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Abstract: Cooperative Intelligent Transport System (C-ITS) plays a vital role
in the future road traffic management system. A vital element of C-ITS com-
prises vehicles, road side units, and traffic command centers, which produce
a massive quantity of data comprising both mobility and service-related data.
For the extraction of meaningful and related details out of the generated data,
data science acts as an essential part of the upcoming C-ITS applications.
At the same time, prediction of short-term traffic flow is highly essential to
manage the traffic accurately. Due to the rapid increase in the amount of
traffic data, deep learning (DL) models are widely employed, which uses a
non-parametric approach for dealing with traffic flow forecasting. This paper
focuses on the design of intelligent deep learning based short-term traffic flow
prediction (IDL-STFLP) model for C-ITS that assists the people in various
ways, namely optimization of signal timing by traffic signal controllers, trav-
elers being able to adapt and alter their routes, and so on. The presented IDL-
STFLP model operates on two main stages namely vehicle counting and traffic
flow prediction. The IDL-STFLP model employs the Fully Convolutional
Redundant Counting (FCRC) based vehicle count process. In addition, deep
belief network (DBN) model is applied for the prediction of short-term
traffic flow. To further improve the performance of the DBN in traffic flow
prediction, it will be optimized by Quantum-behaved bat algorithm (QBA)
which optimizes the tunable parameters of DBN. Experimental results based
on benchmark dataset show that the presented method can count vehicles and
predict traffic flow in real-time with a maximum performance under dissimilar
environmental situations.
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1 Introduction

Cooperative Intelligent Transport System (C-ITS) is a well-known and effective model which
aspires to enhance road safety, traffic control, and driver security. It is the internal component used in
future progressiveness of modern cities. A principle used in C-ITS has unique connectivity of vehicles
and be aware of traffic rules. Using the vehicle to vehicle connectivity, Road Side Units (RSUs) are
deployed in diverse geographical position and distribute the data from transports to Traffic Command
Centers (TCCs). Here, the centralized TCC guides in controlling the city level traffic to make sure the
emergency alert signals and investigation of traffic based data for effective route estimation. Also, TCC
offers the wireless transceivers of vehicles with significant data for congestion management and guides
in election of security models [1]. Initially, C-ITS is used to resolve with maximum data interchanging
among diverse C-ITS utilities like vehicles, RSUs as well as TCCs. Moreover, data analytics is a major
device which can be applied for extracting applicable outcomes. In addition, data can be attained from
diverse alternate sensors on road as well as mobile phones to withstand C-ITS domains. The main
responsibility of data analytics is the précised data interpretation and make appropriate decisions for
optimizing the performance of C-ITS which increases the scalability as well as efficiency.

The major challenge issues that have been raised while using data analysis to C-ITS is data
generation as well as communication. As C-ITS is applied in numerous domains, data demands
should be resolved effectively. Data analytics offers suitable final outcomes with maximum data
quality. Moreover, standards have evolved with collective messages as well as data which has to be
inter-changed between CITS utilities with the transmission demands [2]. In addition, data demands
for numerous newly developed applications that apply C-ITS have been described. C-ITS domains
produce maximum data which requires collection and forward to TCC for data investigation. IEEE
802.11p is a wireless model which has been applied to effective data dispersion in C-ITS. Followed
by, Long Term Evolution (LTE)-V2X is alternate potential wireless method which is an effective
distribution of traffic as well as mobility data. It is significant to decide applicable wireless scheme
for specific domain. The wireless technology has to be operated in cooperation with heterogeneous
wireless system.

Unlike, traffic controlling domains exploit a centralized scheme in which the TCC in decision-
making. Therefore, TCC is composed of data analytics method to manage different factors of CITS
transmission. The attained simulation outcomes of data analytics offer feedback to different C-ITS
channels on applying the variables to increase the communication efficacy. The application of data
analytics offers a considerable solution to report crucial challenges in C-ITS. For instance, Quality
of Service (QoS) of diverse domains is enhanced under the application of traffic density on road.
A prolonged examination of traffic mobility details guides the travelers in decision making process
regarding the effective routes to destination and manages the complex traffic. In C-ITS, data analytics
models were applied to enhance the scalability of transmission with respect to congestion control as
well as cooperative transmissions. There are numerous domains which depend upon making smart
decisions on the basis of gathered data. An only limited number of data analytics models leverage
effective disseminated processing of big data in C-IT’S applications.
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The massive C-ITS domains gather and examine the sensors details and offer services to indi-
viduals. In this method, 2 operators have been adopted namely, smart parking model as well as road
condition tracking. In [3], developers have projected a cloud-relied smart parking method by applying
Internet of Things (IoT). A vehicle is trained with Radio Frequency Identification (RFID) tag as well
as parking space contains RFID reader in both entry and exit portions. The newly developed model
gathers data regarding parking spaces with the help of RFID readers. Also, users can reserve the
parking area by mobile application. Followed by, the parking allocation is decided by using a central
server. Next, crowd sensing-based road state tracking system is defined in [4]. Furthermore, vehicles are
embedded with sensors like accelerometers as well as gyroscopes. In order to gather the data regarding
road state, developers have performed real-time experiments under the application of diverse vehicles
size and manufacturing period. Road abnormalities are categorized according to the trajectory data
of the vehicles. Initially, wavelet packet-denoising has been applied for reducing the noise in data.
Followed by, feature extraction models are used to gain the actual road state which depends upon
the received data. Moreover, Support Vector Machine (SVM) classifier activates the categorization of
road issues which depends upon the severity.

Since C-ITS produces dense quantity of data, effective parallel as well as distributed computing
models are essential. Hadoop and Spark are the 2 generally applied materials to perform effective
distributed computing of big data. In [5], developers have applied Hadoop tool for examining massive
amounts of traffic information. Especially, MapReduce approach has been applied in Hadoop to
classify huge scale traffic event data as sub-class. Then, parallel processing is employed on sub-events
to gain abnormal traffic actions. In [6], researchers have presented a data management model for
dynamic highway toll pricing operation. Spark is applied as parallel processing method to enhance
the efficiency of data processing. Moreover, it has been applied to compute data cleaning as well as
data harmonization. MongoDB scheme is employed for data storage and management.

This paper presents an intelligent deep learning based short-term traffic flow prediction (IDL-
STFLP) model for C-ITS that offers assistance to the people in distinct ways such as optimization of
signal timing by traffic signal controllers, travelers being able to adapt and alter their routes, and so on.
The presented IDL-STFLP model involves two main stages namely vehicle counting and traffic flow
prediction. The IDL-STFLP model employs the Fully Convolutional Redundant Counting (FCRC)
based vehicle count process. Besides, deep belief network (DBN) model is applied for the prediction
of short-term traffic flow. For improving the traffic flow prediction results of the DBN, it will be
optimized by Quantum-behaved bat algorithm (QBA) which optimizes the tunable parameters of
DBN. A wide range of experimentation analyses was performed and the experimental results denoted
that the presented IDL-STFLP method can count vehicles and predict traffic flow in real-time with
maximum performance under dissimilar environmental situations.

2 Related Works

This section reviews the recently developed state of art methods of vehicle counting and traffic
flow prediction models, particularly designed for ITS.

2.1 Prior Works on Vehicle Counting Process

The extensively used models of vehicle counting are vehicle prediction as well as vehicle moni-
toring. The earlier vehicle prediction is performed to extract movable targets from image series and
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find the extracted objects. A vehicle prediction model is operated on background reduction scheme,
frame variation model as well as optical flow model. Therefore, background reduction scheme applies
the weighted average framework for background enhancement which impacts the security of vehicle
extraction as well as the prediction accuracy. In addition, frame variation model has been influenced
by vehicle speed as well as the time period of prominent frames. Moreover, optical flow technology
is defined as pixel-level density evaluation which is not applicable for practical domains because of
the huge computation [7]. Recently, the effect of solving complex scenarios to gain précised target
prediction, Machine Learning (ML) models and classifiers are employed extensively prior to applying
Deep Learning (DL) which is considered as the major stream of computer vision. Therefore, ML as
well as classifiers are highly composed of demerits of maximum time complexity, weak region election,
and inefficiency of features extracted manually. At last, DL scheme is projected for target prediction
which has depicted that features gained by using Deep Convolutional Neural Networks (DCNN)
are supreme when compared with hand-engineered features. In contrast to ML, the previous target
prediction models have relied on DL which can be categorized as proposal-relied schemes like Region-
based CNN (R-CNN), Spatial Pyramid Pooling (SPP)-net, Fast R-CNN, Faster R-CNN, and Mask
R-CNN, and proposal-free models like Single Shot Multibox Detector (SSD) as well as You Only
Look Once (YOLO). Inversely, SSD and YOLO apply a model of allocating default boxes and divide
the input image as fixed grid for computing target prediction as well as classification significantly
where the training and predicting process is robust when compared with R-CNN series. Therefore,
SSD ensures a robust prediction speed and accuracy is supreme than YOLO. In addition, election
of adequate labeled training instances is essential in SSD model. Then, the extensive application of
efficient DL methods and datasets is significant to maximize the efficacy and accuracy of vehicle
prediction.

In recent times, Vehicle tracking is one of the well-known process carried out in vehicle counting
and gained maximum concentration from many developers. The traditional schemes for vehicle
counting depend upon the video classification as DL-based tracking approaches, online methods
(Markov decision process (MDP)), and batch-relied models (Internet of Underwater Things (IOUT)).
Practically, online as well as batch-based models experience limited target prediction. Xiang et al.
[8] utilized online scheme for extracting vehicles for target forecasting, however, the accuracy is
degrading by obstruction in case of numerous vehicles and vehicle speed which is random in nature.
Presently, significant models for video-relied vehicle monitoring could be classified as generative and
discriminative approaches. Sparse Coding is one of the major streams of generative tracking models
like ALSA and L1APG.

The recently developed discriminative tracking approach, correlation filtering scheme has occu-
pied the mainstream location and accomplished considerable simulation outcomes like Kalman filter
(KF) and Kernel Correlation Filter (KCF). The previous DL-based monitoring approaches are relied
on DL prediction and make use of KCF, KF, and alternate modalities for tracking. Therefore, KCF
as well as KF has to acquire recent frames from the existing frame, which refers that, to develop
constraints by developing a motion mechanism and achieve set of feasible candidate regions of defined
location. It is applicable for single target monitoring, however, if multi-target observation is carried
out, it is simple to generate tracking errors because of the occlusion issues. At last, to resolve the
tracking complexities formed by different movable scenes, defined occlusion, deformation, and vehicle
scale extensions, structure of efficient vehicle monitoring technology plays a vital role in performance
estimation.
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2.2 Prior Works on Traffic Flow Prediction

Numerous studies have presented short term traffic flow prediction and deployed diverse models.
Here, KF, local linear regression, Neural Network (NN), as well as Fuzzy Logic (FL) based methods
are few models applied in predicting short term traffic flow. Because of stochastic and non-linear
hierarchy of traffic stream, ML models have attained maximum concentration and are considered as
alternatives for traffic flow detection. Dougherty et al. [9] applied Backpropagation Neural Network
(BPN) for developing a traffic flow prediction scheme, speed as well as traffic occupancy. Finally, it has
been defined that elasticity sample is considered a better option for interpreting NN method. Based
on the comparison of NN and statistical methods for short term traffic flow detection on motorway
traffic data is computed by [10].

Dia [11] presented object based NN technology to predict the short term traffic constraints on
highway distance from Brisbane as well as Gold Coast in Queensland, Australia. Wang et al. [12]
applied SVMs for computing short term traffic detection. It has been recommended that proper
election of kernel attributes in SVM is a crucial process. In order to overcome this difficulty, a novel
kernel function has been applied using wavelet theory to hold non-stationary features of short term
traffic speed details. Furthermore, it has sampled in real-time traffic speed data. Theja et al. [13]
assumed the combination of less-lane disciplined traffic data and similar traffic flow. It has also
employed SVM and BP artificial neural network (ANN) to create traffic prediction scheme. Finally,
it has been defined that SVM technique is considered to be précised. Centiner et al. [14] referred the
homogeneous traffic flow and applied ANN method for developing STFLP scheme on traffic data
gathered from Istanbul. The reliability and efficacy of NN for short term prediction of traffic with
mixed Indian traffic flow state on 4-lane continuous highways were depicted by Kumar et al. [15]
and assumed ANN scheme for traffic flow prediction and employed traffic volume, speed, traffic
density, time as input attributes. Moreover, it has been defined that working function of ANN is
reliable even the prediction time is changed. Guo et al. [16] utilized adaptive KF model for STFLP and
uncertainty measurement. The STFLP method for real-time traffic data accumulated from 4 diverse
highway modules from UK, Minnesota, Washington, and Maryland from USA. Habtemichael et al.
[17] projected a non-parametric detection method by applying extended k-nearest neighbors (kNN)
model for short-term traffic flow rate detection. It has been identified that the newly developed model
has surpassed existing parametric method applied. Moreover, Ma et al. [18] described that accuracy is
one of the significant elements used to STFLP. A 2D predictive manner has been presented under the
application of KF for traditional traffic details. As a result, the attained results from presented model
are optimal when compared with remarkable KF scheme. Guo et al. [19] recommended that interval
detection is highly essential and effective when compared with point prediction for traffic controllers
in forthcoming scenarios of ITS. It has employed fuzzy data granulation model in conjunction with
ANN, SVM, and KNN techniques to make a prediction method for point as well as interval detection
on real-time traffic data gathered from American field TS. The derived outcome has implied that
maximum time interval, stability of detection system has been accomplished.

3 The Proposed IDL-STFLP Model

The presented IDL-STFLP model operates on two main stages namely vehicle counting and traffic
flow prediction. In the first stage, vehicle counting takes place using an FCRC model. It is generally
a DNN architecture that comes from the Family of Inception networks which performs redundant
counting instead of predicting a density map to average over errors. Once the vehicles are counted, in
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the second stage, traffic flow prediction takes place using optimal DBN using QBA, which has been
used for the prediction of traffic flow in short term.

3.1 FCRC Based Vehicle Counting Technique

Basically, the number of objects in an input image I has been evaluated for the limited number
of training samples with point annotations. These objects are used in counting small, and complete
image is huge in volume. Since the counting process is laborious, only limited number of labeled images
are applied. Rather than using CNN model, a smaller network can be employed over the image and
generate intermediate count map. Hence, smaller network is subjected to training the count of objects
in receptive domain. Recently, the image I is computed with the network in FC manner and generate
a matrix F (I) which indicates the number of objects for certain receptive field r × r of sub-network
which proceeds counting task. Thus, high-level overview is listed in the following:

• Pre-process the image using padding
• Compute an image in FC manner
• Integrate the counts jointly as overall count of image

The FC network computes an image under the application of a network with minimum receptive
field on completed image. As a result, the overfitting issues can be reduced. Firstly, the tiny, Fully
Convolutional Network (FCN) is composed of limited variables when compared with a network
trained on complete image. Followed this, by dividing the image, FCN has maximum number of
training data and fits the parameters.

In this model, developers have managed to estimate the target objects of an image I . Also, the
image is composed of several target objects which are labeled with point labels L. Due to the counting
network behavior, the dimensions are reduced from (32×32) → (1×1) and input I should be padded
to deal with the objects present in edges [20]. Moreover, objects on border of an image would be in
the receptive field with column and row overlapping of input image. In case of r = 32, a pixel from
F(I) is estimated to be 15 pixels from border I . F(I) defines the alignment of target T . It is significant
that receptive field of a network is arranged with appropriate regression target. The target image is
developed from point-annotated map L, identical size as input imageI , in which the object undergoes
annotation by using a single pixel. It is considered due to the labeling of dots and it is simple than
drawing boundaries to perform segmentation.

Assume that R(x, y) is the collection of pixels position in receptive field and referred as T [x, y].
Next, the target image T can be developed by:

T [x, y] =
∑

(x′ ,y′)∈R(x,y)

L [x′, y′] (1)

where T [x, y] denotes the sum of cells with size of r×r receptive field. It is considered as the regression
target for r×r region of an image. Here, FCN has been applied with receptive field of 32×32. Moreover,
the result of FCN on 320×320 image is defined as 287×287 pixels. As a result, the simulation outcome
of FCN is maximum when compared with actual input. A pixel from output illustrates the number
of targets in receptive field. In order to carry out mapping, the Count-ception structure is applied
from the Inception system. Followed by, the convolution of Leaky ReLU activation has been used.
Therefore, the max pooling as well as stride = 2 convolutions have been applied. As a result, it is simple
to measure the receptive field of a network due to the strides and include a modulus for estimating
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the size of count map. Followed by, downsampling is performed in 2 locations with the help of large
filters and reduce the size of a tensor. Next, the training process has been initialized by applying Batch
Normalization (BN) layers after the convolution process. Developers gave attempted the combination
of loss functions and identified L1 loss to estimate an optimal outcome.

min ‖F (I) − T‖ 1 (2)

Xie examined that L2 penalty is extremely complex for network training. Moreover, the unification
of pixel-wise loss and loss relied on entire prediction of complete image. It has identified the cause of
over-fitting and offered with no assistance of training. The predefined loss is defined as a surrogate
objective for real-time count which is highly significant. Moreover, the number of a cell is measured for
several iterations to gain average feasible errors. The stride of 1 where the target is estimated to pixel
in corresponding receptive field. Since, the stride is increased, the count of redundant can be reduced.

#redundant counts =
(r

s

)2

(3)

To regain the actual count, sum of each pixel is divided by count of repeated counts.

#true counts =
∑

x,y F (I) [x, y]

#redundant counts
(4)

There are numerous advantages in applying redundant counts. When the pixel label is inaccurate in
the middle of a cell, the network is capable of learning average cell which is demonstrated in a receptive
field.

3.2 Optimal DBN Based Traffic Flow Prediction Technique

In order to gain accurate traffic flow detection, DBN method has been applied to know the
significant features of traffic flow details. Actually, DBN belongs to the Deep Neural Network (DNN)
with numerous hidden layers and massive number of hidden units in every layer. In traditional DBN is
same as Restricted Boltzmann Machine (RBM) method which is composed of output layer. Moreover,
DBN applies robust, greedy unsupervised learning method for training RMB and supervised fine-
tuning scheme to change the system by labeled data [21–23]. The RBM is comprised of visible layer v
and hidden layer h, linked by undirected weights. For stack of RBMs in DBN, hidden layer of RBM
is considered as visible layer of upcoming RBM. The parameter set of RMB as θ = (w, b, a), in which
wij implies the weight among vi and hj. bi and aj are defined as bias of layers. Fig. 1 shows the structure
of DBN model [24]. The RBM describes corresponding energy as depicted below:

E (v, h | θ) = −
∑

i

bivi −
∑

j

ajhj −
∑

i

∑
j

wijvihj (5)

and the joint probability distribution of v and h is determined by,

p (v, h | θ) = exp (−E (v, h | θ))∑
v,h exp (−E (v, h | θ))

(6)
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Figure 1: The structure of DBN

While marginal probability distribution of v is illustrated as,

p (v | θ) =
∑

h exp (−E (v, h | θ))∑
v,h exp (−E (v, h | θ))

(7)

For gaining best θ value for single data vector v, gradient of log-likelihood evaluation is estimated
on the basis of applied expression,
∂logp (v | θ)

∂wij

= 〈
vihj

〉
data

− 〈
vihj

〉
model

,

∂logp(v | θ)

∂aj

= 〈
hj

〉
data

− 〈
hj

〉
model

, (8)

∂logp (v | θ)

∂bi

= 〈vi〉data − 〈vi〉model ,

where 〈·〉 indicates the expectations by distribution of specific subscript. Due to the absence of
links among units in similar layer, 〈·〉data is simply obtained by measuring the conditional probability
distributions and represented as

p
(
hj | v, θ

) = 1

1 + exp
(− ∑

i wijvi − aj

) (9)

p (vi | h, θ) = 1

1 + exp
(− ∑

j wijhj − bi

) .

The activation function is referred as sigmoid function [25]. In case of 〈·〉model, Contrastive
Divergence (CD) learning model is employed by redevelopment to reduce the variations of 2
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Kullback–Leibler divergences (KL). Initially, CD learning is effective in real-time application and
limits the processing cost when compared with Gibbs sampling approach. Therefore, weights in DBN
layers undergo training with the help of unlabeled data by fast and greedy unsupervised mechanism.
In case of prediction, supervised layer is included in DBN to change the learned features by using
labeled data under the application of up-down fine-tuning method. Here, the Fully Connected (FC)
layer acts as a top layer, and sigmoid activation function has been employed.

3.3 Hyperparameter Optimization

In order to fine tune the hyperparameters such as ‘weights’ and ‘bias’ of the DBN model, QBA
is employed. It can be extended version of Bat Algorithm (BA). Basically, BA is devised by Yang
[26] and evolved from the echolocation features of bats. It is a novel and well-known nature-based
metaheuristic technique which is renowned for the capability of integrating the merits of effective
models. BA is elegant and effective than Genetic algorithm (GA) and particle swarm optimization
(PSO) techniques. A Bat can usually find prey, remove hurdles, and explore food using the advanced
echolocation ability and the self-adaptive utility to balance the Doppler Effect in echoes. Traditionally,
Doppler Effect and foraging behavior of bats were not considered; instead, it was assumed the bats
foraging which is not true and does not resemble the normal performance of bats. In this model, these
2 phenomena were regarded as alternate features of BA. The development of QB in bats expands the
foraging nature of bats that contributes to population diversification.

Basically, BA depends upon 3 idealized procedures namely, (1) echolocation capability of bats to
predict the distance and to measure the variance among the prey as well as background obstacles, (2)
bats change the wavelength (k0) and loudness (A0) for identifying the prey. Moreover, it regulates the
frequency as well as rate of the released pulses, which depends upon the distance of prey; (3) assume
the loudness has differed from a maximum (A0) value to lower constant value (Amin). The location (xi)

and velocities (vi) of virtual bats are upgraded by using the given function:

fi = fmin + (fmax − fmin) α (10)

vt
i = vt−1

i + (
xt

i − gt
)

fi (11)

xt
i = xt−1

i + vt
i (12)

where α, fi, fmin, and fmax indicates the random vector from [0, 1], pulse frequency, lower and higher
frequency. Followed by, vt

i, vt−1
i , xt

i, xt−1
i , and gt means the velocity of ith bat at iteration t, velocity of

ith bat at iteration (t − 1), and recent optimal global location identified by the bats, correspondingly.
The local random walk is applied for generating a novel solution for a bat after selecting a solution
from recent optimal solutions. Hence, new position is defined as shown in the following:

xnew = xold + εAt (13)

where ε denotes the arbitrary value from [−1,1] and At indicates the average loudness of bats at iteration
t. Thus, optimal solution can be accomplished by the given expressions:

xt+1
d = gt

d × [
1 + j

(
0, σ 2

)]
(14)

σ 2 = ∣∣At
i − At

∣∣ + ε
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where j
(
0, σ 2

)
denotes the Gaussian distribution along with mean 0 and standard deviation (SD)σ 2.

xt+1
d and gt

d implies the location of ith bat at iteration t + 1 as well as recent optimal global location
examined by bats at dimension d. At

i refers the loudness of ith bat at iteration t. ∼ε means the combined
value used to make sure the positive SD σ2. The loudness Ai as well as pulse emission rate ri are
upgraded for all iterations by the given functions:

At+1
i = δAt

i (15)

rt+1
i = r0

i [1 − exp (−γ t)]

where At
i, At+1

i , r0
i , and rt+1

i implies the loudness of ith bat at iteration t, loudness of ith bat at iteration
t + 1, basic pulse emission rate of ith bat as well as pulse emission rate of ith bat at iteration t + 1,
correspondingly. d and C resembles constants from [0, 1] and maximum when compared with 0 ∼
(γ > 0).

In order to make effective performance, maximum number of idealized rules were adopted with
3 idealized rules identified in actual BA namely, (1) Bats are composed of diverse foraging habitats
instead of having single foraging habitat which depending upon the stochastic selection and (2) bats
are composed of self-adaptive ability to manage the Doppler Effect in echoes [27]. In QBA, quantum-
hierarchy virtual bats location is described in the following:

xt
id = gt

d + β
∣∣mbestd − xt

id

∣∣ ln
(

1
u

)
, u (0, 1) < 0.5 (16a)

xt
id = gt

d − β
∣∣mbestd − xt

id

∣∣ ln
(

1
u

)
, u (0, 1) ≥ 0.5 (16b)

where xt
id signifies the location of ith bat in dimension d at iteration t. The bats with self-adaptive

management for Doppler Effect modifies the upgrading function as depicted in Eqs. (10) and (11) as
follows:

fid = (340 + vt−1
i )

(340 + vt−1
g )

× fid ×
[

1 + Ci ×
(
gt

d − xt
id

)
|gt

d − xt
id| + ε

]
(17)

vt
id = (

w × vt−1
id

) + (
gt

d − xt
id

)
fid (18)

xt
id = xt−1

id + vt
id (19)

where fid indicates the frequency of ith bat in dimension d; vt−1
g represents the velocity of global best

position at iteration t − 1, and Ci means the positive value of ith bat within [0, 1]. Then, consider the
value of C as 0, afterward bat is unable to compensate the Doppler Effect in echoes and when C = 1,
it refers that bat compensates completely for Doppler Effect in echoes. Fig. 2 illustrates the flowchart
of BA technique.
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Figure 2: Flowchart of BA algorithm

4 Performance Validation

A detailed experimental analysis of the IDL-STFLP model takes place with other existing
techniques interms of precision as shown in Tab. 1 and Fig. 3 under varying volume and speed. The
experimental outcome stated that the GNB and KELM models have showcased least precision values
whereas the DKELM and DSAE models have portrayed slightly improved precision values. But the
presented IDL-STFLP model has resulted in higher precision. For instance, under the volume of
5 min, the IDL-STFLP model has resulted in a maximum precision of 90.783% whereas the other
methods such as GNB, KELM, DKELM, and DSAE models have offered a minimum precision of
83.150%, 83.273%, 84.473%, and 85.525%. Likewise, under the volume with 15 min, the IDL-STFLP
method has resulted in a higher precision of 94.882% while the alternate methods like GNB, KELM,
DKELM, and DSAE models have offered a lower precision of 91.210%, 91.137%, 90.922%, and
91.524%. Similarly, under the volume with 25 min, the IDL-STFLP model has resulted in a maximum
precision of 99.275% and the other approaches such as GNB, KELM, DKELM, and DSAE methods
have provided a minimum precision of 92.550%, 93.142%, 94.020%, and 93.911%.
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Table 1: Result analysis of existing with proposed model in terms of precision

Index Minutes GNB KELM DKELM DSAE IDL-
STFLP

Volume 5 83.150 83.273 84.473 85.525 90.783
10 87.230 86.912 88.141 90.621 94.081
15 91.210 91.137 90.922 91.524 94.882
20 92.160 90.841 92.912 93.563 96.861
25 92.550 93.142 94.020 93.911 99.275

Speed 5 94.180 93.455 94.371 95.122 96.087
10 94.530 94.410 95.025 94.978 96.822
15 95.592 94.632 96.340 96.762 97.580
20 95.420 95.870 95.981 97.013 98.104
25 96.674 96.170 96.639 98.412 98.720

Figure 3: Result analysis of IDL-STFLP model interms of precision (a) Under varying volume, (b)
Under varying speed

The experimental results have recommended that the GNB and KELM methods have exhibited
minimum precision values while the DKELM and DSAE models have portrayed slightly improved
precision values. However, the projected IDL-STFLP scheme has provided maximum precision. For
example, under the speed of 5 min, the IDL-STFLP framework has exhibited a maximum precision of
96.087% and alternate methods such as GNB, KELM, DKELM, and DSAE models have displayed
least precision of 94.180%, 93.455%, 94.371%, and 95.122%. Likewise, under the speed of 15 min, the
IDL-STFLP model has resulted in a maximum precision of 97.580% and the other methods like GNB,
KELM, DKELM, and DSAE models have offered a low precision of 95.592%, 94.632%, 96.340%, and
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96.762%. Likewise, under the speed of 25 min, the IDL-STFLP model has finalized higher precision
of 98.720% while the other methods such as GNB, KELM, DKELM, and DSAE models have offered
a minimal precision of 96.674%, 96.170%, 96.639%, and 98.412%.

A detailed experimental examination of the IDL-STFLP model is compared with traditional
techniques by means of recall as shown in Tab. 2 and Fig. 4 under varying volume and speed. The
experimental results stated that the GNB and KELM models have showcased least recall values
whereas the DKELM and DSAE models have depicted slightly improved recall values. But the
presented IDL-STFLP model has resulted maximum recall. For instance, under the volume with 5 min,
the IDL-STFLP model has shown a maximum recall of 95.310% whereas the other methods such as
GNB, KELM, DKELM, and DSAE techniques have offered a minimum recall of 83.020%, 83.890%,
83.530%, and 84.900%. Similarly, under the volume with 15 min, the IDL-STFLP model has resulted
in a greater recall of 95.990% whereas the other methods such as GNB, KELM, DKELM, and DSAE
models have showcased a minimum recall of 90.840%, 91.060%, 94.410%, and 91.720%. Similarly,
under the volume of 25 minutes, the IDL-STFLP model has offered a maximum recall of 98.860%
whereas the other methods such as GNB, KELM, DKELM, and DSAE models have exhibited a
minimum recall of 92.770%, 93.420%, 96.510%, and 96.460%.

The experimental results stated that the GNB and KELM models have showcased least recall
values whereas the DKELM and DSAE models have portrayed slightly improved recall values. But
the presented IDL-STFLP model has finalized maximum recall. For instance, under the speed of 5
min, the IDL-STFLP model has resulted in a maximum recall of 96.740% while the other techniques
like GNB, KELM, DKELM, and DSAE models have offered a minimum recall of 92.410%, 94.300%,
94.780%, and 96.500%. In line with this, under the speed of 15 min, the IDL-STFLP model has offered
a maximum recall of 98.630% whereas the other methods such as GNB, KELM, DKELM, and DSAE
models have provided the least recall of 94.570%, 94.590%, 95.120%, and 96.520%. Likewise, under
the speed of 25 min, the IDL-STFLP model has showcased higher recall of 99.040% whereas the other
methods such as GNB, KELM, DKELM, and DSAE methods have offered a minimum recall of
95.860%, 96.500%, 97.680%, and 97.270%.

Table 2: Result analysis of existing with proposed model in terms of recall

Index Minutes GNB KELM DKELM DSAE IDL-
STFLP

Volume 5 83.020 83.890 83.530 84.900 95.310
10 85.000 87.600 83.920 90.900 93.820
15 90.840 91.060 94.410 91.720 95.990
20 91.470 91.470 95.530 93.380 94.970
25 92.770 93.420 96.510 96.460 98.860

Speed 5 92.410 94.300 94.780 96.500 96.740
10 93.940 93.890 94.810 96.900 97.480
15 94.570 94.590 95.120 96.520 98.630
20 95.650 95.540 93.620 97.210 98.040
25 95.860 96.500 97.680 97.270 99.040
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Figure 4: Result analysis of IDL-STFLP model interms of recall (a) Under varying volume, (b) Under
varying speed

A detailed experimental analysis of the IDL-STFLP model takes place with other existing
techniques with respect to accuracy as depicted in Tab. 3 and Fig. 5 under diverse volume and speed.
The experimental results stated that the GNB and KELM models have showcased least accuracy values
while the DKELM and DSAE models have portrayed slightly improved accuracy values. Therefore,
the proposed IDL-STFLP model has resulted in higher accuracy. For instance, under the volume with
5 min, the IDL-STFLP model has resulted in a maximum accuracy of 92.671% while the other methods
such as GNB, KELM, DKELM, and DSAE models have offered a low accuracy of 83.591%, 83.990%,
84.656%, and 84.990%. Similarly, under the volume with 15 min, the IDL-STFLP model has resulted
in a maximum accuracy of 94.694% whereas the alternate methods such as GNB, KELM, DKELM,
and DSAE models have offered a minimal accuracy of 90.613%, 89.882%, 90.990%, and 91.654%.
Likewise, under the volume with 25 min, the IDL-STFLP model has resulted in greater accuracy
of 98.411% whereas the other methods such as GNB, KELM, DKELM, and DSAE models have
showcased least accuracy of 92.121%, 93.741%, 93.653%, and 94.567%. The experimental outcome
depicted that the GNB and KELM models have showcased least accuracy values whereas the DKELM
and DSAE models have illustrated slightly improved accuracy values. Then, the proposed IDL-STFLP
model has resulted in higher accuracy. For example, under the speed of 5 min, the IDL-STFLP model
has offered a maximum accuracy of 96.223% whereas the other methods such as GNB, KELM,
DKELM, and DSAE models have offered a lower accuracy of 93.700%, 93.742%, 93.853%, and
95.292%. Likewise, under the speed of 15 min, the IDL-STFLP model has exhibited a maximum
accuracy of 98.022% whereas the other models like GNB, KELM, DKELM, and DSAE models have
offered a minimum accuracy of 95.450%, 95.222%, 95.457%, and 95.823%. Along with that, under
the speed of 25 min, the IDL-STFLP technique has concluded a greater accuracy of 99.210% while
the other methods like GNB, KELM, DKELM, and DSAE models have offered a lower accuracy of
96.010%, 95.831%, 95.881%, and 97.997%.
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Table 3: Result analysis of existing with proposed model in terms of accuracy

Index Minutes GNB KELM DKELM DSAE IDL-
STFLP

Volume 5 83.591 83.990 84.656 84.990 92.671
10 86.344 87.410 88.422 89.971 94.482
15 90.613 89.882 90.990 91.654 94.694
20 90.360 91.743 92.551 93.145 97.183
25 92.121 93.741 93.653 94.567 98.411

Speed 5 93.700 93.742 93.853 95.292 96.223
10 94.071 94.743 95.079 94.999 96.741
15 95.450 95.222 95.457 95.823 98.022
20 95.425 95.871 96.378 96.372 98.523
25 96.010 95.831 95.881 97.997 99.210

Figure 5: Result analysis of IDL-STFLP model interms of accuracy (a) Under varying volume, (b)
Under varying speed

5 Conclusion

This paper has developed an effective IDL-STFLP model for traffic flow prediction in C-ITS.
The presented IDL-STFLP model operates on two main stages namely vehicle counting and traffic
flow prediction. Primarily, vehicle counting takes place using an FCRC model that carries out the
redundant counting rather than the density map prediction to average over errors. Next to the vehicle
count process, traffic flow prediction takes place using optimal DBN which has been used for the
prediction of traffic flow in short term. A wide range of experimentation analyses was performed
and the experimental results denoted that the presented IDL-STFLP method can count vehicles and
predict traffic flow in real-time with maximum performance under dissimilar environmental situations.
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In future, the performance of the IDSL-STFLP model can be raised by the use of advanced deep
learning architectures with optimal hyperparameter settings.
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