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Abstract: Even though several advances have been made in recent years, hand-
written script recognition is still a challenging task in the pattern recognition
domain. This field has gained much interest lately due to its diverse appli-
cation potentials. Nowadays, different methods are available for automatic
script recognition. Among most of the reported script recognition techniques,
deep neural networks have achieved impressive results and outperformed
the classical machine learning algorithms. However, the process of designing
such networks right from scratch intuitively appears to incur a significant
amount of trial and error, which renders them unfeasible. This approach
often requires manual intervention with domain expertise which consumes
substantial time and computational resources. To alleviate this shortcoming,
this paper proposes a new neural architecture search approach based on
meta-heuristic quantum particle swarm optimization (QPSO), which is capa-
ble of automatically evolving the meaningful convolutional neural network
(CNN) topologies. The computational experiments have been conducted on
eight different datasets belonging to three popular Indic scripts, namely
Bangla, Devanagari, and Dogri, consisting of handwritten characters and
digits. Empirically, the results imply that the proposed QPSO-CNN algorithm
outperforms the classical and state-of-the-art methods with faster prediction
and higher accuracy.

Keywords: Neuro-evolution; quantum particle swarm optimization; deep
learning; convolutional neural networks; handwriting recognition

1 Introduction

With the rapid development and exponential usage of imaging technology, digital cameras, and
other intelligent devices, the need for automatic character recognition in document images has drawn
the attention of many researchers in this domain. Extensive comprehensive research work is available
on the printed character recognition, and the recognition accuracy of printed characters has been
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potentially considered as a solved problem. However, the recognition of handwritten characters is still
a challenging task in the field of pattern recognition. The challenging part of handwritten character
recognition is the diversity in individual writing styles, patterns, size, and thickness of characters [1].
Even the handwriting style of the same person may vary at different times. The already difficult task of
handwritten character recognition eventually gets more complicated in the case of stylistically distinct
Indic scripts. Over the past decades, a large number of research studies have been published on the
recognition of handwritten characters in scripts like Arabic, Chinese, Japanese, and Latin. Though,
the research on handwritten Indic scripts is still in its infancy due to the presence of several challenging
issues [2]. Most Indic script characters have an unconstrained language domain, complex structure,
large character sets, and similar shaped characters.

Deep neural networks (DNN) have demonstrated their remarkable performance in recent years
to solve pattern recognition problems [3], for instance, handwritten character recognition. Specifically,
deep convolutional neural networks (CNN) have witnessed tremendous achievements and proven to
be particularly powerful in this domain [4]. Nonetheless, it remains a cumbersome, error-prone, and
time-consuming process to design a meaningful CNN topology. Most successful CNNs architectures,
such as DenseNet [5], ResNet [6], Inception [7], AlexNet [8], etc. were manually handcrafted. However,
designing a successful CNN topology right from scratch is a complex and meticulous process that
requires specialists with a lot of problem domain knowledge. As a result, to deal with this unwieldy
process of designing CNN topologies, one can get the idea from nature to automatically evolve
meaningful CNN representations. This approach belongs to a field known as Neuro-evolution [9],
which uses evolutionary computation methods to automatically search and design the CNN topologies
without any human expertise.

The rest of this article is organized as follows. Section 2 briefly describes the background of CNN,
Binary Particle Swarm Optimization (BPSO), Quantum Computing (QC) and summarizes the related
work. Section 3 delineates the proposed algorithm. Section 4 outlines the experimental design, which
includes a brief description of the datasets, algorithm parameters, and implementation details. Section
5 presents the computational results and compares the performance of the proposed algorithm with
the traditional state-of-the-art techniques. Finally, Section 6 concludes the article.

2 Background
2.1 Convolutional Neural Networks

CNN was firstly introduced by LeCun et al. [10] in 1998 and used in many applications [11–14].
In CNN, the feature learning unit replaces the traditional feature engineering stage. In fact, CNNs
are designed to handle raw data, i.e., data with very little or no pre-processing. In CNN, layers are
arranged consecutively in such a practice that the output obtained from one layer will be supplied as
input to the next layer. Conventionally, the CNN classifier generally contains three kinds of layers, viz.
the convolution layer, the pooling layer, and the fully-connected layer.

2.2 Binary Particle Swarm Optimization

The BPSO suggested by Kennedy et al. [15] in 1997 allows the conventional Particle Swarm
Optimization (PSO) to work in binary spaces. The BPSO has potentially the same structure as the
real-valued PSO except the position vector of each particle has a binary representation. Furthermore,
the velocity of every mth particle in the dth dimension depends on the plausibility that the position of
the mth particle corresponding to the dth dimension takes a value of 0 or 1. The BPSO is evaluated using
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a logistic sigmoid limiting transformation function S(V d
m(k)), as illustrated in Eq. (1).

S(V d
m(k)) = 1

1 + exp(−V d
m(k))

(1)

In BPSO, the position vector is determined by selecting a number (rand) uniformly at random and its
value is confined between the range [0, 1] as in Eq. (2).

X d
m(k) =

{
0, if rand ≥ S(V d

m(k))

1, otherwise (2)

If rand ≥ S(V d
m(k)), then the position of mth particle pertaining to the dth dimension at kth iteration

is set to 0; otherwise, it is set to 1.

2.3 Quantum Computing

The concept of QC is evolved from Quantum Physics. A quantum bit (Q-bit) is the smallest amount
of information in QC [16]. Unlike conventional computing in which a bit is observed either in state
1, or state 0, a Q-bit may reside in state 1, state 0, or superposition of 0 & 1. With the ability to be in
more than two states, QC provides a faster and better local exploitation and global exploration of the
search space. So, the algorithms designed using QC are more efficient and powerful.

A Q-bit is denoted with a pair of complex numbers (α, β), in which |α|2 and |β|2 determines the
probability of occurrence of quantum bit to be in state 0 and state 1; naturally, the condition |α|2 +
|β|2 = 1 must hold. The Q-bit individual with d dimensions is composed of a vector of d Q-bits.⎡
⎣ α1 α2 α3 . . . αd

.
β1 β2 β3 . . . βd

⎤
⎦

where |αi|2 + |β i|2 = 1, i = 1, 2, 3, . . . , d.

2.4 Related Work

In literature, neuro-evolution during its early inception has been applied to encode connection
weights and topologies of artificial neural networks (ANN). Stanley et al. [17] initially proposed
Neuro-Evolution Augmenting Topologies (NEAT) scheme for learning weights and evolving efficient
ANN topologies using variable-length chromosome. Later, Stanley et al. [18] introduced hyperNEAT
to overcome the deficiencies of NEAT. Along with the indirect encoding strategy of NEAT, the
hyperNEAT approach was also build using connective compositional pattern producing networks
(CPPN) [19]. Fernando et al. [20] proposed differentiable CPPN (DPPN) using microbial genetic
algorithm (GA) in 2016, capable of searching for feasible CNN representation. A Large-scale evolution
of images classifier technique developed by Google in 2017, to evolve CNN topologies achieving
state-of-the-art results over several benchmark datasets [21]. In recent times, neuro-evolution based
techniques, influenced by the fundamental theory of PSO, have also been used as solution mechanism
for regression [22,23] and image classification tasks [24]. Among these techniques, Wang et al. [25]
designed an PSO based neurocomputing approach with variable-length encoding strategy, to evolve
CNN topologies for handwritten recognition problems. Sun et al. [26] designed an algorithm using
PSO to create flexible convolutional autoencoders for the classification of images.
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3 The Proposed Methodology

In this section, we describe the proposed quantum particle swarm optimization based convolu-
tional neural network (QPSO-CNN) technique in detail. To be specific, the framework of the proposed
QPSO-CNN is elucidated in Section 3.1.

3.1 Framework

The proposed QPSO-CNN algorithm applies quantum PSO, to automatically evolve meaningful
CNN architectures. Algorithm 1 manifests the overall framework of the proposed technique. Firstly,
the algorithm is initiated by randomly initializing the position corresponding to each particle and
quantum bit (Q-bit) individuals. After this, the evolution of particles will start to take effect before
the termination conditions, for instance, the given number of iterations, are met. Lastly, the global
best solution is picked up and decoded into the corresponding CNN architecture for the final deep
training in order to perform the jobs at hand. During the evolution, the evaluation of the particles is
performed, and the corresponding recognition accuracy is employed as a fitness measure of individual
particles. Consequently, the pbest and gbest are modified based on the evaluated fitness. After that, the
rotation operator is employed for modifying the Q-bit individual. Next, the position of each particle
is updated using the probability amplitude stored in the corresponding Q-bit individual.

Algorithm 1: Procedure QPSO-CNN
1: Input: Swarm size (M), maximum number of iterations (iter), training dataset (dstrain), training
epochs number during particle evaluation (tepoch)
2: Output: The optimal CNN architecture
3: k ← 0 //iteration counter
4: X = X1, X2, . . . , XM //Randomly initialize the position Xm(k) of mthparticle for kth iteration
5: Q = Q1, Q2, . . . , QM //Initialize all the Q-bit individuals with α and β set to be 1/

√
2

6: m ← 1
7: while m ≤ M do
8: pbestm ← Xm //Initialize the personal best of each particle
9: Xm_acc, pbestm_acc ← evaluate_Fitness(Xm, dstrain, tepoch)

10: end while
11:gbest ← Xm for all particles n, m �= n and evaluate_Fitness(Xm, dstrain, tepoch) >

evaluate_Fitness(Xn, dstrain, tepoch) //Initialize global best of the swarm
12: gbest_acc ← Xm_acc
13: k ← 1
14: while k ≤ iter do
15: ϕ(k) = ϕmax − (ϕmax − ϕmin)∗ k

iter
//Compute the magnitude of rotation angle (ϕ)

16: while m ≤ M do
17: Qm ← update_Q − bit(Qm) //Update the Q-bit individual corresponding to each
particle
18: Xm ← update_Position(Xm)

19: Xm_acc, pbestm_acc ← evaluate_Fitness(Xm, dstrain, tepoch)

20: if Xm_acc > pbestm_acc then
21: pbestm ← Xm //Update the personal best of each particle
22: pbestm_acc ← Xm_acc

(Continued)
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Algorithm 1: Continued
23: if pbestm_acc > gbest_acc then
24: gbest ← Xm //Update the global best of the swarm
25: gbest_acc ← Xm_acc
26: end if
27: end if
28: end while
29: end while
30: return gbest //gbest will return the optimal CNN architecture for deep training

3.2 Encoding Strategy

In the proposed QPSO-CNN, a binary encoding strategy is used to encode the potential CNN
architectures into particle vectors. Each particle is composed of a different number of convolutional,
pooling, and fully-connected layers. Therefore, these layers should be encoded in a single particle vec-
tor for the evolution process to proceed further. Each particle vector with D dimensions accommodates
the details about CNN layers. To be more specific, in the binary encoding scheme, the particle vector
consists of x number of fixed-length binary strings where each string represents the configuration of
a single CNN layer, i.e., the layer parameters. The parameters corresponding to the convolutional
layer are Kernel size, stride size, and number of feature maps. Secondly, parameters corresponding to
the pooling layer are pooling window size, stride size and pooling type (maximal pooling or average
pooling). Finally, parameters corresponding to the fully-connected layer are the number of neurons.

Depending on the chosen benchmark datasets size and conventions used in the traditional
deep learning community, the range for all the parameters is elucidated in Tab. 1. On the basis of
aforementioned range, the maximum number of bits required for binary encoding can be found in
Tab. 1. The maximum number of bits describes the length of binary strings. Furthermore, taking the
non-zero parameter into account, there is a need to add one in the decimal value convinced out of
the binary string. For instance, as depicted in Tab. 1, for the convolutional layer, the Kernel size of 4,
the number of feature maps of 64, and stride size of 2 are transformed into corresponding binary strings
with values 011, 00111111, and 1. Finally, after transforming the parameters’ values into individual
binary strings, these binary strings are concatenated, as illustrated in the summary row corresponding
to the convolutional layer. Consequently, the sample binary strings for other layers are obtained by
following the same series of steps, as depicted in Tab. 1.

Table 1: List of parameters associated with various layers of CNN in the proposed QPSO-CNN

Type of layers Parameters Ranges Number of bits Examples

Convolutional
layer

Kernel size [2,7] 3 011
No. of feature maps [3,256] 8 00111111
Stride size [1,2] 1 1

Summary - - 12 011001111111
Pooling layer Window size [2,4] 2 10

Stride size [2,4] 2 10

(Continued)
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Table 1: Continued
Type of layers Parameters Ranges Number of bits Examples

Pooling Type [1,2] 1 1
Summary - - 5 10101
Fully-connected
layer

Number of neurons [1,1024] 10 1111111111

Summary - - 10 1111111111
Disabled layer - - 12 000000000000
Summary - - 12 000000000000

Since the maximum number of bits used to encode a single layer is 12; therefore, for each layer,
the binary string is filled with zeros till the length approaches 12 bits, as illustrated in Tab. 2. During
initialization, the length of the particles is defined in advance; therefore, to obtain variable-length
particles, the disabled layer is employed in the encoded particle. The disabled layer is similar to the
other three kinds of layers, except it has no parameters.

Table 2: Encoded information corresponding to QPSO-CNN

Type of layers Encoded information

Convolutional 011001111111
Pooling 000000010101
Fully-connected 001111111111
Disabled 000000000000

3.3 Swarm Initialization

The initialization of the swarm begins with creating individual particles based on the precedent
encoding strategy until the pre-determined population size is reached. This process will generate M
particles having arbitrary CNN architectures. In the corresponding scheme, each particle will contain a
random number of layers. According to the deep learning convention, the first element of each particle
is always a convolutional layer. However, the remaining elements of each particle can be supplied by
any number of convolutional layers, pooling layers, and disabled layers until the first fully-connected
layer is added. Thus, the algorithm should ensure that once a fully-connected appears, then every
other succeeding layer ought to be a fully-connected layer or disabled layer. Finally, the last element
corresponding to every particle is always a fully-connected layer. Furthermore, during the initialization
phase, the values of α and β corresponding to each Q-bit individual are specified to be 1/

√
2 [16]. This

approach, while initialization, depicts the linear superposition of all states with a similar probability
which ensures that the quantum bit individual guarantees the normalization of state to unity.

3.4 Evaluating Fitness

Once the position of the particles is obtained, the fitness evaluation is performed by training the
particles representing full-fledged CNN architectures on the training dataset (dstrain) for (tepoch) training
epochs. CNNs are typically based on the deep learning algorithm; so, exhaustively training them for
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achieving the final recognition performance will require a large number of training epochs having
a magnitude of more than 100. This process will take considerable time and consume a substantial
number of computational resources. In the case of population-based algorithms, this high computation
issue will worsen even more. Therefore, in the current work, each particle has been trained over a very
small number of epochs, for instance, 2 to 10 training epochs, and then the trained particles are batch-
evaluated using model_Evaluate(dsfitness, bsize) function on the dataset dsfitness, as shown in Algorithm
2. Each evaluated particle will return two metrics, i.e., the loss value and accuracy. The obtained
recognition accuracy is assigned as the fitness value of individual particles. Based on the computed
fitness, the pbest and gbest solutions are updated to regulate the search in the direction of the optimal
solution.

Algorithm 2: Fitness Evaluation
1: Input: The swarm (X ), swarm size (M), training epoch number during particle evaluation (tepoch),
training data (dstrain), batch size (bsize), evaluation data (dsfitness)
2: Output: The swarm (X ) with fitness
3: for all m particles in the swarm (X ) do
4: for e = 1 to tepoch do
5: model_Fit(dstrain, bsize, tepoch) ← Train CNN model represented by particle Xm

6: end for
7: acc, loss ← model_Evaluate(dsfitness, bsize)

8: fitness ← acc //Set accuracy metrics as the fitness value of corresponding particle
9: Xm ← Update fitness of individual particle Xm in population X
10: end for
11: return X

3.5 Updating Q-Bit Individual

The proposed QPSO-CNN algorithm uses a rotation operator to update the Q-bit individual. The
rotation operator employs a rotation angle (ϕ) for modifying the position of particles. The magnitude
of ϕ directly impacts the speed of convergence and search efficiency of the algorithm. Therefore, the
appropriate selection of ϕ controls and uphold a good balance between exploration (i.e., global search)
and exploitation (i.e., local search) of the search space, as well as it also results in a lesser number of
iterations while obtaining the optimal best solution. Conventionally, the magnitude of ϕ is primarily
confined between [0.001π , 0.05π ] [16]. The magnitude of ϕ is decreased perpetually from ϕmax to ϕmin

with each iteration using Eq. (3) to achieve fast convergence.

ϕ(k) = ϕmax − (ϕmax − ϕmin)∗ k
iter

(3)

where iter indicates the maximum iterations, k denotes the current iteration, and the values of ϕmin and
ϕmax are set to be 0.001π and 0.05π , respectively. After computing the value of ϕ using Eq. (3), the
rotation angle (�ϕ) is evaluated for each Q-bit using Eq. (4).

�ϕm(k + 1) = ϕ(k) ∗ {γ1m(k) ∗ (pbestm(k) − Xm(k)) + γ2m(k) ∗ (gbest(k) − Xm(k))} (4)
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where pbestm(k) depicts the personal best of mth particle at kth iteration, gbest(k) represents the global
best position at kth iteration, and γ1m(k) and γ2m(k) are stipulated using Eq. (5) and Eq. (6).

γ1m(k) =
{

1, if fitness(pbestm(k)) ≥ fitness(Xm(k))

0, otherwise (5)

γ2m(k) =
{

1, if fitness(gbest(k)) ≥ fitness(Xm(k))

0, otherwise (6)

Finally, the rotation operator is applied to update the D-dimensional Q-bit individual by trans-
forming the α and β values corresponding to each quantum bit, as illustrated in Eq. (7).⎡
⎣αd

m(k + 1)

βd
m(k + 1)

⎤
⎦ = ∪(�ϕm(k + 1))

⎡
⎣ αd

m(k)

βd
m(k)

⎤
⎦

=
⎡
⎣ cos(�ϕm(k + 1)) − sin(�ϕm(k + 1))

sin(�ϕm(k + 1)) cos(�ϕm(k + 1))

⎤
⎦

⎡
⎣ αd

m(k)

βd
m(k)

⎤
⎦ (7)

The condition |αm(k + 1)|2 + |βm(k + 1)|2 = 1 must hold for the updated Q-bit.

3.6 Update Position of Particles

The position vector of every mth particle X d
m(k + 1) at dth dimension in k + 1 iteration is updated

using the probability |βm(k + 1)|2 stored in mth quantum bit individual, i.e.,

X d
m(k + 1) =

{
0, if r ≥ |βd

m(k + 1)|2

1, otherwise
(8)

where r stands for uniformly distributed pseudo-random number from [0, 1].

3.7 Deep Training on Gbest

After the evolution of QPSO-CNN is completed, the global best solution obtained by picking
the best particle out of all the particles in the swarm is selected for the final deep training. The deep
training process is similar to the fitness evaluation process discussed in Section 3.4, apart from the fact
that a substantially huge number of epochs are employed for training the optimal CNN architecture,
for example, 100 or 200.

4 Experimental Design
4.1 Datasets Used in Present Work

The designed QPSO-CNN algorithm has been evaluated on benchmark handwritten character
datasets belonging to three popular Indic scripts (Devanagari, Bangla, and Dogri). These scripts are
genealogically different from each other and highly used by the majority of people in India [27].
Some typical samples corresponding to each chosen dataset are depicted in Fig. 1 for reference, and a
summary enclosing the dataset name, category, script type, training set, and test set sizes are elucidated
in Tab. 3.
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4.2 Pre-Processing of Datasets

The original handwritten character images in the datasets are not normalized to a uniform size
and have numerous pixel resolutions. Therefore, for training and testing, some pre-processing steps
are applied to the datasets. The grayscale isolated handwritten character images are first transformed
into subsequent binary format. Then the handwritten character images for datasets (D2, D3, D4, and
D7) are normalized to a size of 32 × 32 pixels with the aspect ratios preserved.

Figure 1: Sample images from the chosen benchmark datasets (a) Examples from the CMATERdb
3.1.1 Dataset. (b) Examples from the CMATERdb 3.1.2 Dataset. (c) Examples from the CMATERdb
3.1.3 Dataset. (d) Examples from the BanglaLekha-Iso Dataset. (e) Examples from the CMATERdb
3.2.1 Dataset. (f) Examples from the DHCD Dataset. (g) Examples from the DOGRA C-64 Dataset.
(h) Examples from the MNIST Dataset
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Table 3: Summary of the benchmark datasets used for the experimental evaluation

Index Dataset Name
[Reference]

Script Category Images

Training Test

D1 CMATERdb 3.1.1 [28] Bangla Digits 4,000 2,000
D2 CMATERdb 3.1.2 [29] Bangla Basic 12,000 3,000
D3 CMATERdb 3.1.3 [30] Bangla Compound 34,439 8,520
D4 BanglaLekha-Iso [31] Bangla Digits+Basic+

Compound
1,32,884 33,221

D5 CMATERdb 3.2.1 [32] Devanagari Digits 2,000 1,000
D6 DHCD [33] Devanagari Digits+Basic 78,200 13,800
D7 DOGRA-C64 Dogra Digits+Basic+

Modified
8,192 2,048

D8 MNIST [34] - Digits 60,000 10,000

4.3 Algorithm Parameters

In the proposed QPSO-CNN algorithm, the parameters are primarily classified into three groups,
i.e., parameters related to QPSO, CNN initialization, and CNN training. The parameters used in the
present investigation have been compiled in Tab. 4. The parameters associated with the first group, are
set according to the conventions applied in the community of evolutionary algorithms. The first group
includes seven parameters, namely, the swarm size (M), the minimum dimension of particle vector,
the maximum dimension of particle vector, the maximum number of iterations (iter), the minimum
magnitude of rotation angle (ϕmin), the maximum magnitude of rotation angle (ϕmax), and the initial
values of probability amplitude (α, β) stored in the Q-bit individual. The swarm size determines the
total number of particles used in the QPSO algorithm. The quality of solution improves continuously
and marginally with the increase in swarm size; on the other hand, the computation time is also
increased linearly. Consequently, during the search process, the swarm size is selected to be 30 after
some preliminary experiments by investigating the heuristic trade-off among the solution quality and
computation time. The minimum and maximum number of layers are specified as 3 and 20, respectively.
The maximum number of iterations used to search the optimal CNN architecture is set to be 30.
The magnitude of rotation angle influences the speed of convergence and search efficiency of the
algorithm. Therefore, the proper selection of rotation angle performs an extremely critical role in
the rapid convergence of particles in the swarm towards the optimal solution. Conventionally, the
minimum and maximum magnitude of the rotation angle, i.e., ϕmin and ϕmax are set to be 0.001π

and 0.05π [16], respectively. The value of ϕ gradually decreases from ϕmax to ϕmin with each iteration,
according to Eq. (3) that guides the particles to move in a positive direction from global search to
local search proceeding towards an optimal solution to achieve fast convergence. While initializing the
Q-bit individuals, the values of α and β corresponding to each Q-bit individual are specified to be
1/

√
2 [35]. It determines that quantum bit individual depicts the linear superposition of all states with

similar probability
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Table 4: Algorithm parameters used for evaluating the proposed QPSO-CNN

Parameters Values

Swarm size (M) 30
Number of iterations to find gbest solution (iter) 30
Minimum magnitude of rotation angle (ϕmax) 0.001π

Maximum magnitude of rotation angle (ϕmin) 0.05π

Initial values of α and β for each Q-bit
individual

1/
√

2

Minimum number of layers 3
Maximum number of layers 20
Minimum number of feature maps 32
Maximum number of feature maps 256
Minimum size of convolutional filter 3 × 3
Maximum size of convolutional filter 5 × 5
Convolutional filter stride (1, 1)
Pooling window size 2 × 2
Pooling window stride (2, 2)
Learning rate 0.001
Dropout rate 0.5
Batch size 50
Number of training epochs for evaluating the
particles

2

Number of epochs for training gbest (optimal
CNN architecture)

100

The parameters associated with the second group regulate the diversity of initial particles’
architectures. The second group includes seven parameters, namely, the minimum number of feature
maps, the maximum number of feature maps, the minimum size of a convolutional filter, the maximum
size of a convolutional filter, the convolutional filter stride size, the pooling window size, and the
pooling window stride size. The improper setting of parameters in the convolutional and pooling
layers would make the CNN architecture incompetent and result in unaffordable computational costs.
Therefore, according to the deep learning conventions, during the exploration of each particle, the
minimum and the maximum number of feature maps is set as [32,256]. On the basis of state-of-the-art
CNNs conventions, squared convolutional filters are used with a filter size ranging from 3∗3 to 5∗5. In
the convolutional layer, the (width, height) of stride is taken as (1, 1). Analogously, the pooling layer
uses squared kernels with a pooling window of size 2∗2. The (width, height) of stride in the pooling
layer is taken to be (2, 2).

Finally, the parameters associated with the third group regulate the training process of each
particle in the swarm. The third group includes five parameters, viz, the training epochs for particle
evaluation, learning rate, dropout rate, batch size, and number of epochs for training optimal
CNN architecture (gbest). The fitness evaluation is a computationally expensive process because it
requires training and evaluating a large number of particles representing different CNN architectures.
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Therefore, for fitness evaluation, the particles are trained only with two epochs on the training dataset.
The Xavier weight initialization [36] is used in this work as it has proven to be one of the most
efficient weight initialization techniques and also implemented in several deep learning architectures.
The training process is carried out by Adam optimizer [37] with a learning rate of 0.001. A dropout
regularization [38] of 50% is deployed in the current work to prevent the chances of overfitting while
training the particles. In the final phase of training, each particle is inflicted by the batch normalization
[39] with a minibatch of size 50 for speeding up the training process. Furthermore, at the end of the
optimization, the g-best solution obtained by applying the QPSO-CNN algorithm representing the
potential CNN topology is trained for 100 epochs.

4.4 Implementation Details

The experiments on the proposed QPSO-CNN model have been performed using a Nvidia Tesla
V100 GPU with 16 GB of memory and Ubuntu 16.04.6 LTS operating system. Due to the stochastic
nature of the proposed QPSO-CNN algorithm, 10 independent experimental runs are conducted on
each handwritten dataset in order to maintain the consistency in the results.

5 Experimental Results and Discussion
5.1 Overall Performance

The overall recognition performance of the proposed QPSO-CNN algorithm in terms of the
best recognition accuracies and the mean recognition accuracies obtained from 10 independent
experimental runs on each chosen benchmark dataset is outlined in Tab. 5. The computational
experimental results illustrate that the proposed algorithm obtains promising recognition accuracies
on all the conventional Indic script benchmark datasets (i.e., D1, D2, D3, D4, D5, D6, D8), while
it exhibits moderately inferior recognition accuracy on the collected DOGRA C-64 dataset. This
difference in recognition accuracy demonstrates the complexities and challenges associated with the
D7 dataset. These complexities arise due to the presence of complex structures and a potentially large
number of visually similar shaped characters in the Dogra script, which eventually brings ambiguities
and leads to misrecognition error. Overall, the experimental results clearly reveal that the proposed
algorithm yields satisfactory performance on all the chosen datasets.

Table 5: The recognition accuracies of the proposed QPSO-CNN algorithm on different datasets

Algorithms Test accuracies (%)

D1 D2 D3 D4 D5 D6 D7 D8

QPSO-CNN (best) 98.95 99.16 98.39 98.77 99.60 99.49 97.07 99.69
QPSO-CNN (mean) 98.51 98.63 98.13 97.24 99.18 99.25 95.94 99.56

5.2 Comparative Analysis

In this section, to demonstrate the effectiveness of the proposed algorithm, the overall perfor-
mance has been compared with the conventional techniques that are widely used for handwritten Indic
scripts recognition. The existing state-of-the-art techniques that have claimed propitious recognition
accuracy on the chosen benchmark Indic script datasets are considered as the peer competitors. The
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evaluation results of the QPSO-CNN algorithm, along with the existing peer competitors on all the
benchmark datasets, have been compiled in Tab. 6.

Table 6: Comparison of recognition results between the proposed algorithm and some of the popular
state-of-the-art techniques on chosen benchmark datasets

Indices Datasets Work references Recognition accuracies (%)

D1 Bangla Digit Keserwani et al. [40] 98.80
CMATERdb 3.1.1 Gupta et al. [41] 97.33

Dash et al. [42] 98.44
Present work 98.95

D2 Bangla Basic
Character
CMATERdb 3.1.2

Keserwani et al. [40] 98.56
Alom et al. [43] 98.31
Dash et al. [42] 94.78
Gupta et al. [44] 86.10
Present work 99.16

D3 Bangla Compound
Character
CMATERdb 3.1.3

Keserwani et al. [40] 95.70
Sarkhel et al. [45] 98.12
Kibria et al. [46] 88.73
Present work 98.39

D4 Bangla Digits+
Basic+Modified
Characters
BanglaLekha-Iso

Chatterjee et al. [47] 97.12
Rabby et al. [48] 95.71
Alif et al. [49] 95.10
Present work 98.77

D5 Devanagari Digits
CMATERdb 3.2.1

Sarkhel et al. [45] 99.50
Tushar et al. [50] 99.26
Dash et al. [42] 98.96
Present work 99.60

D6 Devanagari Basic
Characters+Digits
DHCD

Mhapsekar et al. [51] 99.35
Aneja et al. [52] 99.00
Gupta et al. [44] 94.15
Present work 99.49

D8 MNIST Wang et al. [25] 98.87
Digits Sun et al. [26] 99.51

Gupta et al. [44] 98.92
Chen et al. [53] 99.48
Sun et al. [54] 98.82
Present work 99.69

For the Bangla script datasets, viz, D1, D2, D3, and D4, the deep learning based techniques used
to compare our results are unified CNN [40], AlexNet [41], DenseNet [43], Multi-column Multi-scale
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CNN (MMCNN) [45], Residual Network (ResNet-50) [47], BornoNet [48], and modified ResNet-
18 [49]. Moreover, for the Devanagari script datasets, viz, D5 and D6, the deep learning based
techniques used to compare our results are MMCNN [45], CNN [50], ResNet-50 [51], and Inception
V3 [52]. Furthermore, the classical machine learning based techniques used to compare our results
are Sparse Concept Coding with Tetrolet transform and Nearest Neighbor method [42], Opposition-
based Multiobjective Harmony Search with SVM [44], and Advanced Feature Sets with SVM
[46]. Additionally, to comprehensively evaluate the robustness of the proposed neuroevolutionary
algorithm, the standard MNIST dataset is also used since it is a well-known dataset specifically
for investigating the population-based neural architecture search (NAS) approaches. For MNIST
handwritten digit recognition dataset viz, D8, the NAS approaches used for comparison are Internet
Protocol based variable-length PSO-CNN [25], Flexible Convolutional Auto-Encoder [26], Deep
Convolutional Variational Autoencoder [53], and Genetic algorithm based EvoCNN [54]. Empirically,
it is clearly shown in Tab. 6 that the proposed algorithm achieves the best results in terms of the
best classification performance on all the chosen benchmark datasets and thereby outperforms all
the existing peer competitors for the handwritten Indic scripts recognition.

5.3 Failure Case Analysis

In this section, we show some typical examples of misclassified samples on each chosen benchmark
dataset, as delineated in Fig. 2.

From the experimental analysis, we have noticed that there are two prominent reasons that
contribute to the failure cases for handwritten Indic scripts recognition.

• The main reason is the confusion of similar shaped characters, i.e., some characters’ pairs are
written in such a manner that they have similar structural constructs, which are quite challenging
to recognize even for humans.

• Also, we observed that it is difficult to correctly identify the cursive and nonstandard writing
habits in hooks and circles. Furthermore, the erroneous characters’ samples, which are either
degraded or severely polluted, have broken architecture, brought great ambiguities, and directly
led to misclassification.

5.4 Discussion

The experimental results in this paper clearly indicate that the meta-heuristic evolutionary
approach is proven to be feasible in designing the promising CNN architectures for handwritten
Indic scripts recognition. The proposed algorithm provides competitive performance without using
complicated architectures and data augmentation, and the results are comparable to the existing
handcrafted models. In the past, most of the works have contributed hand-designed architectures
for CNNs, explicitly designed for solving a particular problem. This process of manually creating the
architecture is expensive and entails a significant amount of trial and error in determining the solution
quality. Therefore, this proposed neuro-evolution approach is way more robust and simpler than the
existing state-of-the-art techniques.

The proposed algorithm integrates the traditional PSO with the principles and ideology of
quantum computing. Unlike classical computing, in which a bit may exist in either state 0 or state 1,
in quantum computing, the Q-bit may exist in state 0, state 1, or superposition two states. This ability
of quantum computing to have more than two states contributes to a better and faster exploration and
exploitation of search space. Since the exploration and the exploration should complement each other,
so the appropriate tuning of them could improve the performance. In this regard, the rotation angle
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is introduced for updating the position of particles. The proper selection of rotation angle controls
and upholds a good balance between exploitation and exploration of the search space and obtain
the competing solutions with shorter computation time and smaller swarm size. In consequence, this
approach remarkably promotes the computation efficiency of the proposed algorithm. Furthermore,
QPSO with D-dimensional Q-bit representation provides a better population diversity as it covers
the search space faster than the traditional PSO. Thus, quantum computing supplements much more
to the performance of PSO, which further intensifies the efficacy of the technique. In addition, the
training curves of the global best solution representing the optimal CNN topology for dataset D3 are
illustrated in Fig. 3. For this experiment, 15% of the data in the training set is randomly sampled to
create the validation set. We noticed that the training and validation accuracies do not exhibit any
indications of overfitting, and they are getting improved steadily and smoothly with time. This clearly
corroborates that the proposed QPSO-CNN algorithm is sophisticated enough and indeed capable to
exploit promising CNN architecture for any given script recognition dataset.

Figure 2: Illustration of frequently misclassified samples for the chosen benchmark datasets. (a)
CMATERdb 3.1.1 (b) CMATERdb 3.1.2 (c) CMATERdb 3.1.3 (d) BanglaLekha-Iso (e) CMATERdb
3.2.1 (f) DHCD (g) DOGRA C-64 (h) MNIST
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Figure 3: The training process for the gbest model found using QPSO-CNN algorithm on D3

Moreover, in the existing neural architecture search approaches, the final recognition accuracy is
considered as a fitness measure while evaluating the particles. The final recognition accuracy usually
needs a large number of training epochs. So, this process will eventually take a considerable amount
of time. Therefore, to design the complete architecture with the above fitness evaluation plan, it is
essential to exercise a significant number of computational resources for speeding up the process.
Additionally, this process also demands further professional assistance, for example, task scheduling
and synchronization, which is far from the expertise of most of the researchers. Hence, during the
evolution, the particles do not need to check the final recognition accuracy; however, it is sufficient to
predict the tendency that could reveal the future quality of the solution. In this context, the particles
in the proposed scheme are trained with small numbers of epochs during the evaluation. In summary,
it concludes that the proposed technique with the simplistic fitness evaluation scheme and well-
designed encoding strategies lends the researchers to discover potential CNN architectures without
prior domain knowledge.

6 Conclusion

In this paper, a QPSO-CNN algorithm has been proposed for the recognition of handwritten
Indic scripts. The proposed hybrid neuroevolutionary approach integrates particle swarm optimization
with the concept of quantum computing to automatically evolve promising CNN architectures. The
QPSO has a different operational procedure and is an amended version of conventional PSO. It is
strengthened via an additional operator, i.e., the rotation angle. The proper selection of rotation angle
controls and upholds a good balance between exploitation and exploration of the search space and
obtain the competing solutions, even with a smaller swarm size. Also, we deduce that with the effective
use of heuristics, the proposed algorithm avoids wasting too much computational time in vain search
and hence provides an enhanced searching efficiency. The superiority of the proposed QPSO-CNN
algorithm has been evaluated on a variety of Indic script datasets. The comprehensive experimental
results demonstrate that the proposed algorithm performs significantly better than the existing state-
of-the-art techniques.
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