
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.023630

Article

FSpot: Fast and Efficient Video Encoding Workloads Over Amazon Spot
Instances

Anatoliy Zabrovskiy1,3, Prateek Agrawal1,2,*, Vladislav Kashansky1, Roland Kersche4,
Christian Timmerer1,4 and Radu Prodan1

1University of Klagenfurt, Klagenfurt, 9020, Austria
2Lovely Professional University, Phagwara, 144411, India

3Petrozavodsk State University, Petrozavodsk, 185035, Russia
4Bitmovin, Klagenfurt, 9020, Austria

*Corresponding Author: Prateek Agrawal. Email: dr.agrawal.prateek@gmail.com
Received: 14 September 2021; Accepted: 18 November 2021

Abstract: HTTP Adaptive Streaming (HAS) of video content is becoming
an undivided part of the Internet and accounts for most of today’s network
traffic. Video compression technology plays a vital role in efficiently uti-
lizing network channels, but encoding videos into multiple representations
with selected encoding parameters is a significant challenge. However, video
encoding is a computationally intensive and time-consuming operation that
requires high-performance resources provided by on-premise infrastructures
or public clouds. In turn, the public clouds, such as Amazon elastic compute
cloud (EC2), provide hundreds of computing instances optimized for different
purposes and clients’ budgets. Thus, there is a need for algorithms and
methods for optimized computing instance selection for specific tasks such as
video encoding and transcoding operations. Additionally, the encoding speed
directly depends on the selected encoding parameters and the complexity
characteristics of video content. In this paper, we first benchmarked the
video encoding performance of Amazon EC2 spot instances using multiple
×264 codec encoding parameters and video sequences of varying complexity.
Then, we proposed a novel fast approach to optimize Amazon EC2 spot
instances and minimize video encoding costs. Furthermore, we evaluated how
the optimized selection of EC2 spot instances can affect the encoding cost. The
results show that our approach, on average, can reduce the encoding costs by
at least 15.8% and up to 47.8% when compared to a random selection of EC2
spot instances.

Keywords: EC2 spot instance; encoding time prediction; adaptive streaming;
video transcoding; clustering; HTTP adaptive streaming; MPEG-DASH;
cloud computing; optimization; Pareto front

http://dx.doi.org/10.32604/cmc.2022.023630
mailto:dr.agrawal.prateek@gmail.com

5678 CMC, 2022, vol.71, no.3

1 Introduction

Nowadays, most Internet traffic represents multimedia content, such as live or on-demand audio
and video streaming [1]. The streaming experience over the Internet depends on several factors like user
location, network speed, traffic congestion, or end-user device, which significantly vary over time [2].
Streaming platforms and services use the HAS technology [3] to adapt to these bandwidth variations
that provide video sequences in multiple bitrates. The resolution pairs are divided into short-term
video and audio segments (e.g., 2 to 10 s), individually as requested by a client device depending
on its technical conditions (e.g., screen size, network performance) in a dynamic, adaptive manner
[4]. Client devices and video players use segment bitrate selection (or rate adaptation) algorithms
to optimize the user experience [5,6]. The widely used MPEG-DASH HAS implementation allows
streaming providers to choose from a set of codecs for video encoding due to its codec independent [3]
characteristic, including Advanced Video Coding (AVC) [7], High-Efficiency Video Coding (HEVC)
[8], VP9 [9], AOMedia Video 1 (AV1) [10] and Versatile Video Coding (VVC) [11]. However, encoding
video segments for adaptive streaming is a computationally-intensive process that can take seconds or
even days depending on many technical aspects, such as video complexity or encoding parameters [12]
and typically requires expensive high-performance computers.

Currently, most streaming services and video encoding platforms opt for less expensive and
more scalable cloud resources (e.g., Amazon Web Services (AWS), Google Cloud, Microsoft Azure)
rented on demand [13,14], deployed worldwide on low-latency geo-distributed infrastructures [15,16].
Amazon EC2 currently operates in eighteen geographical locations and provides different instances
for general purposes (m instances), compute-optimized (c instances), memory-optimized (r instances),
or burstable (t instances) [17]. EC2 spot instances are unused spare compute capacity in the AWS
cloud available at a high discount compared to on-demand prices, with the limitation is that AWS can
stop them at any time upon a two-minute warning. While modern encoding platforms and services
can significantly leverage spot instances to reduce their encoding costs, the unavailability of intelligent
models to estimate the video encoding time and costs makes the correct selection of the cloud instances
for thousands of encoding tasks still critical [13,18]. Cloud infrastructures, dedicated servers and
Internet of Things devices [19] are examples of predicting encoding time, cost and stability significantly
impacting the provisioning and scheduling of encoding tasks. Therefore, a highly desirable system
that estimates the encoding time and costs and optimizes the encoding task schedule on selected spot
instances [20].

To decrease the encoding costs and maximize the utilization of Amazon EC2 spot instances, we
propose a new method called the Fast approach for better utilization of Amazon EC2 Spot Instances
for video encoding (FSpot) based on four phases: 1) instance benchmarking, 2) fast encoding time
estimation, 3) instance set selection and 4) priority and numerical calculation. The first phase tests
different EC2 instances using various encoding parameters, extracts the critical features from the
video encodings and creates a dataset, and proposes a heuristic for selecting EC2 spot instances. The
second phase uses a fast estimate of the encoding speed for videos on a master node hosted on an
on-demand EC2 instance that splits video into segments, estimates the encoding time and distributes
encoding tasks to worker nodes hosted on spot instances. The third phase selects the required number
of EC2 spot instances recommended for optimized video encoding in the Amazon cloud. Finally,
the last phase calculates the priorities and number for EC2 spot instances, such that those with the
lowest predicted video encoding cost have the highest priority. We evaluated FSpot on a set of ten
heterogeneous videos of different genres with different duration and frame rates using three AWS
availability zones. Experimental results show that, on average, our model can reduce the encoding
costs by at least 15.8% and up to 47.8% when compared to a random selection of EC2 spot instances.

CMC, 2022, vol.71, no.3 5679

The significant contributions of the FSpot work are:

1. We benchmarked on eleven commonly used Amazon EC2 spot instances using different
encoding parameters and video sequences.

2. We developed a novel method for fast encoding time estimation of video segments and pro-
posed an algorithm combining Pareto frontier and clustering techniques to find an appropriate
set of spot instances.

3. We also proposed and implemented a fast method to calculate the instance number and priority
for different EC2 spot instances to optimize the Amazon EC2 spot instance selection for
encoding task allocation. The proposed FSpot approach reduces the encoding costs by at least
15.8% and up to 47.8% compared to a random selection of EC2 spot instances.

This paper has five sections-Section 2 highlights related work. Section 3 describes the proposed
FSpot approach and its implementation, followed by results evaluation in Section 4. Section 5
concludes the paper and highlights future work.

2 Related Work
2.1 General Scheduling Techniques

Gog et al. [21] studied various scheduling architectures and proposed a min-cost max-flow
(MCMF) optimization over a graph and continuously reschedules the entire workload. Authors extend
Quincy’s [22] original MCMF algorithm that results in task placement latencies of minutes on a
large cluster. In [23], the authors propose global rescheduling with adaptive plan-ahead in dynamic
heterogeneous clusters. Malawski et al. [24] presented a mathematical model to optimize the cost of
scheduling workflows under a deadline constraint. It considers a multi-cloud environment where each
provider offers a limited number of heterogeneous virtual machines and a global storage service to
share intermediate data files.Ghobaei-Arani et al. [25] presented an autonomous resource provisioning
framework to control and manage computational resources using a fuzzy logic auto-scaling algorithm
in a cloud environment.

Similarly, Rodriguez et al. [26] described a plan-based offline auto-scaler that partitions workflows
into bags-of-tasks and then applied a MIP-based approach to make the allocation plan. Another work
of Malawski et al. [27] considered the problem of task planning on multiple clouds formulated but in
the more general framework of the mixed-integer nonlinear programming problem (MINLP). Garcia-
Carballeira et al. [28] combined randomized techniques with static local balancing in a round-robin
manner for tasks scheduling. Chhabra et al. [29] combined multi-criteria meta-heuristics to schedule
HPC tasks on the IaaS cloud. Ebadifard et al. [30] proposed a dynamic load balancing task scheduling
algorithm for a cloud environment that minimizes the communication overhead. Wang et al. [31]
performed an empirical analysis of amazon EC2 spot instance features affecting cost-effective resource
management.

2.2 Video Transcoding-specific Scheduling Techniques

Some recent remarkable works contributed to scheduling the video transcoding tasks [32–34].
Kirubha et al. [35] implemented a modified controlled channel access scheduling method to improve
the quality of service-based video streaming. Similarly, Jokhio et al. [36] presented a distributed video
transcoding method to reduce video bitrates. Li et al. [37] presented a QoS-aware scheduling approach
for mapping transcoding jobs to heterogeneous virtual machines. Recently, Sameti et al. [38] proposed
a container-based transcoding method for interactive video streaming that automatically calculates

5680 CMC, 2022, vol.71, no.3

the number of processing cores that maintain a specific frame rate for any given video segment and
transcoding resolution. The authors performed benchmarking to find the optimal parallelism for
interactive streaming video. Li et al. [39] proposed a HAS delivery scheme that combines caching,
transcoding for energy and resource-efficient scheduling. Ma [40] proposed a scheduling method for
transcoding MPEG-DASH video segments using a node that managed all other servers in the system
(rather than predicting the transcoding times) and reported a saving time of up to 30%.

2.3 State-of-the-art Analysis

Previously listed general and transcoding-specific scheduling techniques are capable of processing
a large amount of different computational workloads. Such systems use various scheduling algorithms
ranging from general mixed-integer programming (MIP) techniques, flow-based formulations and
workload-agnostic techniques to video-specific heuristics [41,42] that maximize the use of processing
units and minimize the associated costs. Companies currently prefer on-demand and spot instances
by utilizing state-of-the-art video codecs to enable cost-effective video encoding. As the cost of such
computing units depends on the time of use (ph or ps), the customers strive to keep the highest
possible utilization for all computing resources. They typically deploy the encoding tasks using
opportunistic load balancing (OLB) algorithms to utilize the resources at all times. It is relatively
easy to achieve maximum resource utilization if all the encoding tasks have similar complexity, require
similar execution times on the underlying computing units and all computing units have the same price.
However, a problem arises when a simple scheduling algorithm randomly assigns specific encoding
tasks to expensive spot instances with a low availability probability or is not optimized for selected
encoding parameters. This can lead to load imbalance, increased encoding time and costs and degraded
video quality on the viewer side. The motivation for our work is to maximize the Amazon EC2
spot instances utilization for video encoding and provide the encoding infrastructure with advanced
information on the various video encoding tasks to ensure their fast completion with reduced cost.
The relatively straightforward case for the methods mentioned earlier is when all the encoding tasks
have similar complexity, require similar execution times on the underlying computing units and all
computing units have the same price. However, a problem arises when the scheduling algorithm misses
specific knowledge about encoding workload and underlying computational resources behavior. Some
methods are simply incapable of solving the problem directly in the case of the even bigger video
workloads and smaller segment sizes of 2–4 s. Natural extension led to the flow-based formulations
and workload-agnostic techniques that can work on significantly larger scales. However, it can quickly
happen that those methods will assign segment encoding tasks to spot instances with a low availability
probability or not optimized for selected encoding parameters. It will result in additional expenses and
sub-optimal performance. This can also lead to load imbalance, increase encoding time and costs and
degrade video quality on the viewer side. Further, some approaches consider only a single objective to
optimize. Our multi-objective approach maximizes the Amazon EC2 spot instances utilization, reduces
the related costs and increases the execution reliability for large-scale video encoding workloads by
reinforcing decisions with advanced information on the various video encoding tasks obtained via the
fast benchmark algorithm.

CMC, 2022, vol.71, no.3 5681

3 Proposed FSpot Approach
3.1 EC2 Instance Benchmarking
3.1.1 Dataset Selection

First, we selected ten video sequences of different visual complexity from the publicly available
dataset [12]. Fig. 1 shows the SI and TI metrics of the selected videos. The average TI and SI metrics
confirm the varying video content complexity. We used video sequences that represent a wide range
of possible visual scenes and use cases. Tab. 1 presents video categories (or genres) and critical file
characteristics of original videos. Using the FFmpeg [42] software v4.1.3, we uncompressed all video
sequences into raw Y4M format and divided them into 80 video segments of 4 s duration each.
Typically, each segment is a switching point to other video representations. Therefore the segment
length becomes an important parameter in HTTP Adaptive Streaming. The 4 s segments are widely
used in real video streaming deployments because they show a good trade-off between encoding
efficiency and video streaming performance [43].

Figure 1: Average spatial information (SI) and temporal information (TI) for video sequences

Table 1: Original video file characteristics

Video description Video category Frames per second Duration (in sec)

BBB Animation 30 60
Beauty Moving head 30 20
DrivingPOV Moving cars 60 20
HoneyBee Nature (flying bee) 30 20
Jockey Sports (running jockey) 30 20
Sintel Animation 24 60
TOS Animation and real 24 60
WindAndNature Rotating wind vanes 60 20
ReadySetGo Sports (horse racing) 30 20
YachtRide Moving yacht 30 20

5682 CMC, 2022, vol.71, no.3

3.1.2 EC2 Instance Performance Analysis

We encoded each Y4M segment using the FFmpeg ×264 video codec implementation with the
veryslow encoding preset to get the highest possible quality compared to the original videos. The ×264
video codec contains nine encodings presets: ultrafast, superfast, veryfast, faster, fast, medium (default
preset), slow, slower, veryslow, placebo [44]. Encoding bitrate with a slower ×264 encoding preset for
the same video usually has a slower encoding speed but better visual quality [45]. We considered these
generated video segments as source files and used them to encode different Amazon EC2 instances.
We developed a framework using Python programming language to encode video sequences in the
Amazon cloud automatically. Tab. 3 shows all encoded video segments on eleven different Amazon
2 × large instances (presented in Tab. 2) using various encoding parameters, i.e., bitrates and resolu-
tions. All EC2 spot instances have eight vCPUs and RAM size ranges from 15 GiB for the c5a.2 ×
large instance to 64 GiB for the r5.2 × large and r5a.2 × large instances. We used multiple Amazon 2
× large instances commonly used for video transcoding [43]. We then extracted several features from
the video encodings and created the Amazon EC2 instance encoding dataset. The raw dataset contains
16720 encoding tasks (80 segments ∗ 19 bitrates ∗ 11 EC2 instances) for the 4 s length video segments
on medium encoding preset. Each record in our dataset contains EC2 instance name, EC2 instance
availability, EC2 instance price, video segment name, encoding bitrate, file size, segment width, segment
height, encoding time.

Table 2: Amazon instances

Amazon EC2
instance

vCPUs RAM(GiB) Processor Optimized

c5a.2 × large 8 16 AMD Compute
c5.2 × large 8 16 ×86 Compute
c4.2 × large 8 15 ×86 Compute
r5.2 × large 8 64 ×86 Memory
m5.2 × large 8 32 ×86 General
m5a.2 × large 8 32 AMD General
r5a.2 × large 8 64 AMD Memory
t3.2 × large 8 32 ×86 General
t3a.2 × large 8 32 AMD General
r4.2 × large 8 61 ×86 Memory
m4.2 × large 8 32 ×86 General

Table 3: Bitrate ladder (bitrate/resolution pairs). Bitrate values are in kbps

Bitrate Resolution # Bitrate Resolution

1 100 256 ∗ 144 11 4300 1920 ∗ 1080
2 200 320 ∗ 180 12 5800 1920 ∗ 1080
3 240 384 ∗ 216 13 6500 2560 ∗ 1440
4 375 384 ∗ 216 14 7000 2560 ∗ 1440
5 550 512 ∗ 288 15 7500 2560 ∗ 1440

(Continued)

CMC, 2022, vol.71, no.3 5683

Table 3: Continued
Bitrate Resolution # Bitrate Resolution

6 750 640 ∗ 360 16 8000 3840 ∗ 2160
7 1000 768 ∗ 432 17 12000 3840 ∗ 2160
8 1500 1024 ∗ 576 18 17000 3840 ∗ 2160
9 2300 1280 ∗ 720 19 20000 3840 ∗ 2160
10 3000 1280 ∗ 720

3.1.3 EC2 Spot Instance Selection Heuristic

Let us assume we have over one hundred different spot instances to encode segments of a single
video. Further, we only want to select the top N spot instances that will minimize the cost. Our work
proposes a method that selects a set of computing units, for example, 5, for optimized video encoding.
The main goal of this method is to reduce the number of computing units for further analysis quickly.
We calculate the price ratio βi and the speed factor ri for each EC2 instance with respect to c5.2 × large
base EC2 instance (see Tab. 5), as shown in Eqs. (1) and (2), respectively.

βi = ci

cbase
(1)

ri = ebase

ei

(2)

We then calculate the instance availability speed ratio Hi as shown in Eq. (3).

Hi = Gi + α ∗ (1 − pi) (3)

Gi = 1
ri

(4)

Eq. (3) reflects the adequate speed information of the EC2 spot instance i by analyzing its
actual speed against the availability probability pi. α is an adjusted weighting coefficient. We use
the availability and pricing information of EC2 spot instances in our proposed FSpot model from
the Amazon website [46,47]. Instead of the availability metric, Amazon uses the term frequency of
interruption. For example, if the frequency of interruption is <5%, it means that the spot instance
interruption of Amazon services based on historical information of the last three months before being
terminated intentionally by a client is less than 5%. The Gi parameter in Eq. (3) is a relative time to
encode a single video on EC2 spot instance i and is calculated by Eq. (4). The availability probability pi

of EC2 spot instance i is Amazon frequency of interruption between 0 to 1. Tab. 4 shows the availability
probability calculation from the amazon frequency of interruption converted to percentage. Further,
in our proposed work, we use H i and β i to select a set of computing units for optimized video encoding

3.2 Fast Encoding Time Estimation

We use a sample video file segment to calculate the encoding speed for the different Amazon EC2
instances. First, the system encodes a middle segment of a video sequence at the base node-the master
node or the fastest available EC2 instance for a few seconds with selected encoding parameters. It

5684 CMC, 2022, vol.71, no.3

then uses obtained encoding time data t∗
i,j for the middle segment and instance availability speed ratio

(Hi) to estimate the encoding speed v encode
i,j (in segments/sec) for different EC2 spot instances and video

segments as shown in Eq. (5).

vencode
i,j = 1

Hi ∗ t∗
i,j

(5)

Table 4: The amazon frequency of interruption converted to percentage

EC2 spot instance Frequency of interruption Availability probability pi

c5.2 × large (base) <5% 0.955
r5.2 × large 5%–10% 0.925
c5a.2 × large 15%–20% 0.825
r5a.2 × large >20% 0.800

We assume that the encoding time of all segments of the same video sequence has similar values.
Recent research [20] shows that the encoding times of segments of the same video file with the same
encoding parameters have similar values and do not exceed one second for the ×264 video codec. Our
approach uses a quick estimate of the encoding speed for each new video and a new set of encoding
parameters.

From our dataset, we extracted ×264 codec encoding times for the base EC2 instance (c5.2 × large)
for middle segments and all unique combinations of encoding parameters for each video sequence. We
then used the instance availability speed ratio (Hi) to estimate the encoding speed for video segments
on different EC2 spot instances. We only used the information about the encoding time of the middle
segment on the base c5.2 × large EC2 instance. We can use our approach to make predictions for
different video codecs, for example, for ×265. To do this, we need to automatically benchmark EC2
instances for the ×265 video codec and then use the results for the calculations. The output of this
implementation phase is an array of estimated encoding speeds v encode

i,j for different video segments j
and EC2 spot instances i.

3.3 EC2 Instance Selection Using Pareto Fronts and Clustering

We used our dataset to calculate Hi for all eleven EC2 spot instances and then calculated their βi

using the pricing information retrieved from Amazon [46,47]. Tab. 5 presents an example of different
calculated parameters for all selected EC2 spot instances for the Amazon Europe (Frankfurt) region
and eu-central-1b availability zone. Then, we applied Pareto fronts and a clustering approach to finding
five EC2 spot instances for optimized video encoding in the cloud. The selected EC2 spot instances
used to minimize the encoding costs are t3a.2 × large, t3.2 × large, c4.2 × large, c5a.2 × large, c5.2 ×
large. Please note that pricing information on the Amazon website changes in real-time, so in the entire
encoding system, our proposed model will ask for new EC2 Spot prices every minute and recalculate
the selected EC2 spot instance set.

For each EC2 spot instance, we calculate the (i) instance availability speed ratio Hi and (ii) price
ratio βi and use them as input parameters for our Pareto-fronts and clustering model. We calculate
different Pareto fronts between Hi and βi for all selected EC2 spot instances and rank each front in
ascending order (see Fig. 2).

CMC, 2022, vol.71, no.3 5685

Table 5: Example of calculated parameters for different amazon EC2 spot instances

EC2
instance
name

Encoding
time ei

Speed
factor ri

Relative
time Gi

Frequency of
interruption

Availability
probability pi

EC2
price ci

EC2 price ratio
βi

EC2
availability
speed ratio Hi

c5a.2 ×
large

4.3648 1.220 0.820 15%–20% 0.825 0.1345 0.990 0.821

c5.2 ×
large
(base)

5.3431
(ebase)

1.000 1.000 <5% 0.955 0.1358
(cbase)

1.000 1.000

c4.2 ×
large

5.9900 0.892 1.121 <5% 0.955 0.1422 1.047 1.122

r5.2 ×
large

6.0300 0.886 1.129 5%–10% 0.925 0.1508 1.110 1.129

m5.2 ×
large

6.0400 0.885 1.130 <5% 0.955 0.1435 1.057 1.130

m5a.2 ×
large

6.3600 0.840 1.191 <5% 0.955 0.1902 1.401 1.191

r5a.2 ×
large

6.3700 0.839 1.192 >20% 0.800 0.1981 1.459 1.194

t3.2 ×
large

6.4400 0.829 1.206 <5% 0.955 0.1152 0.848 1.207

t3a.2 ×
large

6.7400 0.793 1.261 <5% 0.955 0.1037 0.764 1.261

r4.2 ×
large

7.0600 0.757 1.320 <5% 0.955 0.1523 1.122 1.321

m4.2 ×
large

7.0600 0.757 1.322 <5% 0.955 0.1596 1.175 1.322

We then apply K-means clustering on Pareto fronts points to form K clusters (see Fig. 2) such
that the centroid of each cluster.

K = min
(

x, quotient
(n

2

))
(6)

where x is the number of Pareto fronts and n is the total number of EC2 spot instances. For example,
if the number of EC2 spot instances is ten, clusters will be four. Our algorithm first selects EC2 spot
instances belonging to the first Pareto front to find a set of optimized EC2 spot instances. Depending
on the optimization problem (minimizing encoding time or cost of encoding), the algorithm selects
points from the bottom or the top of the first Pareto front. If all EC2 spot instances of the same type
in one Pareto front are already in use, the proposed algorithm selects other EC2 instances belonging
to the same cluster and same front. If no EC2 spot instance from the same front and the same cluster
is available, the proposed algorithm searches different EC2 instances within the same cluster but from
another front. If all EC2 spot instances of one cluster are already in use, it requests the remaining EC2
spot instances from the first front, which belong to different cluster(s). If all EC2 spot instances of the
first Pareto front are already in use, the algorithm will move to the second Pareto front and so on. We
proposed Algorithm 1 to find a set of appropriate EC2 spot instances. This phase results in a set of
preselected EC2 spot instances for optimized video encoding in the cloud.

5686 CMC, 2022, vol.71, no.3

Figure 2: EC2 spot instance selection by using Pareto fronts and clusters

3.5 Calculating Priorities and Numbers for EC2 Spot Instances

This phase only uses EC2 spot instances that belong to the set selected by Algorithm 1. First of
all, we represent the constraints. We consider the disk speed dcopy and the network speed kcopy from
the master node to a cluster of EC2 spot instances as two main parameters influencing segments’
distribution time. In actual encoding infrastructure, the open-source tool IPerf can be used to measure
the network speed kcopy. The transmission speed of video segments wcopy is the minimum value between
dcopy and kcopy, as shown in Eq. (7).

wcopy = min(dcopy, kcopy) (7)

Algorithm 1: Algorithm for selecting EC2 spot instances using Pareto front and clustering techniques.
Input: array of EC2 spot instances (ec2[])
Input: number of Pareto fronts (n_fronts)
Input: number of EC2 to select (n)
Output: array of selected instances (s_ec2)
// Indexing of array ec2[] starts from one. ec2[] array is sorted by price ratio in ascending order.
1. ec2[] ← {‘val1’ , ‘val2’, ‘val3’, . . . ‘valP’}
2. n_fronts[] ← val
3. n ← val
4.
5. Function select_ec2_set(ec2, n_fronts, n) :
6. output[] ← null
7. for i = 1 to n_fronts do
8. current_cluster ← null
9. for ec2 in ec2[] do

(Continued)

CMC, 2022, vol.71, no.3 5687

Algorithm 1: Continued
10. if ec2 ε (i front) then
11. output ← ec2

remove ec2 from ec2[] array
current cluster = cluster of ec2
if len(output) == n then

12. Break
13. End
14. for all ec2i in (i+1) front do
15. if ec2i ε current cluster then
16. output ← ec2i

remove ec2i from ec2[] array
if len(output) == n then

17. Break
18. End
19. End
20. End
21. End
22. End
23. return output
24. End Function
25. s_ec2 ← select_ec2_set(ec2, n_fronts, n)

Eq. (8) calculates the minimum time to copy all segments of one video Tcopy all
i to multiple EC2 spot

instances, where l is the number of segments for encoding and s is the average segment size. In turn,
Eq. (9) calculates the minimum time to encode all segments of a video on zi EC2 spot instances, where
vencode

i,j is the estimated encoding speed (in segments/sec) of EC2 Spot instance type i.

Tcopy all
i = l ∗ s

wcopy
(8)

Tencode all
i = l

vencode
i,j ∗ zi

(9)

For continuous encoding of video segments on EC2 spot instances of type i, the following
constraint must be met:

Tcopy all
i < Tencode all

i (10)

Then the number zi of EC2 spot instances to use can be represented as inequality 11. Also, zi must
be less than or equal to the number of l segments to encode and the maximum number zmax of EC2
spot instances that the system can request simultaneously (See 11). The value of zmax can be defined by
the encoding infrastructure administrator or be a maximum number of EC2 instances of the specific
type available in the cloud.

5688 CMC, 2022, vol.71, no.3

⎧⎪⎪⎨
⎪⎪⎩

zi <
wcopy

vencode
i,j . s

zi ≤ l
zi ≤ zmax

(11)

By satisfying defined constraints for zi, we calculate the maximum possible value of zi for each
EC2 spot insblence i. The next step is to prioritize EC2 spot instances. To do this, we calculate the
predicted encoding time Tpred

i as shown in Eq. (12) for all segments l of a video file for different EC2
spot instances i. Next, the model uses the predicted encoding time to compute the predicted encoding
cost V pred

i of a video for each type i of EC2 instance, as shown in Eq. (13).

Tpred
i = l

vencode
i,j . zi

(12)

V pred
i = Tpred

i . zi. ci (13)

We sort the predicted encoding cost for all EC2 Spot instances in ascending order. The EC2 spot
instance type with the lowest predicted video encoding cost has the highest priority and vise versa.

We calculated the priorities and optimized the number of EC2 spot instances of each type (i)
required for encoding different video sequences (see Tab. 1). First, using defined constraints, the model
finds the maximum possible number of EC2 spot instances zi to use. Then the model uses the calculated
number of EC2 spot instances zi, EC2 spot instance price ci and the predicted encoding time Tpred

i to
calculate the predicted encoding cost V pred

i of a video for different EC2 spot instances. We sorted the
predicted encoding cost for all EC2 spot instances in ascending order in a manner that the EC2 spot
instance i with the lowest predicted video encoding cost has the highest priority and vise versa. Tab. 6
shows the predicted video encoding cost for TOS video and different Amazon EC2 spot instances. We
used 285 encoding tasks (15 video segments ∗ 19 bitrates) and assumed that a video segment should be
delivered to an EC2 spot instance again for each encoding operation. As we can see from Tab. 6, the
proposed model recommends using eight c5a.2 × large EC2 spot instances to minimize the encoding
cost of the TOS video sequence, which results in a cost of $ 0.04.

Table 6: Predicted video encoding costs for TOS video sequence Eu-central-1b availability zone

EC2 spot
instance i

Number of EC2
spot instances (zi)

Predicted encoding
cost (V pred

i) in $

c5a.2 × large 8 0.040
t3a.2 × large 13 0.049
t3.2 × large 12 0.050
c5.2 × large (base) 10 0.052
c4.2 × large 12 0.053

4 Results and Analysis

This Section presents the proposed FSpot approach results to analyze the performance and
examine its advantages for utilizing Amazon EC2 spot instances better. We compare the predicted
encoding time and cost with the actual encoding time available in the dataset. We calculate the actual
encoding time Tactual

i of a video for each EC2 spot instance using the same number of EC2 spot instances

CMC, 2022, vol.71, no.3 5689

zi predicted by the model. We calculate the actual encoding cost using Eq. (14) and compare it with
the predicted encoding cost V pred

i .

V actual
i = Tactual

i . zi . ci (14)

Finally, we check how the predicted encoding times and costs are correlated with actual values.
The predicted priorities for the EC2 spot instance have to be correct for the actual and predicted values.

Tab. 7 shows various parameters and their defined test values to evaluate our proposed FSpot
model performance. We used the encoding times and prices for Amazon EC2 spot instances from our
dataset. Tab. 8 shows the selected EC2 spot instances marked as ‘+’ and their count calculated by the
proposed FSpot model for Sintel video sequences and three availability zones eu-central-(1a|1b|1c)
of AWS Frankfurt region. We see that the 1a and 1b zones have eleven, while the 1c zone has only
nine different Amazon EC2 spot instances. It occurs due to the dynamic availability of EC2 spot
instances and dependency on the selected zone. The last column of Tab. 8 shows that the calculated
numbers for the same EC2 spot instance and different availability zones have the same values. This
is because the calculated numbers for EC2 spot instances primarily depend on the encoding speed
and availability probability of EC2 spot instances, which remain unchanged for the same EC2 spot
instance and Amazon region.

Table 7: Test input parameters for Sintel video sequence

Parameter name Parameter value

Middle segment size (in MB), s 80
Maximum number of EC2 spot instances zmax 70
Disk speed of master node (in MB/sec), dcopy 180
Network speed (in MB/sec), kcopy 220
Number of segments to encode, l 15
Number of encoding bitrates, h 19
Number of transcoding tasks, r = (h ∗ l) 285

Table 8: Predicted numbers for EC2 spot instances. Sintel video sequence

EC2 spot instance i Zone 1a Zone 1b Zone 1c Number of instances

c5a + + + 9
t3a + + + 14
t3 + + n/a 13
c5 + + + 11
c4 + + + 12
m5 - - - 12
r5 - - - 12
r4 - - + 14
m4 - - n/a 14
m5a - - - 13
r5a - - - 13

5690 CMC, 2022, vol.71, no.3

Fig. 3 depicts the estimated numbers of different EC2 spot instances located in the eu-central-1b
availability zone. It clearly shows that the number of EC2 spot instances for the Sintel video sequence
varies from nine to fourteen. The proposed FSpot model calculates a minimum of nine EC2 spot
instances for c5a.2 × large type and a maximum of fourteen EC2 spot instances for t3a.2 × large,
m4.2 × large and r4.2 × large instance types. Fig. 4 shows the predicted and actual encoding time
for Sintel video on different EC2 spot instances of the eu-central-1b availability zone. The predicted
encoding time for all EC2 spot instances is slightly higher than the actual encoding time extracted from
the dataset. There is a slight difference of less than 4% between the predicted and actual encoding times.
It occurred because we used only one middle segment encoding information of the video sequence and
replicated it to the rest of the segments to estimate the encoding time.

Figure 3: The calculated number of EC2 spot instances for the sintel video sequence

Figure 4: Predicted and actual encoding time for different EC2 spot instances for the sintel video
sequence

CMC, 2022, vol.71, no.3 5691

Tab. 9 presents the predicted and actual encoding time results for three video sequences (BBB,
Sintel, TOS) on five different EC2 spot instances. We can see that for Sintel and TOS videos, the
difference between the average predicted and actual values for all five EC2 spot instances is relatively
small, 3 and 4 s, respectively. However, for the BBB video sequence, the difference reaches 24 s. This is
because the actual encoding time of the middle segment of the BBB video sequence has a significant
difference from the average encoding time of all video segments. Tab. 10 shows the average actual
encoding times for all segments of three video sequences compared to the average encoding times of
middle segments of the videos. Tab. 10 presents the results for the c5.2 × large EC2 spot instance and
eu-central-1b AWS availability zone. We see that the BBB video sequence has the highest difference of
0.64 s (3.94–3.30) between the average actual encoding time for all segments and the middle segment.
The difference for Sintel and TOS videos is only 0.09 and 0.17 s, respectively.

Table 9: Predicted and actual encoding time (in sec) for different video sequences and eu-central-1b
availability zone

EC2
instance

BBB Sintel TOS

Pred. time Act. time Pred. time Act. time Pred. time Act. time

t3a 132 156 128 124 132 131
t3 142 166 132 130 137 130
c5a 129 151 130 127 139 134
c5 135 161 130 127 136 131
c4 132 158 133 130 127 122
Average 134 158 131 128 134 130

Table 10: Average encoding times for segments of three video sequences

Video sequence Average actual encoding time (sec)

All segments Middle segment

BBB 3.94 3.30
Sintel 4.89 4.98
TOS 4.59 4.76

Fig. 5 shows the predicted and actual encoding costs for the Sintel video sequence on the eu-
central-1b availability zone. We see that the predicted encoding times for all EC2 spot instances are
slightly higher than the actual encoding times. This is because the predicted encoding times for the
EC2 spot instances are slightly higher than the actual encoding times (see Fig. 4). Our proposed FSpot
model selects different EC2 spot instances by prioritizing the low cost. Tab. 11 shows that the c5a.2
× large spot instance has the highest priority. Both the predicted and actual encoding costs for c5a.2
× large are the lowest compared to other EC2 spot instances. This means that the proposed FSpot
model can select the appropriate EC2 spot instance type and the number of EC2 spot instances with
minimum video encoding costs.

5692 CMC, 2022, vol.71, no.3

Figure 5: Predicted and actual encoding cost (in $) for different EC2 spot instances for sintel video
sequence and eu-central-1b availability zone

Table 11: Predicted and actual encoding cost for the Sintel video sequence and eu-central-1b availabil-
ity zone

EC2 spot
instance i

Selected for
zone 1b

Predicted
cost, $

Actual
cost, $

Priority of
instance

c5a Yes 0.043 0.042 1
t3a Yes 0.052 0.050 2
t3 Yes 0.055 0.054 3
c5 Yes 0.057 0.056 4
c4 Yes 0.058 0.057 5
m5 No 0.066 0.064 6
m5a No 0.069 0.067 7
m4 No 0.077 0.075 8
r5 No 0.080 0.078 9
r4 No 0.082 0.081 10
r5a No 0.084 0.081 11

Additionally, Tab. 11 shows all predicted priorities for all EC2 spot instances in ascending order
in the last column table. Interestingly, all predicted and actual costs are mapped as per their priority
and arranged in ascending order. This shows that the model assigned the correct priorities to all EC2
spot instances. Additionally, the first five EC2 spot instances (from c5a to c4) belong to a set selected
by our FSpot approach. Thus, our FSpot approach outperforms in quickly reduce the number of EC2
spot instances for further and in-depth analysis.

We compared our proposed FSpot approach to a random method where the system randomly
selects 2 × large EC2 spot instances to encode video segments. With the proposed FSpot approach,
the percentage decrease of cost (PDC) for Sintel video sequence ranges from 16% for t3a.2 × large
spot instances to 48% for r4.2 × large and r5a.2 × large spot instances. Fig. 6 presents the PDC

CMC, 2022, vol.71, no.3 5693

values for ten EC2 spot instances compared to c5a.2 × large spot instances. We also compared our
FSpot approach with another approach where the lowest price EC2 spot instance has the highest
priority. According to Tab. 5, the EC2 spot instance t3a.2 × large has the lowest price of 0.1037
$. The proposed FSpot model selects c5a.2 × large spot instance type and achieves PDC to 16%
with the highest priority compared to the lowest price EC2 spot instance (t3a.2 × large). This means
that the model can choose the appropriate EC2 spot instance, even with a higher price. The higher
price EC2 spot instances typically have higher video encoding speed and vice versa. Tab. 12 shows
PDC for all ten video sequences compared to the random approach. We can see that the ReadySetGo
video sequence has the lowest PDC of 11.8%, while the Beauty video sequence has the highest PDC
of 20.8%. The results show that, on average, our approach can reduce the encoding cost by at least
15.8% and the maximum by 47.8% (see the last row in Tab. 12). Ideally, the PDC value will be zero
if the random approach selects the best EC2 spot instance and the correct number of EC2 instances.
However, the chances of choosing both values correctly are meager. Our proposed FSpot model can
select the best EC2 spot instances between different AWS availability zones.

Figure 6: PDC for ten EC2 spot instances compared to c5a.2 × large spot instance

We proposed the FSpot method by combining the Pareto front with clustering techniques to
optimize the AWS EC2 spot instance selection for encoding tasks allocation to minimize the encoding
costs. Our model, on average, can reduce encoding costs by at least 15.8% and up to 47.8% compared
to the random approach. FSpot can be customized and applied to the Google Cloud, and Microsoft
Azure platforms with their own spare compute capacity instances. Deploying our model in an existing
encoding infrastructure requires the development of an application programming interface. The
encoding infrastructure will interact via the API with the model to calculate the predictions for
upcoming encodings.

5694 CMC, 2022, vol.71, no.3

Table 12: Percentage decrease of cost (PDC) for all ten video sequences compared to the random
approach. Eu-central-1b Amazon availability zone

Video
sequence

Ready
SetGo

Driving
POV

Wind
And
Nature

BBB Jockey Yacht
Ride

Sintel Honey
Bee

TOS Beauty Avg
value

PDC
in %

Min 11.8 13.3 14.8 15 15 15.8 16 16.7 18.4 20.8 15.8
Max 46.4 48 47.7 47.7 48.5 48.4 48.1 48.3 47.4 47.2 47.8

5 Conclusion and Future Work

In this research, we performed benchmarking on Amazon EC2 instances using different encoding
parameters and video sequences. We used video sequences and segments of different genres and visual
complexity. We proposed a novel FSpot approach for fast estimation of video segments encoding
time at the master node and selecting the appropriate set of EC2 spot instances for video encoding.
We developed an algorithm by combining Pareto front and clustering techniques to find a set of
appropriate EC2 spot instances for video encoding. Our approach calculates the EC2 spot instance
count and priorities for optimized video encoding in the cloud. We implemented and tested our FSpot
approach to optimize the Amazon EC2 spot instance selection for encoding tasks allocation. Results
show that the FSpot approach optimizes Amazon EC2 spot instances utilization and minimizes the
video encoding costs in the cloud. On average, FSpot can reduce the encoding costs ranging from
15.8% to 47.8% compared to a random selection of EC2 spot instances.

We plan in the future to extend our method for predicting the encoding time using multiple video
codecs on different cloud computing instances and infrastructures. We will test our model on ARM
and GPU processing instances in the cloud. In addition, we plan to develop an intelligent scheduler
and auto-tuner to automate the process of optimized video encoding in the cloud.

Funding Statement: This work has been supported in part by the Austrian Research Promotion Agency
(FFG) under the APOLLO and Karnten Fog project.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] C. Robbins, Cisco Annual Internet Report (2018–2023). Cisco, 170 West Tasman Dr. San Jose, CA 95134

USA, Tech. Rep., 2020. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html.

[2] A. Javadtalab, M. Semsarzadeh, A. Khanchi, S. Shirmohammadi and A. Yassine, “Continuous one-way
detection of available bandwidth changes for video streaming over best effort networks,” IEEE Transactions
on Instrumentation and Measurement, vol. 64, no. 1, pp. 190–203, 2015.

[3] I. Sodagar, “The MPEG-DASH standard for multimedia streaming over the internet,” IEEE MultiMedia,
vol. 18, no. 4, pp. 62–67, 2011.

[4] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer and R. Zimmermann, “A survey on bitrate adaptation
schemes for streaming media over HTTP,” IEEE Communications Surveys Tutorials, vol. 21, no. 1, pp.
562–585, 2019.

[5] A. Zabrovskiy, E. Petrov, E. Kuzmin and C. Timmerer, “Evaluation of the performance of adaptive
HTTP streaming systems,” CoRR, vol. abs/1710.02459, pp. 1–7, 2017. [Online]. Available: http://arxiv.o
rg/abs/1710.02459.

https://www. cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www. cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
http://arxiv.org/abs/1710.02459
http://arxiv.org/abs/1710.02459

CMC, 2022, vol.71, no.3 5695

[6] A. Zabrovskiy, E. Kuzmin, E. Petrov, C. Timmerer and C. Mueller, “AdViSE: Adaptive video streaming
evaluation framework for the automated testing of media players,” in 8th ACM on Multimedia Systems
Conf. (MMSys’17), New York, NY, USA: Association for Computing Machinery, pp. 217–220, 2017.

[7] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, “Overview of the H.264/AVC video coding
standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–576,
2003.

[8] G. J. Sullivan, J. Ohm, W. Han and T. Wiegand, “Overview of the high-efficiency video coding (HEVC)
standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668,
2012.

[9] D. Mukherjee, J. Han, J. Bankoski, R. Bultje, A. Grange et al., “A technical overview of VP9: The latest
open-source video codec,” Annual Technical Conf. Exhibition (SMPTE’2013), Hollywood, CA, USA, pp.
1–17, 2013.

[10] C. Chen, Y. Lin, S. Benting and A. Kokaram, “Optimized transcoding for large scale adaptive streaming
using playback statistics,” in 25th IEEE Int. Conf. on Image Processing (ICIP), Athens, Greece, pp. 3269–
3273, 2018.

[11] B. Bross, J. Chen and S. Liu, “Versatile video coding (Draft 7),” JVET-P2001, Geneva, CH, 2019.
[12] A. Zabrovskiy, C. Feldmann and C. Timmerer, “Multi-codec DASH dataset,” in 9th ACM Multimedia

Systems Conf. (MMSys ‘18), New York, NY, USA: ACM, pp. 438–443, 2018.
[13] D. Vatolin, D. Kulikov, E. Sklyarov, S. Zvezdakov and A. Antsiferova, “Video transcoding clouds

comparison 2019,” Moscow State University, Technical Report, 2019.
[14] M. G. Koziri, P. K. Papadopoulos, N. Tziritas, T. Loukopoulos, S. U. Khan et al., “Efficient cloud

provisioning for video transcoding: Review, open challenges and future opportunities,” IEEE Internet
Computing, vol. 22, no. 5, pp. 46–55, Sep. 2018.

[15] T. Pham, S. Ristov and T. Fahringer, “Performance and behavior characterization of Amazon EC2 spot
instances,” in 11th IEEE Int. Conf. on Cloud Computing (CLOUD 2018), San Francisco, CA, USA, pp.
73–81, 2018.

[16] X. Li, M. A. Salehi, Y. Joshi, M. K. Darwich, B. Landreneau et al., “Performance analysis and modeling
of video transcoding using heterogeneous cloud services,” IEEE Transactions on Parallel and Distributed
Systems, vol. 30, no. 4, pp. 910–922, 2019.

[17] R. Matha, D. Kimovski, A. Zabrovskiy, C. Timmerer and R. Prodan, “Where to encode: A performance
analysis of x86 and arm-based Amazon EC2 instances,” 17th International Conference on eScience
(eScience), Innsbruck, Austria, IEEEXplore, pp. 118–127, 2021. 10.1109/eScience51609.2021.00022.

[18] S. Sameti, M. Wang and D. Krishnamurthy, “Stride: Distributed video transcoding in spark,” in 37th Int.
Performance Computing and Communications Conf. (IPCCC), Orlando, FL, USA: IEEE, pp. 1–8, 2018.

[19] O. Barais, J. Bourcier, Y. Bromberg and C. Dion, “Towards microservices architecture to transcode videos
in the large at low costs,” in Int. Conf. on Telecommunications and Multimedia (TEMU), Heraklion, Greece,
pp. 1–6, 2016.

[20] P. Agrawal, A. Zabrovskiy, A. Ilangovan, C. Timmerer and R. Prodan, “FastTTPS: Fast approach for video
transcoding time prediction and scheduling for HTTP adaptive streaming videos,” Cluster Computing, vol.
24, pp. 1605–1621, 2021.

[21] I. Gog, M. Schwarzkopf, A. Gleave, R. N. Watson and S. Hand, “Firmament: Fast, centralized cluster
scheduling at scale,” in 12th USENIX Symp. on Operating Systems Design and Implementation (OSDI-16),
Savannah, GA, USA, pp. 99–115, 2016.

[22] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar et al., “Quincy: Fair scheduling for distributed
computing clusters,” in 22nd Symp. on Operating Systems Principles, Big Sky, Montana, USA: ACM
SIGOPS, pp. 261–276, 2009.

[23] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. HarcholBalter et al., “Tetrisched: Global rescheduling
with adaptive plan-ahead in dynamic heterogeneous clusters,” in 11th European Conf. on Computer Systems,
London, United Kingdom, pp. 1–16, 2016.

10.1109/eScience51609.2021.00022

5696 CMC, 2022, vol.71, no.3

[24] M. Malawski, G. Juve, E. Deelman and J. Nabrzyski, “Algorithms for cost-and deadline-constrained
provisioning for scientific workflow ensembles in iaas clouds,” Future Generation Computer Systems, vol.
48, pp. 1–18, 2015.

[25] M. Ghobaei-Arani, A. A. Rahmanian, A. Souri and A. M. Rahmani, “A Moth-flame optimization
algorithm for web service composition in cloud computing: Simulation and verification,”Software: Practice
and Experience, vol. 48, no. 10, pp. 1865–1892, 2018.

[26] M. A. Rodriguez and R. Buyya, “Budget-driven scheduling of scientific workflows in iaas clouds with fine-
grained billing periods,” ACM Transactions on Autonomous and Adaptive Systems (TAAS), vol. 12, no. 2,
pp. 1–22, 2017.

[27] M. Malawski, K. Figiela and J. Nabrzyski, “Cost minimization for computational applications on hybrid
cloud infrastructures,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1786–1794, 2013.

[28] F. Garcia-Carballeira, A. Calderon and J. Carretero, “Enhancing the power of two choices load balancing
algorithm using round-robin policy,” Cluster Computing, vol. 24, pp. 1–14, 2020.

[29] A. Chhabra, G. Singh and K. S. Kahlon, “Multi-criteria HPC task scheduling on IaaS cloud infrastructures
using metaheuristics,” Cluster Computing, vol. 24, pp. 1–34, 2020.

[30] F. Ebadifard and S. M. Babamir, “Autonomic task scheduling algorithm for dynamic workloads through
a load balancing technique for the cloud-computing environment,” Cluster Computing, vol. 24, pp. 1–27,
2020.

[31] C. Wang, Q. Liang and B. Urgaonkar, “An empirical analysis of Amazon EC2 spot instance features
affecting cost-effective resource procurement,”ACM Transactions on Modeling and Performance Evaluation
of Computing Systems (TOMPECS), vol. 3, no. 2, pp. 1–24, 2018.

[32] R. Aparicio-Pardo, K. Pires, A. Blanc and G. Simon, “Transcoding live adaptive video streams at a massive
scale in the cloud,” in 6th ACM Multimedia Systems Conf., Portland, Oregon, pp. 49–60, 2015.

[33] P. Oikonomou, M. G. Koziri, N. Tziritas, A. N. Dadaliaris, T. Loukopoulos, G. I. Stamoulis et al.,
“Scheduling video transcoding jobs in the cloud,” in Int. Conf. on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada: IEEE, pp. 442–449, 2018.

[34] L. Wei, J. Cai, C. H. Foh and B. He, “QoS-Aware resource allocation for video transcoding in clouds,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 1, pp. 49–61, 2016.

[35] D. Kirubha and K. Ramar, “MCCA scheduling for enhancing QoS based video streaming for video
surveillance applications,” Cluster Computing, vol. 22, no. 6, pp. 13945–13955, 2019.

[36] F. Jokhio, T. Deneke, S. Lafond and J. Lilius, “Bitrate reduction video transcoding with distributed
computing,” in 20th Euromicro Int. Conf. on Parallel, Distributed and Network-Based Processing, Munich,
Germany: IEEE, pp. 206–212, 2012.

[37] X. Li, M. A. Salehi, M. Bayoumi, N. -F. Tzeng and R. Buyya, “Cost-efficient and robust on-demand video
transcoding using heterogeneous cloud services,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 3, pp. 556–571, 2017.

[38] S. Sameti, M. Wang and D. Krishnamurthy, “Contrast: Container-based transcoding for interactive video
streaming,” in Network Operations and Management Symp. (NOMS’2020), Budapest, Hungary: IEEE, pp.
1–9, 2020.

[39] L. Li, D. Shi, R. Hou, R. Chen, B. Lin et al., “Energy-efficient proactive caching for adaptive video
streaming via data-driven optimization,” IEEE Internet of Things Journal, vol. 7, no. 6, pp. 5549–5561,
2020.

[40] L. Ma, “An efficient scheduling multimedia transcoding method for DASH streaming in cloud environ-
ment,” Cluster Computing, vol. 22, pp. 1043–1053, 2017.

[41] “Use Spot Instance Pricing for Your Video Encoding Workflows with Bitmovin,” https://aws.amazon.co
m/blogs/startups/use-spot-instance-pricing-for-your-video-encoding-workflow/-with-bitmovin-containe
rized-encoding/. [Online; accessed 14-Jan-2021], 2017.

[42] “FFprobe Documentation,” https://ffmpeg.org/ffprobe.html. [Online; accessed 25-July-2020], 2020.

https://aws.amazon.com/blogs/startups/use-spot-instance-pricing-for-your-video-encoding-workflow/-with-bitmovin-containerized-encoding/
https://aws.amazon.com/blogs/startups/use-spot-instance-pricing-for-your-video-encoding-workflow/-with-bitmovin-containerized-encoding/
https://aws.amazon.com/blogs/startups/use-spot-instance-pricing-for-your-video-encoding-workflow/-with-bitmovin-containerized-encoding/
https://ffmpeg.org/ffprobe.html

CMC, 2022, vol.71, no.3 5697

[43] S. Lederer, C. Muller and C. Timmerer, “Dynamic adaptive streaming over HTTP dataset,” in 3rd
Multimedia Systems Conf. (MMSys’12), New York, NY, USA: ACM, pp. 89–94, 2012.

[44] A. Zabrovskiy, P. Agrawal, R. Matha, C. Timmerer and R. Prodan, “ComplexCTTP: Complexity class-
based transcoding time prediction for video sequences using artificial neural network,” in Sixth Int. Conf.
on Multimedia Big Data (BigMM), New Delhi, India, pp. 316–325, 2020.

[45] “H.264 Video Encoding Guide,” https://trac.ffmpeg.org/wiki/Encode/H.264. [Online; accessed 10-
September-2020], 2020.

[46] Amazon, “Amazon EC2 spot instances pricing,” https://aws.amazon.com/ec2/spot/pricing. [Online;
accessed 14-Jan-2021], 2021.

[47] “Spot Instance Advisor,” https://aws.amazon.com/ru/ec2/spot/instance-advisor. [Online; accessed 14-Jan-
2021], 2021.

https://trac.ffmpeg.org/wiki/Encode/H.264
https://aws.amazon.com/ec2/spot/pricing
https://aws.amazon.com/ru/ec2/spot/instance-advisor

	FSpot: Fast and Efficient Video Encoding Workloads Over Amazon Spot Instances
	1 Introduction
	2 Related Work
	3 Proposed FSpot Approach
	4 Results and Analysis
	5 Conclusion and Future Work

