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Abstract: The sixth-generation (6G) wireless communication networks are
anticipated in integrating aerial, terrestrial, and maritime communication into
a robust system to accomplish trustworthy, quick, and low latency needs. It
enables to achieve maximum throughput and delay for several applications.
Besides, the evolution of 6G leads to the design of unmanned aerial vehicles
(UAVs) in providing inexpensive and effective solutions in various application
areas such as healthcare, environment monitoring, and so on. In the UAV
network, effective data collection with restricted energy capacity poses a
major issue to achieving high quality network communication. It can be
addressed by the use of clustering techniques for UAVs in 6G networks. In this
aspect, this study develops a novel metaheuristic based energy efficient data
gathering scheme for clustered unmanned aerial vehicles (MEEDG-CUAV).
The proposed MEEDG-CUAV technique intends in partitioning the UAV
networks into various clusters and assign a cluster head (CH) to reduce the
overall energy utilization. Besides, the quantum chaotic butterfly optimiza-
tion algorithm (QCBOA) with a fitness function is derived to choose CHs
and construct clusters. The experimental validation of the MEEDG-CUAV
technique occurs utilizing benchmark dataset and the experimental results
highlighted the better performance over the other state of art techniques
interms of different measures.
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1 Introduction

The cutting edge wireless communication networks towards 6G are imagined to empower intel-
lectual, secure, dependable, and boundless availability [1]. It is anticipated that 6G will bring an
undeniable structure for connected things and computerization framework from independent vehicles
to unmanned aerial vehicles (UAVs) with tough and various prerequisites such as dependability,
inertness, data rate, and energy proficiency. UAVs, normally known as drones, act as a vital part of
a broad scope of utilization cases and situations that can go past 5G and 6G [2]. The instances of UAV
applications incorporate bundle conveyance, media creation, surveillance, and distant developments.
The organization of UAVs is consistently expanding and, as anticipated by the Federal Aviation
Administration (FAA), the quantity of business UAV armadas can reach up to 1.6 million by 2024.
In the meantime, unmanned aircraft system (UAS) traffic management (UTM) frameworks are being
created to provide danger free activity of low-height UAVs with their conceivably high traffic thickness.
In an associated sky, the help of a huge scope arrangement of UAVs requires solid and secure remote
correspondences that guarantee safe control and activity of UAVs [3]. This will require productive
framework plan for remote correspondence, canny calculation, and solid control instruments. Fig. 1
illustrates the process of 5G.

Figure 1: Process of 5G

In multiUAV systems, UAV-to-UAV (U2U) and UAV-to-base station (U2BS) data sharing is a
successful answer for excellent organization correspondence. Inferable from the high portability of
UAVs, UAV localization is a significant specialized issue. UAV localization is acknowledged utilizing
GPS; be that as it may, GPS experiences a normal area blunder of 10–30 m [4]. Much of the
time, for example, rural environments check under terrible climate conditions, the GPS signal has
been inadequate or totally missing. Subsequently, a few techniques are presented for addressing this
localization issue in UAV networks [5]. The vast majority of these techniques, which utilize the distance
estimation strategy, depend on bilateration and trilateration. Be that as it may, flip ambiguity (FA) is
a significant issue in distance-estimation based localization techniques [6]. Nonetheless, GPS is costly
and energy burning-through [7].

In multi-UAV systems, clustering is utilized to control the organization of UAVs in the network.
Due to energy limits, the network lifespan has been critical boundary in UAV systems [8]. Additionally,
attributable to the high versatility of UAVs, geography control is fundamental to decrease corre-
spondence impedance [9]. The clustering approach addresses the significant distance correspondence
issue, expands network versatility, improves network lifetime, and builds the unwavering quality of
the whole organization. Moreover, clustering can furnish proficient and consistent courses with low
correspondence overhead during the course disclosure and sending measures [10]. It can be result



CMC, 2022, vol.71, no.3 5313

of their effortlessness, adequacy in taking care of complicated streamlining issues, and neighborhood
least aversion [11]. A greater part of these calculations is motivated by creature conduct, developmental
ideas, and actual wonders.

Pustokhina et al. [12] proposed a novel energy-efficient cluster based UAV network with DL
based scene classification technique. The presented technique contains a clustering with parameter
tuned residual network (C-PTRN) technique that functions on 2 important stages namely cluster
construction as well as scene classification. Primarily, the UAV is clustered, and selected CH transfer
the taken images to BS. Secondary level, a DL-based ResNet50 approach was utilized to scene
classification. For tuning the hyperparameter of ResNet50 technique, water wave optimization (WWO)
technique was utilized.

In Turgut et al. [13], an analytical structure has been given for analyzing the SINR coverage
probabilities of UAV helped cellular networks by clustered user equipment (UE). The place of UAVs
as well as ground BS have been demonstrated as Poison point procedures, and UE has been considered
distributed based on Poisson cluster technique about the predictions of UAV on the ground. Primarily,
the complementary cumulative distribution purpose and probabilities density purpose of path losses
to combine of UAV as well as ground BS tiers are resultant.

In Na et al. [14], an efficient iterative technique was presented for addressing it. Initially, to set
UAV path, every terminal is clustered and sub-slot allocation technique dependent upon Lagrange
multiplier and bisection technique was presented. Afterward, to set clustering state and sub-slot time,
it can optimize the UAV path. Spyridis et al. [15] regarded the aim of locating mobile IoT devices
of unknown places, utilizing the set of UAVs which are equipped by RSSI sensor. The UAV utilized
measurement of objective’s radio frequency (RF) signal power for modelling the objective as rapidly as
feasible. In DL technique carried out clustering from the UAV networks at regular intervals depending
upon graph convolutional network (GCN) framework that utilized data on RSSI and UAV places.

In Liu et al. [16], a new non-stationary multi-mobility UAV-to-ship channel technique was pre-
sented, containing 3 types of modules, for instance, the line-of-sight (LoS), single-bounce (SB) modules
resultant in the variation of seawater, and multi-bounce (MB) modules presented by waveguide result
on sea surface. Minhas et al. [17] proposed the Reinforcement Learning (RL) and UAV helped
multipath routing technique to PSN. The goal is for increasing network lifespan by enhancing the
energy-efficiency of PSN. Initial, network configurations have been created utilizing varying clustering
methods. The RL is then implemented for configuring the routing topology which regards combined
immediate energy cost and entire distance cost of communication path.

1.1 Objective of the Paper

The major objective of the study is to design an intelligent data gathering scheme for clustered
UAVs in such a way that the energy efficiency is accomplished.

1.2 Contribution of the Paper

This article presents a novel metaheuristic based energy efficient data gathering scheme for clus-
tered unmanned aerial vehicles (MEEDG-CUAV). The proposed MEEDG-CUAV technique intends
in partitioning the UAV networks into various clusters and assign a cluster head (CH) to reduce the
overall energy utilization. Besides, the quantum chaotic butterfly optimization algorithm (QCBOA)
with a fitness function is derived to choose CHs and construct clusters. The experimental validation
of the MEEDG-CUAV technique takes place using benchmark dataset and the experimental results
highlighted the better performance over the other state of art techniques interms of different measures.
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1.3 Organization of the Paper

The rest of the paper is organized as follows. Section 2 offers the detailed discussion of the
MEEDG-CUAV technique and Section 3 provides a brief performance validation process. Finally,
Section 4 draws the conclusion.

2 The Proposed MEEDG-CUAV Technique

In this study, a MEEDG-CUAV technique is derived for energy efficient data collection in UAV
enabled 6G networks. The MEEDG-CUAV technique involves the design of QCBOA technique by
integrating the concepts of quantum theory and chaotic map into the classical BOA. In addition,
the QCBOA technique derives a fitness function involving three input variables to elect CHs like
residual energy (RDE), average distance to neighboring UAVs (ADTN), and UAV degree (DEG).
Fig. 2 demonstrates the overall process of presented MEEDG-CUAV technique.

Figure 2: Overall process of MEEDG-CUAV model

2.1 Algorithmic Design of QCBOA Technique

The nature simulated metaheuristic technique is presented, called BOA that reproduces the
foraging as well as mating performance of the butterfly. The most essential feature of BOA altered
in other metaheuristics is which all butterflies have their individual unique scent. The fragrance was
expressed as:

fi = cIa (1)

where fi implies the supposed magnitude of smell, c signifies the sensory modalities, and I refers the
stimulation intensities, and a defines the power exponents dependent upon degree of smell absorption.
In theory, some value of sensory morphologies coefficient c from the range of 0 and ∞ is taken. But,
their value has been defined as the particularity of optimized issues from the iterative procedure of
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BOA. The sensory modality c from the optimum search phase of technique is expressed as:

ct+1 = ct + [0.025/(ct · Tmax)] (2)

where Tmax represents the maximal amount of iterations during this technique, and the primary value
of parameter c has been fixed to 0.01.

Besides, there are 2 important steps from the technique, it can be correspondingly, global as
well as local search phases [18]. The mathematical process of butterfly global search movement is
written as:

xt+1
i = xt

i + (r2 × gbest − xt
i) × fi (3)

where xt
i indicates the solution vector xi of ith butterfly from t iteration and r signifies an arbitrary

number from 0 and 1. At this point, gbest refers the present optimum solution establish amongst every
solution from the present stage. Mostly fi defines the smell of ith butterfly. The local search phase is
written as:

xt+1
i = xt

i + (r2 × xk
i − xt

j) × fi (4)

where xt
j and xk

i are jth and kth butterflies selected arbitrarily under the solution spaces. When xt
j and

xk
i affect the similar iterations, it implies that butterfly develops local random walk. Otherwise, this

type of arbitrary effort alters the solutions.

Combined of global as well as local searches to food and mating partner with butterfly by its
nature is taking place. So, the switch probability p has been fixed to change the usual global search
and intensive local search. During all the iterations, the BOA arbitrarily creates the number from 0
and 1 that is related to switch probability p for deciding that for conducting global/local searches.

The chaos model is a division of mathematics which acts on non-linear dynamical system. Non-
linear represents that it can be inconceivable for predicting the system response with relating the
input, and dynamical mean alters from the system in one state to another over time. The chaos
purpose signifies the dynamic model with deterministic formula. But, according to the primary
condition, chaotic functions are generated wildly unpredictable and divergent feature performances
[19]. Therefore, the chaos function is improve the intensification as well as diversification of optimized
techniques that is prevent local optimal solutions and change nearby global optimal. These purposes
follow very easy principles and have some interrelating parts; but, during all iterations, the created
value was based on the earlier value and primary condition.

During this case, it can be executed 3 varying chaotic maps such as logistic mapping, iterative
mapping, and tent mapping with sensory modality (c) and power exponents (p) computations from
the BOA. The chaos purposes have been established for exhibiting higher efficiency related to other
chaos purposes.

Logistic map:

xt = rxt−1(1 − xt−1) (5)

At this point, xt implies the value from some iterations t, and r denotes the rate of growth that is
proceeds values in [3.0–4.0].

Iterative map:

xt = sin
(

Pπ

xt−1

)
(6)
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During the iterative map, the value of P is chosen amongst [0,1], and the outcome xt has been
chaotic variable which takes values in [0–1].

Tent map:

xt =

⎧⎪⎨
⎪⎩

xt−1

0.7
, xt−1 < 0.7

10
3

(1 − xt−1), xt−1 ≥ 0.7
(7)

The tent map has 1D map which similar to logistic map. At this point, the outcome xt has been
chaotic variable which takes values in [0,1].

During the presented QCBOA, the sensory modality value was changed with more disturbance
to c value under the new BOA utilizing a chaos function. It can change the sensory modality value as:

c−mod(t) =
[

c−mod(t − 1) + 0.025
c−mod(t − 1) ∗ T

]
∗ xt (8)

where c−mod(t) refers the changed sensory modality value from some iterations t. For implementing
the logistic, iterative, and tent chaos maps, (5), (6), and (7) are utilized for replacing xt in (8)
correspondingly. Also, the constant value of power exponents on every iteration from the original
BOA has been exchanged as:

a−mod(t) = 0.15 ∗ xt (9)

The variances in the sensory modality and power exponent amongst the new BOA and presented
QCBOA with logistic map. The c−mod and a−mod values don’t differ linearly, and these values aren’t
constants on every iteration.

The change of sensory-modality value is affected by premature convergence. In addition, the
implementation of constant value to the power exponents are generate a locally minimal output. The
intensification as well as diversification of exploring manner is intensified and diversified with more
chaotic disturbance and so help the effort near global solutions.

Besides, the quantum computing technique increases the solutions of many real world issues from
soft computation methods. Most of their important application was enhancing optimized techniques
for exploring the search space further effectively and efficiently. During this technique, every particle
is considered for moving in quantum mechanical procedures before typical Newtonian arbitrary
movement. During the quantum wave model, a particle has been considered for moving from 1D
well δ, and the place of particle X is computed as:

X t+1
i,j = pt

i,j +
1
2

Lt
ij ln

(
1
u

)
(10)

In Eq. (10), pt
i,j refers the local attractor points (also named as particle motion center) at time t. The

convergence to better solution is attained rapidly when all particles move nearby their local attractors.
The local attractor point is determined as arbitrary average of global as well as local optimum particles
from the swarm as:

pt
i,j = ϕPt

i,j + (1 − ϕ)Gt
j (11)

At this point, ϕ represents the arbitrary number with uniform distribution function on the interval
amongst [0,1], Pt

i,j denotes the local optimum, and Gt
j indicates the global optimum amongst every

particle. Besides, u signifies the arbitrary number from the range of [0,1], and Lt
i,j defines the typical
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length of potential well δ at time t, and this value has been directly compared with convergence speed
and search capability of technique. Lt

i,j is written as:

Lt
ij = 2α|Ct − X t

i,j| (12)

At this time, Ct demonstrates the mean optimum place, for instance, the mean of optimum places
of every particle contributing from the quantum computing.

Ct = (Ct
1, Ct

2, . . . . . . Ct
D) =

{
1

M

M∑
i=1

Pt
i,1,

1
M

M∑
i=1

Pt
i,2, . . .

1
M

M∑
i=1

Pt
i,D

}
(13)

Now, M represents the population size, and Pt
i implies the personal optimum place of particles i.

Moreover, α stands for tunable parameter (for instance, the contraction-expansion (CE) coefficient)
for controlling the convergence speed of technique. Noticeable parameter α can be decreased under
the development of iterations as:

α = α0 + (T − t) ∗ (α1 − α0)

T
(14)

At this point, α1 and α0 defines the last and primary values of α correspondingly, T refers the
entire amount of iterations, and t signifies the present iteration number.

2.2 Process Involved in the QCBOA Based Clustering Technique

The presented MEEDG-CUAV based clustering is mostly dependent upon the QCBOA technique.
The aim of MEEDG-CUAV approach has for dividing n UAV nodes as to existing or optimal amount
of clusters Copt. During the clustering, the adjacent nodes have been selected to CH with means of
Euclidean distance that generate user which minimal transmission range outcomes from decreased
energy consumption. However, it can be tedious for identifying the distance from extremely mobile
conditions. In order to resolve the problem, the distance for neighboring UAVs is defined with utilize
of MEEDG-CUAV approach. For selecting CH and creating cluster, the MEEDG-CUAV manner
considers this issue as maximization issue and derive as FF containing RDE, ADTN, and DEG. The
fitness function (FF) has been determined as:

F(i) = α × REL + β × ADTN + γ × DEG, (15)

where α + β + γ = 1. Primarily, the RDE of UAV(x) in the communication of k bit data for getting
UAV(y) that is placed at distance d, has demonstrated in Eq. (16):

REL = E − (ET(k, d) + ER(k)) (16)

where E refers to the current energy level of UAV and ET stands for the energy spent on data broadcast.

ET(k, d) = kEe + KEad2 (17)

where Ee defines the energy of electrons and Ea signifies the vital amplified energy, ER(k) indicates the
energy spent on data receptions that are defined in Eq. (18):

ER(k) = kEe (18)

In addition, the AADTN signifies the average value of distance of the neighbroing UAV from
their 1-hop communication range [20]. It is determined in Eq. (19):

ADTN =
∑NBi

j=1 dist(i, nbj)

NBi

, (19)
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where dist(i, nbj) refers the distance in the UAV to closer jth UAV.

At a time t, the DEG implies the UAV degree representing the amount of adjacent nodes current
to UAV that is formulated as:

DEG = |N(x)| (20)

where N(x) = {ny/dist(x, y) < transrange}x �= y, and dist(x, y) demonstrates the distance among 2 UAVs
nx and ny, transrange implies the transmission range of UAVs.

3 Experimental Validation

The performance validation of the MEEDG-CUAV technique takes place under varying dimen-
sions.

Tab. 1 and Fig. 3 offer the energy consumption (EC) analysis of the MEEDG-CUAV technique
with existing approaches under distinct UAV count. The outcomes depicted that the MEEDG-CUAV
technique has gained effective outcomes with minimal EC.

Table 1: Energy consumption analysis of proposed MEEDG-CUAV method

No. of UAVs Energy consumption (mJ)

MEEDG-CUAV SOCS BICSF EALC MPCA

10 87 96 100 102 111
20 108 120 125 127 136
30 124 149 153 160 166
40 131 155 164 167 196
50 155 182 189 201 221
60 168 200 217 228 234
70 175 206 221 233 242
80 189 217 234 248 253
90 194 222 246 254 267
100 210 230 252 269 278

For instance, with 10 UAVs, the MEEDG-CUAV technique has attained a lower EC of 87 mJ
whereas the SOCS, BICSF, EALC, and MPCA techniques have obtained higher EC of 96, 100,
102, and 111 mJ respectively. In line with, with 40 UAVs, the MEEDG-CUAV system has reached
a minimum EC of 131 mJ whereas the SOCS, BICSF, EALC, and MPCA techniques have gained
superior EC of 155, 164, 167, and 196 mJ correspondingly. At the same time, with 80 UAVs, the
MEEDG-CUAV approach has achieved a lesser EC of 189 mJ whereas the SOCS, BICSF, EALC,
and MPCA methods have obtained higher EC of 217, 234, 248, and 253 mJ respectively. Finally,
with 100 UAVs, the MEEDG-CUAV technique has gained a lower EC of 210 mJ whereas the SOCS,
BICSF, EALC, and MPCA methodologies have obtained maximal EC of 230, 252, 269, and 278 mJ
correspondingly.
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Figure 3: Energy consumption analysis of MEEDG-CUAV model

A brief NLT analysis of the MEEDG-CUAV technique with recent approaches takes place
in Tab. 2 and Fig. 4. The experimental results portrayed that the MEEDG-CUAV technique has
accomplished improved NLT over the other techniques. For instance, with 10 UAVs, the MEEDG-
CUAV technique has resulted in an increased NLT of 5920 rounds whereas the SOCS, BICSF, EALC,
and MPCA techniques have attained reduced NLT of 5570, 5520, 5330, and 4770 rounds respectively.
Likewise, with 40 UAVs, the MEEDG-CUAV system has resulted in an enhanced NLT of 5410 rounds
whereas the SOCS, BICSF, EALC, and MPCA techniques have achieved reduced NLT of 5250, 4950,
4600, and 4180 rounds correspondingly. Moreover, with 80 UAVs, the MEEDG-CUAV approach has
resulted in an improved NLT of 4430 rounds whereas the SOCS, BICSF, EALC, and MPCA techniques
have attained lower NLT of 4080, 3840, 3760, and 3590 rounds respectively. Furthermore, with 100
UAVs, the MEEDG-CUAV method has resulted in an increased NLT of 4160 rounds whereas the
SOCS, BICSF, EALC, and MPCA systems have attained reduced NLT of 3550, 3380, 3280, and 3210
rounds correspondingly.

Table 2: Network lifetime analysis of MEEDG-CUAV method

No. of UAVs Network lifetime (rounds)

MEEDG-CUAV SOCS BICSF EALC MPCA

10 5920 5570 5520 5330 4770
20 5810 5520 5290 5150 4720
30 5670 5290 4970 4820 4590
40 5410 5250 4950 4600 4180
50 5180 5010 4820 4390 4040
60 4900 4620 4670 4080 3860
70 4720 4410 4460 3810 3670
80 4430 4080 3840 3760 3590

(Continued)
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Table 2: Continued
No. of UAVs Network lifetime (rounds)

MEEDG-CUAV SOCS BICSF EALC MPCA

90 4200 3800 3610 3370 3280
100 4160 3550 3380 3280 3210

Figure 4: NLT analysis of MEEDG-CUAV model

Detailed throughput analysis of the MEEDG-CUAV manner with recent algorithms occurs in
Tab. 3 and Fig. 5. The experimental results portrayed that the MEEDG-CUAV technique has accom-
plished increased throughput over the other algorithms. For instance, with 10 UAVs, the MEEDG-
CUAV manner has resulted in a higher throughput of 99 Mbps whereas the SOCS, BICSF, EALC,
and MPCA methods have attained lesser throughput of 93, 92, 90, and 86 Mbps correspondingly. In
addition, with 40 UAVs, the MEEDG-CUAV technique has resulted in maximal throughput of 87
Mbps whereas the SOCS, BICSF, EALC, and MPCA techniques have attained reduced throughput of
72, 66, 60, and 53 Mbps respectively. Followed by, with 80 UAVs, the MEEDG-CUAV technique has
resulted in a higher throughput of 78 Mbps whereas the SOCS, BICSF, EALC, and MPCA techniques
have attained reduced throughput of 61, 53, 52, and 42 Mbps correspondingly. Finally, with 100 UAVs,
the MEEDG-CUAV system has resulted in an increased throughput of 74 Mbps whereas the SOCS,
BICSF, EALC, and MPCA techniques have attained minimum throughput of 57, 49, 48, and 39 Mbps
correspondingly.
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Table 3: Throughput analysis of MEEDG-CUAV method

No. of UAVs Throughput (Mbps)

MEEDG-CUAV SOCS BICSF EALC MPCA

10 99.00 93.00 92.00 90.00 86.00
20 96.00 87.00 81.00 77.00 73.00
30 90.00 80.00 72.00 67.00 64.00
40 87.00 72.00 66.00 60.00 53.00
50 85.00 68.00 61.00 56.00 48.00
60 83.00 64.00 58.00 54.00 45.00
70 81.00 62.00 55.00 53.00 44.00
80 78.00 61.00 53.00 52.00 42.00
90 75.00 59.00 50.00 51.00 41.00
100 74.00 57.00 49.00 48.00 39.00

Figure 5: Throughput analysis of MEEDG-CUAV model

Tab. 4 and Fig. 6 provide the ARD analysis of the MEEDG-CUAV system with existing
approaches in different UAV counts. The results depicted that the MEEDG-CUAV algorithm has
gained effective outcomes with a minimum ARD. For instance, with 10 UAVs, the MEEDG-CUAV
manner has reached a lesser ARD of 4.04 s whereas the SOCS, BICSF, EALC, and MPCA techniques
have obtained maximum ARD of 4.17, 4.20, 4.27, and 4.86 s correspondingly. Along with that, with
40 UAVs, the MEEDG-CUAV technique has attained a decreased ARD of 5.76 s whereas the SOCS,
BICSF, EALC, and MPCA techniques have obtained increased ARD of 6.27, 6.85, 7.67, and 9.86 s
correspondingly. Simultaneously, with 80 UAVs, the MEEDG-CUAV approach has attained a reduced
ARD of 8.43 s whereas the SOCS, BICSF, EALC, and MPCA manners have obtained improved ARD
of 9.17, 9.82, 10.36, and 12.39 s respectively. At last, with 100 UAVs, the MEEDG-CUAV method has
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attained a lower ARD of 8.98 s whereas the SOCS, BICSF, EALC, and MPCA systems have reached
superior ARD of 10.16, 10.92, 11.19, and 13.89 s correspondingly.

Table 4: Average delay analysis of MEEDG-CUAV method

No. of UAVs Average delay (sec)

MEEDG-CUAV SOCS BICSF EALC MPCA

10 4.04 4.17 4.20 4.27 4.86
20 4.16 4.67 4.95 5.77 6.96
30 4.54 5.37 5.65 6.87 8.16
40 5.76 6.27 6.85 7.67 9.86
50 6.79 7.87 8.05 8.27 10.96
60 7.89 8.35 8.75 8.86 11.35
70 7.98 8.91 9.25 9.48 11.89
80 8.43 9.17 9.82 10.36 12.39
90 8.72 9.70 10.58 10.96 12.82
100 8.98 10.16 10.92 11.19 13.89

Figure 6: Average delay analysis of MEEDG-CUAV model

Tab. 5 and Fig. 7 gives the NCHC analysis of the MEEDG-CUAV method with existing manners
under varying UAV speed rate. The outcomes demonstrated that the MEEDG-CUAV technique has
reached effective outcomes with minimal NCHC. For instance, with 2 m/s speed rate, the MEEDG-
CUAV system has reached a lower NCHC of 9 whereas the SOCS, BICSF, EALC, and MPCA
techniques have achieved higher NCHC of 11, 13, 16, and 19 respectively. Also, with 4 m/s speed rate,
the MEEDG-CUAV system has attained a lower NCHC of 8 whereas the SOCS, BICSF, EALC, and
MPCA methods have obtained higher NCHC of 10, 15, 18, and 22 correspondingly. Moreover, with
8 m/s speed rate, the MEEDG-CUAV algorithm has attained a lower NCHC of 15 whereas the SOCS,
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BICSF, EALC, and MPCA systems have obtained higher NCHC of 19, 22, 25, and 28 respectively.
Eventually, with 10 m/s speed rate, the MEEDG-CUAV system has attained a minimal NCHC of 17
whereas the SOCS, BICSF, EALC, and MPCA manners have obtained superior NCHC of 20, 24, 29,
and 33 correspondingly.

Table 5: Results analysis of proposed MEEDG-CUAV method under different speed of mobile nodes

Number of cluster head changes (NCHC)

UAV speed rate
(m/s)

MEEDG-CUAV SOCS BICSF EALC MPCA

2 9.00 11.00 13.00 16.00 19.00
4 8.00 10.00 15.00 18.00 22.00
6 11.00 14.00 17.00 21.00 26.00
8 15.00 19.00 22.00 25.00 28.00
10 17.00 20.00 24.00 29.00 33.00

Figure 7: NCHC analysis of MEEDG-CUAV model

4 Conclusion

In this study, a MEEDG-CUAV technique is derived for energy efficient data collection in UAV
enabled 6G networks. The MEEDG-CUAV technique involves the design of QCBOA technique by
integrating the concepts of quantum theory and chaotic map into the classical BOA. In addition, the
QCBOA technique derives a fitness function involving three input variables to elect CHs namely RDE,
ADTN, and DEG. The experimental validation of the MEEDG-CUAV technique occurs utilizing
benchmark dataset and the experimental results highlighted the better performance over the other
state of art techniques interms of different measures. Therefore, the MEEDG-CUAV technique can be
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utilized as a proficient tool for data collection in clustered UAV enabled 6G networks. In future, task
scheduling and resource allocation strategies can be developed for UAV enabled 6G networks.
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