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Abstract: With the development of the Internet of Things (IoT), diverse
wireless devices are increasing rapidly. Those devices have different wireless
interfaces that generate incompatible wireless signals. Each signal has its own
physical characteristics with signal modulation and demodulation scheme.
When there exist different wireless devices, they can suffer from severe Cross-
Technology Interferences (CTI). To reduce the communication overhead due
to the CTI in the real IoT environment, a central coordinator can be able
to detect and identify wireless signals existing in the same communication
areas. This paper investigates how to classify various radio signals using
Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM)
and attention mechanism. CNN can reduce the amount of computation by
reducing weights by using convolution, and LSTM belonging to RNN models
can alleviate the long-term dependence problem. Furthermore, attention
mechanism can reduce the short-term memory problem of RNNs by re-
examining the data output from the decoder and the entire data entered
into the encoder at every point in time. To accurately classify radio signals
according to their weights, we design a model based on CNN, LSTM, and
attention mechanism. As a result, we propose a model CLARINet that can
classify original data by minimizing the loss and detects changes in sequences.
In a case of the real IoT environment with Wi-Fi, Bluetooth and ZigBee
devices, we can normally obtain wireless signals from 10 to 20 dB. The
accuracy of CLARINet’s radio signal classification with CNN-LSTM and
attention mechanism can be seen that signal-to-noise ratio (SNR) exhibits
high accuracy at 16 dB to about 92.03%.

Keywords: Attention mechanism; wireless signal; CNN-LSTM; classification;
deep-learning

1 Introduction

In the Internet of Things (IoT) environment, wireless signals are different between various wireless
devices, and wireless signals are complexly mixed to form crowded signals [1]. When there exist
different wireless networks such as Wi-Fi, Bluetooth and ZigBee in the 2.4 GHz spectrum band,
they can suffer from severe Cross-Technology Interferences (CTI). To reduce the communication
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overhead due to the CTI in the real IoT environment, a central coordinator can be able to detect and
identify wireless signals existing in the same communication areas. Therefore, it is very challenging
task to classify and obtain individual wireless signals in spaces where there are many obstacles, such
as people or walls, or where there are many wireless signals, and to use them reliably. Based on the
result of wireless signal classification, each IoT device adjusts its own communication channel to avoid
congestions. In environments where wireless signals are diverse and heavily intertwined using a variety
of wireless devices, it is difficult to solve these problems using traditional wireless signal classification
methods. Therefore, deep learning models are being studied to solve complex wireless signal problems
wisely, enabling models and systems to be created that show good performance compared to previously
proposed wireless signal classification models.

Convolutional Neural Network (CNN), which belongs to deep neural network among deep
learning techniques, use convolution to reduce the number of weights required for image processing,
thereby reducing computation and aiming for effective image processing. CNN consists of convolution
layers and pooling layers, and solves the vanishing gradient problem using Rectified Linear Unit
(ReLU) as activation function. In addition, CNN is characterized by deriving output values of a given
size as a result through input values of a given size. Through this, most studies utilize CNN to predict
time series data.

Recurrent Neural Network (RNN), one of the artificial neural networks, is a sequence model
of deep learning, which uses input and output data split into sequence units for natural language
processing. And since it has a circular structure, it processes sequence-type inputs through internal
memory. The Sequence-to-Sequence (Seq2Seq) model and the Long Short-Term Memory (LSTM)
cell are representative of the RNN. The Seq2Seq model consists of two architectures, an encoder and
a decoder, which processes every word in the entered sentence sequentially, eventually compressing
the information of every word into a context vector. This context vector transmits the compressed
information to the decoder architecture, processes it to the desired conditions, and outputs them
sequentially. Each cell of the encoder and decoder of the Seq2Seq model consists of an LSTM cell or a
Gated Recurrent Units (GRU) cell. However, interpreting sentences using the Seq2Seq model has the
problem of losing information or vanishing gradient, which results in some information disappearing
when the input sentence is long, resulting in reduced accuracy. LSTM is an RNN with the simplest
form, which can alleviate the long-term dependence problem that rely on previous computational
result to lose memory. It also calculates weights so that important inputs can be recognized by passing
through a total of three gates: forget gate, input gate, and output gate. LSTM is highly utilized for long-
term signals such as long-term sentences and time series predictions, as it can be used to remember
and store important parts from past data, preserve them, and extract necessary parts by iterating the
task of applying them to previous and current data [2,3]. However, the problem with LSTM is that it
is likely to be interrupted by an infinite increase in memory, and that the computation speed is quite
slow [4]. To address these problems, there are cases where we apply peephole connections to LSTM or
use GRU that simplify computation to update hidden states [5].

Furthermore, attention mechanism selectively learns only the parts that have a significant impact
at every point in time, thus reducing the short-term memory problem of RNN. Attention mechanism
transfers all the outputs that went through the encoder to the decoder and computes the sum of
weights for the outputs of all the encoders through the decoder’s memory cells to determine the
important words. This process allows the decoder to focus on and process words that are considered
more important than other words.
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CLARINet, the model proposed in this paper, is designed to classify wireless signals similar to the
original by applying attention mechanism based on CNN-LSTM, which has recently been utilized in
time series prediction to show outstanding prediction performance. CLARINet is passes data through
Conv1D twice, then through LSTM layer twice, applies attention mechanism, and applies softmax
function, reducing distortion and loss of original data of the wireless signal. We propose a final signal
classification model that minimizes distortion by passing signal data to CNN and three gates inherent
in LSTM cells to classify importance, obtaining attention score and attention value, connecting hidden
states at point in time, and iterating output layer computation process to weight important signals. And
we describe experiments to verify accuracy and their result.

Our main contributions are summarized as follows.

• We propose a model that can be classified among various radio signals by minimizing
distortion and loss for each wireless signal.
• We devise a method to classify wireless signals wisely based on CNN-LSTM by applying the
techniques used in natural language processing.
• We propose a model that most accurately classifies wireless signals by applying attention
mechanism for various existing wireless signal analysis methods.
• We help to obtain the individual’s wireless signal in a crowded space, and propose a reliable
model for the accuracy of wireless signal classification.

The rest of this paper is organized as follows. Section 2 describes studies using radio machine
learning dataset and related studies on wireless signal classification using traditional wireless signal
classification techniques, deep learning. Section 3 describes the structure and operating principles
of the CLARINet model applied with our proposed technique, and presents experimental results in
Section 4. Finally, we conclude this paper in Section 5.

2 Related Work

This chapter describes the study of classifying radio signals by reducing interference in complex
radio signal environments and the study of solutions to address deep learning-based radio signal
classification.

In Section 2.1, we describe a study dealing with a novel algorithm for identifying wireless signal
modulation or a wireless signal classification technique that proposes improved directions.

In Section 2.2, we describe the study of techniques for classifying modulation of radio signals by
applying various techniques in deep learning.

2.1 Radio Signal Classification Study

Methods for identifying modulation for wireless signals have long been studied. The different
devices that make up the Internet of Things communicate using different wireless signals. However, if
many IoT devices are used in one space, interference occurs with different wireless signals. Therefore,
it is difficult for wireless devices to seamlessly obtain individual wireless signals in large spaces. Since
wireless signals are modulated without maintaining the original signal during the communication
process, accurately classifying signals between complex signal interferences takes considerable time and
requires long training. Recently, to address this problem, we have attempted radio signal classification
using artificial intelligence technology and continue our research to show near 90% performance
[6]. Furthermore, we analyzed a study that judged accuracy on the results of implementing a fast,
real-time wireless signal classification network to accurately classify the modulation of wireless
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signals [7]. Furthermore, with a study where a novel algorithm extracts key features to identify
modulation of radio signals, we designed a model that accurately classifies signals in complex radio
signal environments [8]. We designed CLARINet to secure individual radio signals because these
studies have similar exact classifications for wireless signal modulation in many spaces. Furthermore,
we seek to solve the problem of low accuracy of radio signal classification through deep learning-based
models in a way to detect conventional radio signal modulation.

2.2 Wireless Signal Classification Solution based on Deep Learning

Recently, research on designing deep learning-based models has been rapidly evolving, and
research has been underway to increase the performance of wireless signal classification by applying
various models of deep learning to one or more existing designed wireless signal classification methods.
For example, we aim to solve the problem of modulation of wireless signals by designing an extended
framework based on CNN to increase the accuracy of radio signal classification [9] or to learn
amplitude and phase information of training data through a model based on one of the RNN models
[10]. To increase efficiency such as accuracy or performance of the designed model, we have attempted
to classify wireless signals by applying deep learning [11] or leveraging high-order cumulants (HOC)
and machine learning [12]. We seek to address the problem of failure to go beyond a certain range
of accuracy by grafting an attention mechanism that can solve the information loss problem caused
by encoding all information with fixed-length vectors, as the point of using the LSTM model when
classifying wireless signals is similar.

There is also an example of analyzing a model using radio machine learning dataset to evaluate the
accuracy and performance of deep learning-based signal classification models based on signal-to-noise
ratio (SNR). The radio machine learning dataset contains data on 11 signals, including 8PSK, AM-
DSB, AM-SSB, BPSK, CPFSK, GFSK, PAM4, QAM16, QAM64, QPSK, and WBFM. Our goal is
to use this dataset as training data for deep learning models to solve problems that do not increase the
accuracy of the previously proposed models. One study presented a plan to improve the performance
of the model as automatic modulation classification (AMC) works progress [13], and there is a study
that improves speed and accuracy by designing models with higher accuracy than conventional models
[14]. There is a study that proposed an algorithm that can increase the dataset so that the deep learning
model can learn enough to improve the problem of lack of datasets [15]. In addition, there is a study
in which deep learning-based models have been trained by utilizing radio machine learning dataset to
solve problems vulnerable to adversarial attacks. Furthermore, a classifier utilizing deep learning has
a case of using radio machine learning dataset to demonstrate that even highly dependent and short
radio signals can be misclassified when classifying radio signals [16]. And one study used a CNN-
based model to extract features learned using CNN to cluster wireless signal modulation types even
for training data that are not labeled [17].

As such, radio machine learning dataset is similar in that it is used to build and validate
multiple wireless signal classification techniques using deep learning to analyze accuracy and check
performance. Therefore, our designed CLARINet model similarly clarifies the criteria for determining
accuracy by leveraging radio machine learning dataset as learning data to validate the performance of
the model and the training.

3 Design of Model

We design a deep learning-based wireless signal classification model CLARINet, which incor-
porates attention mechanism into the results through two Conv1D layers and two LSTM layers.
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Model CLARINet allows complex and diverse wireless signal input data to extract data even in the
context of transformations or distortions of attributes via CNN, and when extracted data is entered via
LSTM’s encoder, it processes each gate’s characteristics via LSTM’s three gates, and applies the output
results through LSTM cells to attention mechanism. Attention mechanism analyzes more intensively
on data considered as necessary data through LSTM cells to produce more accurate classification
results compared to results using only LSTM. Finally, the final result obtained by attention mechanism
applies softmax regression using a cross entropy function as a cost function, classifying the first entered
complex radio signals into a total of 11 radio signals (8PSK, AM-DSB, AM-SSB, BPSK, CPFSK,
PAM4, QAM16, QAM64, and WPSK).

3.1 Data

The collected signals for data classification have a complex number of forms for flexibility and
simplicity for mathematical operations, expressed as I = Acos(ϕ) and Q = Asin(ϕ). A and ϕ refer to
the instantaneous amplitude and phase of the collected signal. RadioML2016.10a dataset follows a
data representation using I, Q, and we use RadioML2016.10a dataset for training and performance
evaluation of CLARINet model proposed in this paper. RadioML2016.10a dataset is a synthetic
dataset with modulation methods currently in commercial use using GNU radio, which implements
similar real-world noise environments such as multipath fading and white noise. This data set contains
128 sample data of 4 samples/symbol. It also consists of Python dict data stored in the form of Python
pickle files, and consists of keys and values. Each key consists of 11 modulation methods and −20
to 18 dB of SNR tuple, and the value has a numpy array of (1000, 2, 128) corresponding to 220 key
values. It consists of 1000 sample windows with two values, I and Q of 128 samples.

In this work, we judged that low SNR data adversely affected learning performance, so we
conducted learning using SNR from −10 to 18 dB, and simply because learning using I and Q values
did not perform well, we changed I and Q values to phase and amplitude values. Furthermore, we
compress from 128 samples of data to 64 samples by replacing two close values with average values for
better learning performance. As a result, we have achieved approximately six times the performance
improvement in CPU environments, with no significant variations in the shape of the data and little
impact on accuracy. This allows us to complete the learning in a reasonable amount of time without
using GPUs. In the learning process for maintenance, it is believed that it will be able to save a lot of
money when learning using cloud servers.

3.2 CNN

CNN has a structure in which input data is configured to go through the convolution layer and
the pooling layer, with a fully connected layer at the end. The entire structure of CNN is the same as
Fig. 1.

The convolution layer is responsible for maintaining the shape of the input data, creating a feature
map for each filter, and the pooling layer receives the output data from the convolution layer as input,
reducing the size of the output data or emphasizing specific data. This allows data to be extracted
from the data where features are modified or distorted. This allows data to be extracted from the data
where features are modified or distorted. In addition, this layer can automatically extract properties.
The convolution layer is a necessary layer, and the pooling layer is an optional layer.
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Figure 1: CNN architecture

The convolution layer uses filters (two-dimensional matrices in the form of N × M) to extract
features of the image. In two-dimensional data consisting of height and width, N × M-sized filters
are traversed at a specified interval, multiplying the overlapping data by the values of the elements in
the kernel, and then adding all the multiplied values. The traveling interval is called the “stride”, and
if the “stride” is specified as 1, it moves one column at a time and make a convolution. The output
from the convolution is called feature map, and the application of the active function to feature map
is called activation map. After the convolution process, the output data is smaller than the input data,
which goes through a process called padding to prevent the output data from decreasing. Padding is
the process of filling the edge of the input data with a specific value by a specified size, usually zeroed.

Pooling layers include max pooling, min pooling, and average pooling. Likewise, the concept of
filter and stride is applied to the pooling operation, and usually the filter and stride are identical so
that all elements can be processed once. For max pooling, we extract the maximum value from the
region where the filter and the data overlap, and similarly, average pooling is the method of extracting
the mean. The convolution and pooling operations look similar in that the filter and stride concepts
are used, but the pooling operations differ in that no weights exist.

We apply CNN layer to CLARINet to reduce the loss to the original data and make sure that we
do not lose the association of each radio signal.

3.3 LSTM

LSTM is used to alleviate the long-term dependence problem of RNN mentioned in Section 1,
and the overall structure consists of cells and three gates, such as Fig. 2. Cells have values for arbitrary
time intervals, and three gates are responsible for removing unnecessary information or leaving only
necessary information that is considered important.

Cell state of LSTM is the horizontal line at the top of Fig. 2. Cell state (Ct) represents the state of
the cell and is used to obtain the state of the next cell through the state of the previous cell, and serves
to convey information generated from the previous node. This cell state allows the operation to be
repeated again because it moves information considered important information in the previous step.
LSTM performs the process of adding or erasing information from cell states through three gates. tanh
stands for hyperbolic tangent function and σ for sigmoid function. LSTM also has three gates, each
consisting of a get gate, an input gate, and an output gate. These gates are used to obtain hidden and
cell state values. For each gate, a sigmoid function is applied to determine whether the previous data
will affect the following data based on the derived values between 0 and 1.
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Figure 2: LSTM architecture

The operating process of LSTM, such as Fig. 3, first enters the wireless signal via the forget gate
into the input information. Forget gate is a gate that determines what information is reflected in the
current information through the operation of Eq. (1) and is determined via sigmoid function.

Figure 3: LSTM gate architecture

t represents the time point, Wf represents the weight, and bf represents the bias.

ft = σ(Wf · [ht−1, xt + bf ]) (1)

The ft of Eq. (1) has a value of [0, 1] through the sigmoid function. If the ft is close to 1, the previous
information is reflected a lot. If the ft is close to 0, the value is reflected less.

The input gate is configured as Fig. 3 and is responsible for remembering the information to store
for new information. To remember new information, perform the operations in Eqs. (2) and (3). t
represents the time point, and Wi and WC denotes the weight. bi and bC denote bias.

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

The it of Eq. (2) shall have the value [0, 1] obtained by the sigmoid function and shall be
determined to reflect the present information. When the value of it is 1, [−1, 1] values obtained from
the hyperbolic tangent function of the Eq. (3) determine the candidate vector to be added to the cell
state. These two values select information and determine how much to remember.
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Then, to update the contents of the forget gate and input gate, we go through Fig. 3. Update the
information by applying Eq. (4) to Ct−1 crossed from the previous node.

Ct = ft × Ct−1 + it × C̃t (4)

ot = σ (Wo [ht−1, xt]) (5)

ht = ot ∗ tanh(Ct) (6)

Finally, output gate is the final step in determining which data to output, corresponding to the
final step in Fig. 3. The input is entered into the sigmoid function and the value [0, 1] is output, which
determines whether to export part of the cell state to output. This output is then passed through the
hyperbolic tangent function to the input of the next state.

We leverage CLARINet to automatically do well filtering on given data via CNN layer. Further-
more, we put CNN layers at the forefront of CLARINet to learn important characteristics for each
radio signal when classifying radio signals, and to preserve the association of the data, leveraging them
to remember the features of radio signals.

3.4 Attention Mechanism

Attention references and applies the entire input sentence at each point in predicting the output
data, and concentrates the data associated with the data to be predicted and forwards it to the decoder.
This mechanism allows us to deliver more data than was previously delivered. The method in which
attention mechanism is used is the same as Fig. 4.

Figure 4: Attention mechanism architecture
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The attention score must be obtained to apply the attention mechanism to the layer consisting
of LSTM. Attention score is a score that determines the similarity between the hidden state of the
encoder and the hidden state st of the encoder at the present time. The softmax function is applied
to obtain an attention distribution in which the sum of all values is equal to 1, and each value is an
attention weight. This value and the hidden state provide an attention value, αt. The hidden state of
the decoder is connected to this value, and the operation of Eq. (7) is performed to create and use s̃t

as the input of the output layer. Wc stands for weight matrix, and bc stands for bias.

s̃t = tanh(Wc[αt; st] + bc) (7)

Finally, s̃t can be used to obtain prediction vectors using inputs from the output layer, adding attention
mechanisms to existing LSTM models.

We apply an attention mechanism to CLARINet to design an accurate classification by weighting
the factors that have a significant impact when distinguishing the features of each radio signal.

3.5 Architecture of CLARINet

Finally, our designed network of CLARINet is designed to reduce conversion, distortion, and
loss to the original data through two Conv1D layers, extract the data, and delete the rest of the data
except the critical data through two LSTM layers. We then design an attention mechanism to weight
important data so that it can be classified focusing on important data when analyzing radio signals.
The structure of CLARINet performing this process is the same as Fig. 5.

Figure 5: CLARINet model architecture

CLARINet receives the original radio signal for the frequency band signal as input data. We set
the number of filters, the underlying property of CLARINet, to 64. Filter determines the filter size,
determines the stride, and recognizes the data according to the length of the stride, and generates the
activation map as an output. Therefore, CLARINet is designed to generate 64 activation maps over
64 filters.
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We designed that data passed through CNN layers remember the features each wireless signal has
in order to classify wireless signal over LSTM layer, considering then as important information. It is
also designed to remove hidden unit with a 60% chance by leaving the dropout of CLARINet at 0.6. In
the LSTM layer, dropout is a type of regularization that solves overfitting and makes it not dependent
on any single data through dropout. Through this, the CLARINet model is designed to be overfitted
and non-dependent.

Output data through CNN layer and LSTM layer are applied to attention mechanism to solve the
gradient loss problem, increasing accuracy, and classified radio signals have an organic relationship
with each other. Eventually, data passed to attention mechanisms are classified into 11 radio signals
(8PSK, AM-DSB, AM-SSB, BPSK, CPFSK, GFSK, PAM4, QAM16, QAM64, QPSK, WBFM) via
softmax regression.

4 Result of Experiment

To compare the performance of CLARINet on accuracy, we conducted experiments by selecting
a model that combines two CNN layers and two LSTM layers, two CNN layers, one LSTM layer, two
LSTM layers, two CNN layers and attention mechanism, as a comparison group. The results of our
comparison of the accuracy according to SNR are as shown in Fig. 6.

Figure 6: Classification accuracy comparison of CLARINet

If SNR is in the range of −20 to −10 dB, CLARINet and all the seven comparator models selected
show less than 10% accuracy, with a narrow rise. Therefore, we analyze the range of SNR based on
−10 dB or more to clearly classify the accuracy for CLARINet. Our design of CLARINet shows an
average accuracy of 77.40% for SNRs above −10 dB, highest accuracy from 16 dB to 92.03%, and
approximately 7.34% higher than that of seven comparators at 16 dB.

We analyze on seven comparator models selected to classify radio signals, and we find that the
classification accuracy of models with CNN layers is higher than that of models without CNN layers,
and that the accuracy of models with two CNN layers in the range 0 to 18 dB shows an average accuracy
of 80%. Furthermore, we compare models based on CNN layers, showing that the two-applied LSTM
layers have approximately 2.98% higher accuracy than the single attention mechanism. This shows
that CNN layer-based models exhibit high values in the range of 0 to 18 dB in determining accuracy
for radio signal classification, and that additional LSTM layer or attention mechanism can be applied
to increase accuracy.
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The results of CLARINet experiments on −8, 0, 16 and 18 dB on SNR basis to verify accuracy
in classifying radio signals in complex radio signal environments were shown as Figs. 7–10.

Figure 7: Confusion matrix at SNR −8 dB

SNR below −10 dB has little significance in data results because of its low accuracy, and SNR
of −8 dB can be found to be mostly low in accuracy, such as Fig. 7. However, out of a total of 11
modulation techniques, we can confirm that AM-DSB, AM-SSB, PAM4 and QAM64 exceed 50%
accuracy, which means that the modulation techniques can be classified to some extent even if noise
is severe.

According to Fig. 8, CLARINet shows nearly 90% accuracy on average at SNR 0 dB, and from
4 dB, it can be seen that the accuracy is over 90% on average. In particular, we show that AM-SSB is
more classified with an accuracy of over 90%. While the SNR of 0 dB is mostly over 90% accuracy,
8PSK, QAM16, QAM64, and WBFM of the 11 modulation techniques do not exceed 90% accuracy.
QAM16 is a subset of QAM64, which often misjudges QAM16 as QAM64 because only the bits that
can be sent from one signal are different. WBFM has the lowest accuracy among the 11 modulation
techniques, and the signal from WBFM is misclassified as AM-DSB due to the absence of a signal
because it was modulated in a real audio stream. At 18 dB SNR, most modulation techniques, such
as Fig. 9, show an average accuracy of over 90%, and the accuracy for QAM16 is about 10% higher
than the accuracy classified in 0 dB. Furthermore, WBFM was also shown to be 10% higher than the
accuracy classified at 0 dB, but relatively lower than other signals.
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Figure 8: Confusion matrix at SNR 0 dB

Figure 9: Confusion matrix at SNR 18 dB
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Figure 10: Confusion matrix at SNR 16 dB

We retained the basic properties of CLARINet to verify the experimental results according
to the properties of CLARINet, and proceeded with the experiment by changing the number of
filters. CLARINet has 64 filters, and the number of filters in the comparison model we selected for
comparison is 32, 64, 128, and 256. The experimental results comparing accuracy according to the
number of filters are as shown in Fig. 11.

Figure 11: Classification accuracy results by number of filters

When the number of filters is 64, they represent the highest accuracy at all 0 to 18 dB, and the
highest accuracy at 16 dB to 92%. While 128 filters and 256 filters represent similar accuracy overall,
it can be seen that 128 filters represent slightly higher accuracy. The number of filters increases mainly
as the layers are placed behind, with CNN layers located in front of the CLARINet model, with a
relatively small number of 64 filters having higher accuracy than 128 filters and 256 filters.
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We further analyzed for models with 64 filter and 128 filter indicating high accuracy in Fig. 11.
The results of analyzing the two models based on total steps, initial loss, final loss, and runtime are
the same as Tab. 1.

Table 1: 64 filter and 128 filter analysis results

64 filter 128 filter

Total steps (Epoch) 102 79
Initial loss (%) 1.83 1.71
Final loss (%) 1.10 1.09
Runtime 1 h 40 m 3 h 47 m

Comparing epochs according to the number of filters, 64 filter shows that Total Steps was 20
more times than 128 filter, which led to more learning. We used categorical_crossentropy as a loss
function of CLARINet, and after checking the loss cost, we found that both 64 filter and 128 filter
show approximately 1–2% loss. We can see that the final runtime of our designed CLARINet takes
about two hours less than 128 filters, depending on the number of filters.

In addition, experimental results comparing accuracy by changing the value of dropout, a
regulatory technique to prevent overfitting, were shown as Fig. 12. P, the hyperparameter of dropout,
means probability. The probability of dropout temporarily changes depending on the value of this p.
Our designed CLARINet is designed by selecting the p value of dropout as 0.6.

Figure 12: Classification accuracy results by dropout

According to Fig. 12, when dropout is 0.6, it is shown that the highest accuracy is from 0 to 18 dB,
and when dropout is 0.4 it is the next highest accuracy. If dropout is 0.8 then low performance indicates
that strong regulation indicates low accuracy, and the most common accuracy when left at 20% to 60%.
It showed an accuracy of 92% at 16 dB. Through this, we confirm that designing to dropout with a 60%
chance at each training step can yield the best performance to improve the accuracy of CLARINet.

Based on the experimental results, we design CLARINet as a structure of two CNN layers, two
LSTM layers, and an attention mechanism, with 64 filters on the CNN layer and 0.6 dropout on the
LSTM layer, selecting the model with the highest accuracy.
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5 Conclusion

We propose a novel model CLARINet that integrates CNN layer with LSTM layer and attention
mechanism as a deep learning-based solution for classifying wireless signals in the IoT environment.
Many previous studies have attempted radio signal classification based on original signals with less
distortion or loss of radio signals, and have proposed efforts to improve performance on radio signal
classification by incorporating various techniques. However, the exact classification of each radio
signal has yet to be completely resolved, as radio signals are not separated and propagated, but are
complexly propagated in crowded spaces. Previous studies have mainly improved accuracy problems
by implementing LSTM-based models. Therefore, we design a model CLARINet with LSTM layer
and attention mechanism applied to CNN-based models to accurately classify complex radio signals
for each feature.

We show that CLARINet, which is designed to allow wireless signals to obtain individual radio
signals in congested spaces, shows approximately 60% accuracy for environments with SNR of −20 to
18 dB, with approximately 92.03% accuracy at 16 dB. Analysis of CNN layer and LSTM layer used in
CLARINet structure shows that CNN-based models have an average accuracy of about 40% higher
than LSTM-based models. Through this, we have shown that classifying complex radio signals through
CNN-based models exhibits higher accuracy than those that do not. Furthermore, we use attention
mechanism to weight features on radio signals, remember only important features of radio signals and
classify them, identify the possibility of minimizing distortion and loss, and finally confirm that they
can be classified into 11 radio signals via softmax regression.

In the future, we plan to improve accuracy by changing the attributes of CLARINet models or by
adding layers, and explore ways to improve on misclassifying QAM16 as QAM64 and misclassifying
WBFM as AM-DSB. Furthermore, we plan to utilize CLARINet to conduct experiments on image
classification to improve the problem by applying it to problems that suffer from data loss or distortion,
and simplify our model to optimize the overall performance.
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