduling problems by considering both users’ and service providers’ QoS requirements in multi-
cloud environments. The proposed approach is modeled to handle QoS objective optimization with
multiple constraints. MWO is used to evaluate and select the best solutions according to the weights
of the specified alternatives. Such weights are also used to establish the inertia weight by using an
adaptive strategy. High inertia weight means that the solution is not optimum thus, there is a need
to increase exploration in the global search space to get good solutions. A low inertia weight means
that the solution is near-optimal. Hence, we increase the exploitation in local search space to refine
the solution and prevent big jumps in the search space. Extensive simulations were conducted on four
scientific workflow applications to evaluate the performance of the proposed MOS-MWO algorithm.
The simulation results obtained indicated that MOS-MWO outperformed the original MOS with
respect to the QoS constraints. It also remarkably outperformed the original MOS in term of QoS
satisfaction rate.

Acknowledgement: Throughout the study, the authors gratefully appreciate all those who contributed
academically, technically, administratively and financially to this study.

Funding Statement: This work was supported by Putra Grant, University Putra Malaysia, under Grant
95960000 and in part by the Ministry of Education (MOE) Malaysia.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

CMC, 2022, vol.72, no.1 1557

References
[1] F. Ebadifard and S. Babamir “Dynamic task scheduling in cloud computing based on Naïve Bayesian

classifier,” in Proc. of the Int. Conf. for Young Researchers in Informatics, Mathematics and Engineering
Kaunas, Kaunas, Lithuania, vol. 1852, pp. 91–95, 2017.

[2] B. Lin, W. Guo, G. Chen, N. Xiong and R. Li, “Cost-driven scheduling for deadline-constrained workflow
on multi-clouds,” in 2015 IEEE Int. Parallel and Distributed Processing Symp. Workshop, Hyderabad, India,
pp. 1191–1198, 2015.

[3] N. Sooezi, S. Abrishami and M. Lotfian, “Scheduling data-driven workflows in multi-cloud environment,”
in 2015 IEEE 7th Int. Conf. on Cloud Computing Technology and Science (CloudCom), Vancouver, BC,
Canada, pp. 163–167, 2015.

[4] L. Liu and M. Zhang, “Multi-objective optimization model with AHP decision-making for cloud service
composition,” KSII Transactions on Internet and Information Systems (TIIS), vol. 9, no. 9, pp. 3293–3311,
2015.

[5] F. Cappelletti, P. Penna, A. Prada and A. Gasparella, “Development of algorithms for building retrofit,”
in Start-Up Creation. Smart Eco-Efficient Built Environment, Sawston, Cambridge, United Kingdom:
Woodhead Publishing, pp. 349–373, 2016.

[6] F. Ebadifard and S. Babamir, “A Multi-objective approach with WASPAS decision-making for workflow
scheduling in cloud environment,” International Journal of Web Research, vol. 1, no. 1, pp. 1–10, 2018.

[7] J. Li, S. Su, X. Cheng, Q. Huang and Z. Zhang, “Cost-conscious scheduling for large graph processing
in the cloud,” in Proc. IEEE Int. Conf. on High Performance Computing and Communications, Banff, AB,
Canada, pp. 808–813, 2011.

[8] E. Jeannot, E. Saule and D. Trystram, “Optimizing performance and reliability on heterogeneous parallel
systems: Approximation algorithms and heuristics,” Journal of Parallel and Distributed Computing, vol. 72,
no. 2, pp. 268–280, 2012.

[9] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic for interconnection-constrained heteroge-
neous processor architectures,” IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 2, pp.
175–187, 1993.

[10] A. Doǧan and F. Özgüner, “Biobjective scheduling algorithms for execution time-reliability trade-off in
heterogeneous computing systems,” The Computer Journal, vol. 48, no. 3, pp. 300–314, 2005.

[11] S. Sagnika, M. Das and S. Bilgaiyan, “A Multi-objective cat swarm optimization algorithm for workflow
scheduling in cloud computing environment,” Intelligent Computing, Communication and Devices, vol. 2,
pp. 73–84, 2015.

[12] O. Udomkasemsub, L. Xiaorong and T. Achalakul, “A Multiple-objective workflow scheduling framework
for cloud data analytics,” in Ninth Int. Conf. on Computer Science and Software Engineering (JCSSE),
Bangkok, Thailand, IEEE, pp. 391–398, 2012.

[13] Z. Wu, Z. Ni, L. Gu and X. Liu, “A revised d iscrete particle swarm optimization for cloud workflow
scheduling,” in 2010 Int. Conf. on Computational Intelligence and Security, Nanning, Guangxi Zhuang
Autonomous Region China, pp. 184–188, 2010.

[14] A. Khalili and S. M. Babamir, “Optimal scheduling workflows in cloud computing environment using
Pareto-based grey wolf optimizer,” Concurrency and Computation: Practice and Experience, vol. 29, no. 11,
pp. 1–11, 2017.

[15] S. Yassa, R. Chelouah, H. Kadima and B. Granado, “Multi-objective approach for energy-aware workflow
scheduling in cloud computing environments,” The Scientific World Journal, vol. 2013, Article ID. 350934,
pp. 1–13, 2013.

[16] F. Ebadifard and S. M. Babamir, “Scheduling scientific workflows on virtual machines using a Pareto and
hypervolume based black hole optimization algorithm,” The Journal of Supercomputing, vol. 76, pp. 1–54,
2020.

[17] P. Kaur and S. Mehta, “Resource provisioning and work flow scheduling in clouds using augmented
shuffled frog leaping algorithm,” Journal of Parallel and Distributed Computing, vol. 101, pp. 41–50, 2017.

1558 CMC, 2022, vol.72, no.1

[18] M. Zhang, H. Li, L. Liu and R. Buyya, “An adaptive multi-objective evolutionary algorithm for con-
strained workflow scheduling in clouds,” Distributed and Parallel Databases, vol. 36, no. 2, pp. 339–368,
2018.

[19] V. Singh, I. Gupta and P. K. Jana, “An energy efficient algorithm for workflow scheduling in IAAS cloud,”
Journal of Grid Computing, vol. 18, no. 3, pp. 357–376, 2019.

[20] A. Verma and S. Kaushal, “A hybrid multi-objective particle swarm optimization for scientific workflow
scheduling,” Parallel Computing, vol. 62, pp. 1–19, 2017.

[21] N. V. Dharwadkar, S. R. Poojara and P. M. Kadam, “Fault tolerant and optimal task clustering for scientific
workflow in cloud,” International Journal of Cloud Applications and Computing, vol. 8, no. 3, pp. 1–19, 2018.

[22] J. J. Durillo, H. M. Fard and R. Prodan, “MOHEFT: A multi-objective list-based method for workflow
scheduling,” in 4th IEEE Int. Conf. on Cloud Computing Technology and Science Proc., Taipei, Taiwan, pp.
185–192, 2012.

[23] J. J. Durillo and R. Prodan, “Multi-objective workflow scheduling in Amazon EC2,” Cluster Computing,
vol. 17, no. 2, pp. 169–189, 2014.

[24] J. J. Durillo, R. Prodan and J. G. Barbosa, “Pareto tradeoff scheduling of workflows on federated
commercial clouds,” Simulation Modelling Practice and Theory, vol. 58, no. 2, pp. 95–111, 2015.

[25] J. Yu, R. Buyya and K. Ramamohanarao, “Workflow scheduling algorithms for grid computing,” Meta-
heuristics for Scheduling in Distributed Computing Environments, vol. 146, pp. 173–214, 2008.

[26] M. Kalra and S. Singh, “Multi-criteria workflow scheduling on clouds under deadline and budget
constraints,” Concurrency and Computation: Practice and Experience, vol. 31, no. 17, pp. 1–16, 2019.

[27] I. Casas, J. Taheri, R. Ranjan and A. Y. Zomaya, “PSO-DS: A scheduling engine for scientific workflow
managers,” The Journal of Supercomputing, vol. 73, no. 9, pp. 3924–3947, 2017.

[28] Z. Zhu, G. Zhang, M. Li and X. Liu, “Evolutionary multi-objective workflow scheduling in cloud,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 5, pp. 1344–1357, 2016.

[29] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei et al., “Minimizing cost and makespan for workflow scheduling
in cloud using fuzzy dominance sort based HEFT,” Future Generation Computer Systems, vol. 93, pp. 278–
289, 2019.

[30] M. Farid, R. Latip, M. Hussin and N. A. W. Abdul Hamid, “Scheduling scientific workflow using multi-
objective algorithm with fuzzy resource utilization in multi-cloud environment,” IEEE Access, vol. 8, pp.
24309–24322, 2020.

[31] M. A. Rodriguez and R. Buyya, “Deadline based resource provisioning and scheduling algorithm for
scientific workflows on clouds,” IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp. 222–235, 2014.

[32] Z. Li, J. Ge, H. H. Hu, W. Song, H. H. Hu et al., “Cost and energy aware scheduling algorithm for scientific
workflows with deadline constraint in clouds,” IEEE Transactions on Services Computing, vol. 11, no. 4,
pp. 713–726, 2015.

[33] C. Zhang, R. Green and M. Alam, “Reliability and utilization evaluation of a cloud computing system
allowing partial failures,” in IEEE 7th Int. Conf. on Cloud Computing, Anchorage, AK, USA, pp. 936–937,
2014.

[34] S. Kianpisheh, N. M. Charkari and M. Kargahi, “Reliability-driven scheduling of time/cost-constrained
grid workflows,” Future Generation Computer Systems, vol. 55, pp. 1–16, 2016.

[35] D. Poola, K. Ramamohanarao and R. Buyya, “Enhancing reliability of workflow execution using task
replication and spot instances,” ACM Transactions on Autonomous and Adaptive Systems (TAAS), vol. 10,
no. 4, pp. 1–21, 2016.

[36] Z. Li, J. Ge, H. Yang, L. Huang, H. Hu et al., “A security and cost aware scheduling algorithm for
heterogeneous tasks of scientific workflow in clouds,” Future Generation Computer Systems, vol. 65, pp.
140–152, 2016.

[37] L. Zeng, B. Veeravalli and X. Li, “SABA: A security-aware and budget-aware workflow scheduling strategy
in clouds,” Journal of Parallel and Distributed Computing, vol. 75, pp. 141–151, 2015.

CMC, 2022, vol.72, no.1 1559

[38] H. M. Fard, R. Prodan and T. Fahringer, “Multi-objective list scheduling of workflow applications in
distributed computing infrastructures,” Journal of Parallel and Distributed Computing, vol. 74, no. 3, pp.
2152–2165, 2014.

[39] L. Zhang, K. K. Li, C. Li and K. K. Li, “Bi-objective workflow scheduling of the energy consumption and
reliability in heterogeneous computing systems,” Information Sciences, vol. 379, pp. 241–256, 2017.

[40] X. Tang, K. Li, Z. Zeng and B. Veeravalli, “A novel security-driven scheduling algorithm for precedence-
constrained tasks in heterogeneous distributed systems,” IEEE Transactions on Computers, vol. 60, no. 7,
pp. 1017–1029, 2011.

[41] T. Xie and X. Qin, “Performance evaluation of a new scheduling algorithm for distributed systems with
security heterogeneity,” Journal of Parallel and Distributed Computing, vol. 67, no. 10, pp. 1067–1081, 2007.

[42] T. Xie and X. Qin, “Scheduling security-critical real-time applications on clusters,” IEEE Transactions on
Computers, vol. 55, no. 7, pp. 864–879, 2006.

[43] Y. Wang, Y. Guo, Z. Guo, W. Liu and C. Yang, “Securing the intermediate data of scientific workflows in
clouds with ACISO,” IEEE Access, vol. 7, pp. 126603–126617, 2019.

[44] P. Wang, Y. Lei, P. R. Agbedanu and Z. Zhang, “Makespan-driven workflow scheduling in clouds using
immune-based PSO algorithm,” IEEE Access, vol. 8, pp. 29281–29290, 2020.

[45] H. Hu, Z. Li, H. Hu, J. Chen, J. Ge et al., “Multi-objective scheduling for scientific workflow in multicloud
environment,” Journal of Network and Computer Applications, vol. 114, no. 11, pp. 108–122, 2018.

[46] D. Araújo, C. Bastos-Filho, E. Barboza, D. Chaves and J. Martins-Filho, “A performance comparison of
multi-objective optimization evolutionary algorithms for all-optical networks design,” IEEE Symposium on
Computational Intelligence in Multicriteria Decision-Making (MDCM), Paris, France, vol. 2011 MDCM,
pp. 89–96, 2011.

[47] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in MHS’95. Proc. of the Sixth
Int. Symp. on Micro Machine and Human Science, Nagoya, Japan, vol. 0-7803–267, pp. 39–43, 1995.

[48] J. E. Alvarez-Benitez, R. M. Everson and J. E. Fieldsend, “A MOPSO algorithm based exclusively on pareto
dominance concepts,” in Int. Conf. on Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico, pp.
459–473, 2005.

[49] J. Wei and M. Zhang, “A memetic particle swarm optimization for constrained multi-objective optimization
problems,” IEEE Congress of Evolutionary Computation (CEC), vol. CEC 2011, pp. 1636–1643, 2011.

[50] W. F. Leong and G. G. Yen, “PSO-Based multiobjective optimization with dynamic population size and
adaptive local archives,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol.
38, no. 5, pp. 1270–1293, 2008.

[51] H. P. Dai, D. D. Chen and Z. S. Zheng, “Effects of random values for particle swarm optimization
algorithm,” Algorithms, vol. 11, no. 2, pp. 1–23, 2018.

[52] Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J. -C. Hernandez and R. G. Harley, “Particle
swarm optimization: Basic concepts, variants and applications in power systems,” IEEE Transactions on
Evolutionary Computation, vol. 12, no. 2, pp. 171–192, 2008.

[53] R. L. Oliver, “Effect of expectation and disconfirmation on postexposure product evaluations: An
alternative interpretation,” Journal of Applied Psychology, vol. 62, no. 4, pp. 480–486, 1976.

[54] N. Yadav, M. S. Goraya and D. Singh, “Satisfaction aware QoS-based bidirectional service mapping in
cloud environment,” Cluster Computing, vol. 23, no. 4, pp. 2991–3011, 2020.

[55] J. Kennedy and R. Eberhart, “Particle swarm optimisation,” in Proc. of ICNN’95-Int. Conf. on Neural
Networks, Perth, WA, Australia, vol. 4, pp. 1942–1948, 1995.

[56] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in IEEE Int. Conf. on Evolutionary
Computation Proc. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), Anchorage,
AK, USA, pp. 69–73, 1998.

[57] R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic systems with particle swarms,” in Proc. of
the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), Seoul, Korea (South), vol. 1,
pp. 94–100, 2001.

1560 CMC, 2022, vol.72, no.1

[58] K. Deb, “An efficient constraint handling method for genetic algorithms,” Computer Methods in Applied
Mechanics and Engineering, vol. 186, no. 2–4, pp. 311–338, 2000.

[59] W. Jing, Z. Yongsheng, Y. Haoxiong and Z. Hao, “A Trade-off pareto solution algorithm for multi-objective
optimization,” in Fifth Int. Joint Conf. on Computational Sciences and Optimization. IEEE, Harbin, China,
pp. 123–126, 2012.

[60] J. Hartmanis and J. Van Leeuwen, “Advances in natural computation,” in Second Int. Conf., ICNC 2006,
Xi’an, China, Proc., Part II. vol. 4222, 2006.

[61] R. Garg and A. K. Singh, “Multi-objective workflow grid scheduling using ε-fuzzy dominance sort based
discrete particle swarm optimization,” The Journal of Supercomputing, vol. 68, no. 2, pp. 709–732, 2014.

	Weighted-adaptive Inertia Strategy for Multi-objective Scheduling in Multi-clouds
	1 Introduction
	2 Related Work
	3 Scheduling Model
	4 Multi-Objective Optimization Methods
	5 The Proposed Algorithm
	6 Experimental Setup and Simulation Results
	7 Performance Measurement
	8 Conclusion

