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Abstract: Flash floods are deemed the most fatal and disastrous natural
hazards globally due to their prompt onset that requires a short prime time
for emergency response. Cognitive Internet of things (CIoT) technologies
including inherent characteristics of cognitive radio (CR) are potential can-
didates to develop a monitoring and early warning system (MEWS) that
helps in efficiently utilizing the short response time to save lives during flash
floods. However, most CIoT devices are battery-limited and thus, it reduces
the lifetime of the MEWS. To tackle these problems, we propose a CIoT-
based MEWS to slash the fatalities of flash floods. To extend the lifetime
of the MEWS by conserving the limited battery energy of CIoT sensors, we
formulate a resource assignment problem for maximizing energy efficiency.
To solve the problem, at first, we devise a polynomial-time heuristic energy-
efficient scheduler (EES-1). However, its performance can be unsatisfactory
since it requires an exhaustive search to find local optimum values without
consideration of the overall network energy efficiency. To enhance the energy
efficiency of the proposed EES-1 scheme, we additionally formulate an opti-
mization problem based on a maximum weight matching bipartite graph.
Then, we additionally propose a Hungarian algorithm-based energy-efficient
scheduler (EES-2), solvable in polynomial time. The simulation results show
that the proposed EES-2 scheme achieves considerably high energy efficiency
in the CIoT-based MEWS, leading to the extended lifetime of the MEWS
without loss of throughput performance.

Keywords: Flash floods; internet of things; cognitive radio; early warning
system; network lifetime; energy efficiency

1 Introduction

Global warming at alarming levels is stimulating a wide variety of factors that cause flash floods
[1]. Flash floods are considered the most fatal types of floods due to their high mortality rate as shown
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in Tab. 1. Excessive rainfall, dam failure, or a sudden release of water held by glacier jam may result
in a flash flood. Rapidly rising water can reach heights of 30 feet or more. Flash floods can roll rocks,
tear out trees, obliterate structures and overpasses, and scrub out new water channels. Furthermore,
flash flood-producing rains may incite catastrophic mudslides. Occasionally, the floating debris or
ice accumulates at a natural or man-made barricade, resulting in the rise of water level upstream. On
the abrupt release of the obstruction, the wreckage carried by an excessive volume of water triggers
astringent damage to the life and property downstream. In such situations, there is a fleeting time to
caution the populace aboutsudden floods.

Table 1: Major flash floods that caused huge fatalities [2]

Year Area Description Mortalities

1979 India Machchhu-2 (Machu River) busted after
heavy rainfall

25,000

1989 US South Fork Dam (Little Conemaugh
River) broke after heavy rainfall

2,209

2010 Pakistan Heavy rains fall caused huge flooding in
the Indus River basin

1,480

1967 Portugal Severe flooding rampaged the city of
Lisbon

464

2006 Ethiopia Heavy rain caused flash floods in eastern
Ethiopia,

350

1982 Japan Infrastructure collapses due to heavy rains
in Nagayo, Nagasaki

299

1903 US Heppner Flood, Oregon, killed almost a
quarter of the town’s residents

247

The characteristics of cognitive radio (CR) and the Internet of things (IoT) can be exploited to
achieve a short response time during flash floods. The IoT is a technological revolution that brings us
into a new era of pervasive connectivity, computing, and communication. The evolved idea of IoT is
to develop intelligent physical objects to sense, communicate, process, and act for concerted decisions,
entailing a new paradigm named cognitive Internet of Things (CIoT) [3]. The IoT devices and networks
are anticipated for reliability, quality, and time enduring availability. Connectivity is considered the
most critical component in the realization of the concept of IoT. Wireless communication technologies
emerge as a cost-effective solution to provide essential inter-connectivity among IoT devices and
accessibility to remote users [4,5].

Radio spectrum scarcity has emerged as one of the major challenges due to the unprecedented
growth of IoT devices [4,6,7]. The studies reveal that incorporation of the CR capability into IoT
devices and networks substantially improves spectral efficiency by using dynamic spectrum access
(DSA) and opportunistic transmission capabilities [3,4,6]. They also suggest that the benefits of IoT
without cognitive functionalities such as CR and intelligence techniques are limited [4]. Moreover, the
integration of CR into IoT can provide advanced information processing capabilities.

On the other hand, CR requires a powerful energy source to perform its functionalities. However,
the current battery technologies cannot meet the higher power requirements related to the flow of data
generated by CIoT devices, due to slower progress in battery technologies compared to semiconductor
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technologies [8]. Hence, efficient utilization of the CIoT network to develop an early warning system
for flash floods becomes vital to save lives and reduce the devastating impacts of natural hazards
[9]. Consequently, flash flood monitoring requires a CIoT network deployment over a wide range of
geographical areas without frequent battery replacement. In addition, efficient utilization of battery
energy for CIoT devices is crucial in network design. It can provide cost-effectiveness and extended
network lifetime as well as reduced environmental concerns.

1.1 Related Work

The international strategy for disaster reduction (ISDR) has laid down outlines to devise measures
for minimizing the damages caused by floods and other disasters. These measures are classified as: 1)
structural and 2) non-structural [10,11]. The structural measures include the engineering construction
design of physical structures to reduce potential impacts of hazards such as protection, retention,
and drainage systems involving huge time and economic resources [10]. On the other hand, the non-
structural measures employ data or policies to reduce the risk [10–12]. These are further classified as
passive and active measures.

The active measures promote direct interactions with people such as training, early warning
systems (EWSs) for people, and public information, among others. The passive measures involve
policies, building codes and standards, and land use regulations. In this paper, we consider the non-
structural passive measures for our proposed CIoT-based EWS. A summary of the non-structural
studies related to IoT-enabled disaster management is listed in Tab. 2. However, these previous studies
generally take into account legacy wireless sensor networks at an abstract level. Moreover, they do not
aim to extend the network lifetime through efficient utilization of the limited battery energy.

Table 2: Summary of the studies for disaster management and flood monitoring

Category Core Area Ref.

Pre-Disaster Caution

WSN-based EWS for
geo-hazards

Geo-location data transmission
to the monitoring station

[10]

WSN-based EWS, water level
monitoring

Development of WSN-based
data collection/transmission

[11,13,14]

IoT-based in disaster
management

Real-time awareness of the
situation

[15,16]

WSN-based EWS, water level
monitoring

Development of WSN-based
data collection and
GSM-based transmission

[17]

Comparison of various EWSs
presented in the literature for
pluvial flash floods

Identification of flaws in
existing WSN-based schemes
to suggest a more efficient
EWS in pluvial flash floods

[18]

(Continued)
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Table 2: Continued
Category Core Area Ref.

Pre-Disaster Caution

Water drainage detection from
a reservoir

ZigBee-based WSN was
developed for surface drainage
detection using ultrasonic
sensors.

[19]

Development of an
energy-efficient algorithm for
WSN-based flood monitoring

Optimization of energy
consumption by trading off
between accuracy and power
consumption

[20]

Data-driven machine
learning-based flood prediction

Dam data and supportive
vector machine based flood
prediction

[21]

Design stages for automatic
water level recorder sensor
system

automatic water level recorder
sensor-based water level
monitoring

[22]

Post-Disaster Relief

IoT-based identification for
post-disaster needs

IoT-based data collection for
planning a relief operation

[12]

Cognitive Internet of vehicles
(CIoV)-based disaster
management and recovery
system

CIoV entities are equipped
with cognition and intelligence
to learn, understand, and
respond without human
interaction to serve, to manage
disasters, and earlier recovery

[23]

Situational awareness in
disaster management

Collaborated sensing,
topology-aware routing,
accurate resource localization
to optimize data collection and
energy use

[24]

Data-driven analysis of flash
floods hazards to suggest a
relief strategy

Spatial and temporal flash
flood data assessment to
suggest mitigation strategy for
future

[25]

The implementation of state-of-the-art technologies such as CR and IoT have been investigated to
mitigate the vulnerabilities of flash floods [12–14,22]. The state-of-the-art CIoT networks are expected
to operate multiple cognitive and intelligent functionalities to minimize the loss of lives and assets
under disastrous situations and higher power requirements. However, since the CIoT networks involve
several battery-limited devices, efficient energy utilization is required and it has three main objectives:
1) cost-effectiveness, 2) longer battery lifetime, and 3) environmental concerns.
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The energy efficiency in resource allocation is well investigated in the literature. Kim et al. studied
the scheduling for IoT devices to enter them into sleep and active modes to prolong the network
lifetime while satisfying the report accuracy and timely-update requirements for environmental mon-
itoring applications at higher network levels [26]. Sarangi et al. proposed several schemes to minimize
the energy consumption between neighboring IoT nodes and servers at the network layer [27]. In [28],
Bui et al. proposed a scheduling scheme for software updates of IoT devices to minimize total energy
consumption while satisfying the deadline constraint for updating all the IoT devices. In [29], Afzal
et al. presented a context-aware traffic scheduling algorithm to allocate resources to multi-hop IoT
devices and reduce their total awake time by employing adaptive duty cycling at a higher network
layer. Yu et al. [30] formulated an energy consumption minimization problem considering offloading,
user association, and small base station sleeping for network-wide devices and components. Kaur et al.
[31] proposed a deep-reinforcement-learning (DRL)-based intelligent routing scheme for a clustered
divided IoT-enabled wireless sensor network (WSN) to reduce the network delay and increase network
lifetime. However, the previous work mainly focuses on the energy consumption minimization at the
network layer, e.g., routing. Most recently, In [32], Verma et al. investigated the energy efficiency of
a clustered IoT-based WSN to save battery energy through scheduling the selection of a cluster head
and controlling the sleep mode of IoT sensor devices.

1.2 Contribution and Organization

Contrary to the studies mentioned above, in this paper, we propose CIoT-based monitoring
and early warning system (MEWS) to reduce the devastation of flash floods. The proposed system
model considers the characteristics of CR to develop a clustered CIoT sensor network over a wide
range of geographical areas. The network lifetime of the MEWS can be increased through a suitable
selection of communication channels for reporting the data collected by the CIoT sensors. To save
the limited battery energy of CIoT devices, we formulate an energy efficiency maximization problem
based on nonlinear integer programming (NLP). To solve this problem, we propose two polynomial-
time heuristic scheduling schemes.

The rest of this paper is organized as follows. Section 2 introduces the CIoT-based system model
considered in this paper. The optimization problem formulation and the proposed heuristic scheduling
algorithms are presented in Section 3. The performance of the proposed scheduling schemes is
evaluated in terms of energy consumption, normalized energy efficiency, the average number of
available reports, and network throughput in Section 4. Discussions and conclusions are presented
in Section 5 with the intended future work.

2 System Model and Background

Fig. 1 shows the bi-level MEWS. At Level-1, CIoT sensors are deployed in water channels
and canyons to measure different flood-related parameters, such as water level, intensity, pressure,
temperature, etc. The CIoT sensors report their observations as fixed-size packets to the smart base
station (SBS) after getting the channel allocation map from SBS. At Level-2, the SBS forwards the
collected data to the flood management system on a high-speed link. The flood management system
employed at the disaster management center (DMC), analyzes the data to take preventive measures
while a flash flood is detected. The SBS plays a role as the cluster gateway and is responsible for
allocating sub-channels to the CIoT sensors.
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Figure 1: CIoT-based flash flood monitoring and early warning system

We consider a clustered architecture serving M CIoT sensors (i = 1, 2, . . . , M), where a central
entity SBS acts as the cluster head and CIoT sensors are the members of the cluster. There can be 20 to
50 CIoT sensors in a cluster. The clusters are constructed considering the distance between each CIoT
sensor and the SBS. The primary network (PN) has N non-overlapping orthogonal sub-channels. The
channel occupancy is modeled as a two-state Markov chain.

In this paper, spectrum sensing is not performed, assuming that the spectrum occupancy of
primary users (PUs) is obtained by the SBS from a white space database which is fully synchronized
with the PN [33]. Such database-based CR systems have attained notable attention due to their
immense potential for transmuting CRs into functional networks [33,34]. The channel idle probability
is denoted as pidle. The SBS allocates j idle sub-channels to M CIoT sensors in a cluster, where
j = 1, 2, . . . , N. The frame architecture of the proposed scheduling schemes are shown in Fig. 2. In
a cluster, at the beginning of each frame, the SBS disseminates the idle channel information to all
CIoT sensors on a common control channel. As acknowledgment, each CIoT sensor sends a small
packet back to the SBS on different idle sub-channels. Each CIoT sensor also shares its residual
battery energy level, Ei, with the SBS on the common control channel. Exchange of these messages
is performed within the control message duration, Tctr, for every frame. We assume that the control
message duration is significantly shorter, compared to the other time durations of the frame. As the
whole information is gathered at the SBS, the SBS perform an assignment policy and broadcast the
channel scheduling information to all the CIoT sensors. After that, each CIoT sensor can be either in
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transmission mode or idle mode. Figs. 2a and 2b illustrate the frame structures in transmission and
idle modes, respectively.

Figure 2: Frame structure of the proposed scheduling schemes: (a) frame structure of CIoT sensors
when the sub-channels are allocated by the SBS, (b) frame structure of CIoT sensors when the sub-
channels are not allocated by the SBS

2.1 Channel Capacity Modeling

The maximum number of bits that a single CIoT sensor can transmit in a frame over the channel
depends on three factors: 1) bandwidth of the channel, W , 2) signal-to-noise-ratio (SNR), and 3)
channel switching delay. The switching delay Tcs, is defined as the time duration spent for tuning the
i-th CIoT sensors’ radio frequency front-end from the previously used channel j/ to the newly assigned
channel j, which is named channel switching latency in the literature [35–37] and given as:

Tcs
i,j→j/ = τcs|j/ − j| seconds, (1)

where τcs is the hard switch delay for switching unit bandwidth. Let Ci,j be the channel capacity for the
i-th CIoT sensor and the j-th sub-channel. Using the Shannon-Hartley equation, it is expressed as:

Ci,j = W log2

(
1 + |hi,j|2Pi,j

Tx

N0

)
bits/second, (2)

where |hi,j|, N0, and Pmax
Tx are the channel gain from the i-th CIoT sensor to the SBS in the j-th sub-

channel, the normalized noise power, and the maximum transmission power, respectively. The actual
throughput of a single sub-channel is defined as the maximum number of bits that can be transmitted
by a single CIoT sensor on a single sub-channel during a frame dration. Let Mi,j denote the actual
throughput of the j-th sub-channel when the i-th CIoT sensor transmits information over this channel,
which is obtained by

Mi,j = Ci,j(T − Tctr − Ti,j
cs ) bits, (3)

where T ,Tctr, and Ti,j
cs are the total frame duration, the control message duration when the CIoT sensor

is in transmission mode, and the time consumed by the i-th CIoT sensor in switching the sub-channel
when the j-th sub-channel is assigned, respectively. Therefore, the total throughput R of the CIoT
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sensors network can be expressed as

R =
M∑

i=1

N∑
j=1

Di,jMi,j bits, (4)

where Di,j is the binary decision variable that represents the assignment status for the i-th CIoT sensor
on the j-th sub-channel. If Di,j = 1, a sub-channel is assigned to the i-th CIoT sensor, and otherwise,
Di,j = 0, which implies no channel assignment to the i-th CIoT sensor.

2.1.1 Transmission Mode—Energy Consumption Modeling

Let S denotes the set of CIoT sensors assigned with the sub-channels by the SBS. The frame
structure in Fig. 2a shows that if a CIoT sensor is assigned to a sub-channel (i.e., i ∈ S) by the SBS,
it switches its radio frequency chain to the assigned channel during the channel switching period and
it transmits data during the transmission period. We refer to this scenario as the transmission mode
scenario. On the other hand, Fig. 2b illustrates that if a CIoT sensor is not assigned to a channel
(i.e., i /∈ S), it stays idle after the control messaging period till the end of the frame. We refer to this
scenario as the idle mode scenario. Accordingly, we model the energy consumption for both scenarios
as follows.

In this subsection, we derive the energy consumption of a CIoT sensor during different time
durations in a single frame. At the beginning of the frame, each CIoT sensor sends its state to the
SBS during the control messasing period, consuming the amount of energy ETx

ctr for transmitting a
control message. The energy consumed by the i-th CIoT sensor during the control messaging period
is calculated as follows:

ETx
ctr = Pmax

Tx Tctr Joules. (5)

We assume that the CIoT sensors use maximum transmission power PmaxTx during the control
message duration. After the control message, the sensors that are assigned different idle sub-channels
by the SBS, switch to the assigned sub-channels by consuming channel switching energy Ecs. Channel
switching energy consumption by the i-th CIoT sensor on the j-th assigned sub-channel is calculated
as follows:

Ei,j
cs = PcsTi,j/→j

cs Joules, (6)

where Pcs is the power dissipation for channel switching by a CIoT sensor. Ti,j/→j
cs is the channel swiching

delay at the i-th CIoT sensor to change its sub-channel from j/ to j, given in (6). Finally, the CIoT
sensors start transmitting the collected data on the assigned sub-channels, consuming energy Edata. In
this paper, we consider adaptive transmission power control in which the transmission power during
data transmission period is adaptively assigned to the CIoT sensors according to the assigned channel
condition.

Transmission energy consumption is proportional to the transmission time duration and the
assigned transmission power Pi,j

Tx. The transmission time duration τ
i,j
data of the i-th CIoT sensors on

the j-th sub-channel is obtained by

τ
i,j
data = Mi,j

Ci,j

seconds. (7)
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Accordingly, the energy consumption during data transmission for the i-th CIoT sensor on the
j-th sub-channel can be calculated as follows:

ETx
data = |hi,j|2Pi,j

Txτ
i,j
data Joules. (8)

The power consumed by the electric circuitry within the CIoT sensor in transmission mode, named
circuit power, is defined as PC. It is a constant value, which is not dependent on transmission rate. The
amount of energy consumed by the electric circuitry for the i-th CIoT sensor on the j-th sub-channel
is expressed as

Ei,j
C = PCτ

i,j
data Joules. (9)

Eventually, the total energy consumption for the i-th CIoT sensor on the j-th sub-channel in the
transmission mode scenario is obtained by adding Eqs. (5), (6), (8), and (9) as follows:

Ei,j
tot = (Pmax

Tx Tctr)+(PcsTi,j/→j
cs ) + (|hi,j|2Pi,j

Tx
τ

i,j
data)+(PCτ

i,j
data) Joules. (10)

2.2 Idle Mode–Energy Consumption Modeling

If no sub-channel is assigned to a CIoT sensor by the SBS in a frame, the corresponding CIoT
sensor goes into the idle state after the control messaging time duration. Energy consumption for the
idle CIoT sensor is the sum of the amount of energy consumed in control messaging and consumed
during idle period. The length of the idle period is Tidle = T − Tctr. Therefore, the energy consumption
during the idle period is expressed as

Eidle = Pmax
Tx Tctr + PidleTidle Joules. (11)

Consequently, the total energy consumption for a single frame in a CIoT sensor network is derived
by

E = ∑
i∈S

N∑
j=1

Ei,j
tolDi,j + ∑

i/∈S
Eidle Joules. (12)

In Eq. (12), the first term represents the energy consumptions by active CIoT sensors, while the
second term denotes those by idle CIoT sensors in the network.

3 Problem Formulation and Proposed Scheduling Schemes

Energy efficiency can be defined as the throughput achieved per unit energy consumed in a given
frame time duration, T , as bits per joule [38]. Dividing Eq. (4) by Eq. (12), we obtain the energy
efficiency of a CIoT sensor network as follows:

η = R
E

bits/Joule. (13)

Subsequently, we formulate an energy efficiency maximization problem as follows:

max
�d

η (14)

s.t.
N∑

j=1

Di,j ≤ 1, i ∈ {1, 2, . . . , M}, (15)



5070 CMC, 2022, vol.71, no.3

M∑
i=1

Di,j ≤ 1, j ∈ {1, 2, . . . , N}, (16)

Di,j ∈ {0, 1}, (17)

where �d = [Di,j], ∀i, j, is the channel assignment vector where each element is a binary integer value

Di,j ∈ {0, 1}. The first constraint (15) confirms that each CIoT sensor is assigned to a single sub-
channel maximally assuming that each CIoT sensor is equipped with a single antenna. The second
constraint (16) ensures that only a single CIoT sensor can transmit on a certain sub-channel in a given
time slot assuming that simultaneous transmissions on a single sub-channel are not allowed. The last
constraint (17) means that Di,j is a binary integer variable. The problem at hand contains a nonlinear
objective function and thus, it is so complicated to find the solution. For instance, if the CIoT sensor
network has N = 10 idle sub-channels and M = 15 CIoT sensors to transmit the data in a frame, the

search space considering all the possible assignments is composed of
N∑

j=0

(
N!

j!(N−j)!

) (
M!

(M−j)!

)
elements.

At the beginning of each frame, it is required that the SBS solves the problem and disseminates
the assignment decision to all the CIoT sensors. Then, the CIoT sensors start to transmit the collected
data over the assigned sub-channels. Since the SBS determines the channel assignment at the beginning
of each frame, an efficient scheduling scheme is needed in the perspective of energy consumption and
complexity. In this paper, the optimal solution can be found for only a small number of available
idle sub-channels and CIoT sensors through exhaustive search. However, in general, since several
CIoT sensors and available idle sub-channels exist in the CIoT network, a more efficient and tractable
scheduling scheme is required. In the next subsections, we propose two energy-efficient scheduling
schemes: energy-efficient scheduler-1 (EES-1) and energy-efficient scheduler-2 (EES-2).

3.1 Proposed Energy Efficient Scheduler-1

Fig. 3 shows the flowchart of the proposed EES-1 scheme. It greedily assigns an idle sub-channel
to a CIoT sensor so that it maximizes the energy efficiency on the sub-channel. The energy efficiency
matrix is calculated using Eq. (12). If the available number of idle sub-channels is larger than the
number of CIoT sensors, the proposed EES-1 scheduler searches for the best CIoT sensor for a given
sub-channel to maximize the energy efficiency value. Afterward, the CIoT sensor and the assigned sub-
channel are removed from the search space in the energy efficiency matrix and placed in the assignment
matrix. The loop continues until all the available idle sub-channels are assigned to the CIoT sensors.
On the other hand, if the number of CIoT sensors is larger than the number of available idle sub-
channels, the proposed EES-1 scheduler searches for the best sub-channel for a given CIoT sensor to
maximize the energy efficiency. Afterward, the selected CIoT sensor and the assigned sub-channel are
removed from the energy efficiency matrix and placed in the assignment matrix. The same procedure
is iteratively performed until all the CIoT sensors are assigned to the idle sub-channels.

The proposed EES-1 scheme operates in polynomial time for a certain number of available idle
sub-channels. More specifically, its complexity is given by the order of O(MN). The performance of the
proposed EES-1 scheme can be limited since the solution is often able to be local optimum. Therefore,
we proposed the EES-2 scheme as an alternative scheduling scheme in the next subsection.
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Figure 3: Flowchart of the proposed EES-1 scheme
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3.2 Proposed Energy Efficient Scheduler-2

We model the channel assignment problem using a weighted bipartite graph by placing the CIoT
sensors in a group of vertices, V1, and the idle sub-channels in the other group of vertices, V2, such
that V1 ∩ V2 = φ and ηi,j (i.e., the energy efficiency for the i-th CIoT sensor and the j-th sub-
channel) implies the weight factor for the corresponding edge. The bipartite graph representation
of the problem is shown in Fig. 4. Accordingly, the energy efficiency maximization corresponds to
a maximum weight matching problem, which is solvable using the Hungarian algorithm. Therefore,
we propose the EES-2 scheme based on the Hungarian algorithm to solve the problem at hand. The
flowchart of the proposed EES-2 scheme is shown in Fig. 5. The Hungarian algorithm attempts to
minimize the objective function. However, our objective is to find the scheduling policy that maximizes
energy efficiency. To this end, we first modify the energy efficiency matrix by subtracting each element
of the initial energy efficiency matrix from the corresponding element of the maximum valued matrix.
Next, we apply the Hungarian algorithm for the modified energy efficiency matrix to obtain the
channel assignment result. Finally, we find the optimized energy efficiency value from the initial energy
efficiency matrix for each frame by applying the channel assignment result. Since the Hungarian
algorithm is a combinatorial optimization approach that solves the assignment problem in polynomial
time, the complexity of our proposed EES-2 scheme is given by O(N3) [39].

Figure 4: Bipartite graph representation for the energy efficiency maximization problem
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Figure 5: Flow chart of the proposed EES-2 scheme

4 Performance Evaluation
4.1 Simulation Setup

In this section, we evaluate the proposed EES-1 and EES-2 schemes through extensive simulations.
As the basic performance metrics, we consider energy consumption, the average number of available
reports, normalized energy efficiency, and network throughput. A random scheduler (RS), in which
the idle sub-channels are randomly assigned to the CIoT sensors, is taken into account as a benchmark
scheme. For simplification of the analysis, we consider a contiguous spectrum scenario with sub-
channels, each of which has equally spaced bandwidth. We set the number of iterations to 30 and
consider 300 frames for each iteration. In addition, each CIoT sensor transmits 200 bits of data per
frame when a certain sub-channel is allocated to the CIoT sensor. It is assumed that the channel follows
an independent and identically distributed (i.i.d.) Gaussian distribution and the average SNR is set to
3.5 dB. The relationship among the power values is such that Pd < Pcs < PmaxTx . More specifically,
the power consumption profile for a wireless local area network (WLAN) interface [38] is used in our
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simulation setup. Transmission power during the data transmission period is determined according to
the assigned channel gain but not exceeding the maximum power level Pmax

Tx . The detailed simulation
parameters are listed in Tab. 3.

Table 3: Simulation parameters

Symbol Description Value

Di,j Binary decision variable indicating the assignment; Di,j = 1 if
a channel is assigned; else zero

{0, 1}

T Frame duration 10 m s
Tctr Control messaging time duration 50 μ s
τcs Hard switching time 1 μ s
W Channel bandwidth 6 MHz
Pmax

Tx Maximum transmission power 1980 mW
PCS Channel switching power 1000 mW
PC Circuity power 210 mW
Pidle Idling power 990 mW
N Number of sub-channels [5 : 50]
M Number of CIoT sensors [5 : 50]

4.2 Energy Consumption

Fig. 6a shows the effect of the number of CIoT sensors on the energy consumption of the
conventional and proposed scheduling schemes when the number of sub-channels is set to 20 (i.e.,
N = 20). It is clear that the proposed EES-2 scheme is the most efficient in energy consumption.
The energy consumption rises as the number of CIoT sensors increases since more CIoT sensors are
involved in data transmission. After a point (e.g., N = 20), the energy consumption of the proposed
EES-2 scheme decreases and is saturated to a certain level. The proposed EES-2 scheme searches for
more suitable sub-channels out of available sub-channels, leading it to consume less energy. On the
contrary, the energy consumption in the proposed EES-1 and the conventional RS schemes is not
reduced significantly as the number of CIoT sensors increases. The proposed EES-1 scheme greedily
assigns the sub-channel providing higher energy efficiency to a CIoT sensor without considering
the overall energy efficiency of the CIoT network. Similarly, the conventional RS scheme randomly
chooses the channels and assigns them to any CIoT sensors. Thus, it causes more energy consumption
which is linearly increasing as the number of CIoT sensors increases.

Fig. 6b illustrates the effect of the number of sub-channels on the energy consumption when the
number of CIoT sensors is set to (i.e., M = 20). In the figure, it is shown that the proposed EES-
2 scheme achieves the lowest energy consumption. The proposed EES-2 scheme searches for the
best assignment for all the CIoT sensors consuming less energy overall, while the proposed EES-1
scheme tries to allocate the best sub-channel to one of the CIoT sensors only satisfying the constraints,
without considering the energy efficiency in the whole CIoT network. Since the RS scheme randomly
chooses the CIoT sensors for the idle sub-channel without taking the energy efficiency into account,
it consumes the most amount of energy, compared to the other proposed schemes.
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Figure 6: Energy consumption: (a) Effect of the number of CIoT sensors and (b) Effect of the number
of sub-channels

4.3 Average Number of Available Reports

The lifetime of a CIoT network can be defined as the average number of available reports in an
assignment before the first depleted CIoT sensor in battery energy occurs in the network [40]. To
validate the effectiveness of the proposed EES-1 and EES-2 schemes, we set the initial battery capacity
of each CIoT sensor in the network to 15 mAh. The battery threshold level to decide the depletion of
battery energy is set to 5 mAh and 10,000 consecutive frames are considered in the simulations.

Fig. 7 shows the average number of available reports for varying the number of CIoT sensors and
the number of sub-channels. From Fig. 7a, it is clear that the proposed EES-2 scheme achieves a large
average number of available reports before the first CIoT sensor reaches the battery threshold level.
The average number of available increases with increasing the number of CIoT sensors. It is saturated
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to a certain level after a particular point since the fixed number of CIoT sensors only participate
in data transmission effectively. On the other hand, the average number of available reports of the
proposed EES-1 scheme rather decreases as the number of CIoT sensors increases. This is because in
the proposed EES-1 scheme, due to being a greedy scheme, some of the CIoT sensors may transmit with
higher energy on the assigned channel so that their batteries are more quickly depleted. Consequently,
it consumes more energy in the assignments, resulting in a fast battery energy decay. Similarly, in
Fig. 7b, it is shown that the proposed EES-2 scheme also outperforms the other schemes in terms of
the average number of available reports. The average numbers of available reports of the conventional
RS and proposed EES-1 schemes rather decrease as the number of sub-channels increases when it is
larger than 10, while that of the proposed EES-2 scheme is increased and saturated to a certain level.
Therefore, the proposed EES-2 scheme is the most efficient in the perspective of network lifetime.

Figure 7: Average number of available reports: (a) Effect of the number of CIoT sensors and (b) Effect
of the number of sub-channels
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4.4 Normalised Energy Efficiency

In this subsection, we present the performance improvement in the normalized energy efficiency
achieved by the proposed schemes over the conventional RS scheme. We consider the conventional RS
scheme as a yardstick to show the relative effectiveness of the proposed schemes.

Fig. 8 shows the normalized energy efficiency for varying the number of CIoT sensors and
the number of sub-channels. In Fig. 8a, when N = 20, as the number of CIoT sensors increases,
the proposed EES-2 always outperforms the proposed EES-1 and the conventional RS schemes.
Especially, it significantly improves the energy efficiency for a typical operation region, i.e., N ≥ 20.
The reason is that the proposed EES-2 scheme can transmit more collected data with less energy
consumption. On the contrary, the proposed EES-1 and the conventional RS schemes consume higher
energy for data transmissions. Similarly, Fig. 8b shows the normalized energy efficiency for varying the
number of sub-channels when M = 20. It is clear that the proposed EES-2 outperforms the proposed
ESS-1 and the conventional RS schemes as the number of idle sub-channels increases. The reason
is that the proposed EES-2 scheme searches for the best sub-channels considering the overall energy
efficiency of the network. On the contrary, the proposed EES-1 searches for the subject sensor only
thus consuming higher energy for data transmissions.

4.5 Network Throughput

Fig. 9 shows the network throughput achieved by the proposed and conventional schemes for
varying the number of CIoT sensors and the number of sub-channels. In Fig. 9a, the impact of the
number of CIoT sensors on the network throughput in the network is illustrated when N = 20. It
is obvious that the proposed EES-2 scheme achieves the highest network throughput followed by
the proposed EES-1 and the conventional RS schemes. As the number of sub-channels increases,
the network throughput proportionally increases since more CIoT sensors are involved in data
transmissions. If there exist sufficient idle sub-channels, the proposed EES-2 scheme searches for more
suitable channels to allocate each CIoT sensor. As a result, more CIoT sensors can transmit their own
collected data with more available sub-channels, resulting in achieving a higher network throughput.
On the other hand, the network throughputs of the proposed EES-1 and the conventional RS schemes
rather decrease as the number of CIoT sensors increases. The proposed EES-1 scheme greedily assigns
a sub-channel providing higher energy efficiency to the best CIoT sensor without taking the overall
energy efficiency of the CIoT network into consideration. In addition, since the conventional RS
scheme randomly selects the sub-channels for assignment to the CIoT sensors, it achieves the lowest
network throughput. Similarly, in Fig. 9b, it is shown that the proposed EES-2 scheme outperforms
the other schemes, and its network throughput increases as the number of sub-channels increases. On
the contrary, those of the proposed ESS-1 and the conventional RS schemes have an opposite trend,
where the network throughput is reduced with increasing the number of sub-channels.
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Figure 8: Normalized energy efficiency: (a) Effect of the number of CIoT sensors and (b) Effect of the
number of sub-channels
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Figure 9: Network throughput: (a) Effect of the number of CIoT sensors and (b) Effect of the number
of sub-channels

5 Conclusions

In this work, we investigated a cognitive Internet of things (CIoT) network to develop a monitoring
and early warning system (MEWS) to reduce the fatalities of flash floods. Considering the limited
battery energy of CIoT sensors, we formulate an energy efficiency maximization problem. To solve
the problem, we first propose a polynomial-time heuristic energy-efficient scheduler (EES-1) scheme.
However, its performance can be unsatisfactory, since it provides local optimum values for some cases
without considering the overall network energy efficiency. To enhance the energy efficiency of the
proposed EES-1 scheme, we reformulate the optimization problem using a maximum weight matching
bipartite graph. Additionally, we propose a Hungarian algorithm-based energy-efficient scheduler
(EES-2) scheme. The proposed EES-2 scheme provides a significant performance improvement in
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terms of energy efficiency, compared to the proposed EES-1 and the conventional random scheduler
(RS) scheme. As a result, the proposed EES-2 scheme, which achieves less energy consumption, can
be applied for a MEWS system with battery-limited CIoT sensors under flash floods situations.
More specifically, for a sufficiently large number of idle sub-channels, all CIoT sensors can acquire
opportunities to transmit their collected sensing data, while a few CIoT sensors may not be able to
transmit the data when the number of available idle sub-channels is less than the number of CIoT
sensors. In the future, we plan to investigate a fairness issue in scheduling for more practical scenarios.
Moreover, for an autonomous CIoT-based MEWS, we plan to integrate the reliability and a spectrum
sensing capability in the objective function.
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