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Abstract: Currently, the industry is experiencing an exponential increase in
dealing with binary-based combinatorial problems. In this sense, metaheuris-
tics have been a common trend in the field in order to design approaches
to solve them successfully. Thus, a well-known strategy consists in the use
of algorithms based on discrete swarms transformed to perform in binary
environments. Following the No Free Lunch theorem, we are interested in
testing the performance of the Fruit Fly Algorithm, this is a bio-inspired
metaheuristic for deducing global optimization in continuous spaces, based
on the foraging behavior of the fruit fly, which usually has much better
sensory perception of smell and vision than any other species. On the other
hand, the Set Coverage Problem is a well-known NP-hard problem with many
practical applications, including production line balancing, utility installation,
and crew scheduling in railroad and mass transit companies. In this paper, we
propose different binarization methods for the Fruit Fly Algorithm, using S-
shaped and V-shaped transfer functions and various discretization methods
to make the algorithm work in a binary search space. We are motivated
with this approach, because in this way we can deliver to future researchers
interested in this area, a way to be able to work with continuous metaheuristics
in binary domains. This new approach was tested on benchmark instances
of the Set Coverage Problem and the computational results show that the
proposed algorithm is robust enough to produce good results with low
computational cost.
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1 Introduction

The Set Covering Problem (SCP) is a well-known NP-hard class covering problem, which
consists of finding a subset of columns in a zero-one matrix such that it covers all rows of the
matrix at minimum cost. It has important practical applications, such as: localization of emergency
services [1], scheduling of crews in mass transit companies [2], routing of vehicles [3], reconstruction
of sibling relationships [4].

Considering the complex nature of SCP, the huge size of the real data sets and the variety of meth-
ods designed to approach similar problems, SCP has been solved by exact methods, metaheuristics and
other techniques, such as hyperheuristics [5] or with Machine Learning techniques [6–8]. Solving by
exact methods is mainly based on Branch-and-Bound, Branch-and-Cut and Lagrangean heuristics [9].

Resolution by metaheuristics includes Genetic Algorithms [10], Tabu Search [11], Ant Colony
Optimization [12], Artificial Bee Colonies [13], Firefly Algorithms [14], Cat Swarm Optimization
[15], Cuckoo Search [16], Teaching-learning Based Optimization [17] and Shuffled Frog Jumping
Algorithm [18], Binary Black Hole Algorithms [19]. Previous work [20] propose the use of binarization
techniques in order to improve the solutions of combinatorial problems like the SCP, but they lack
explanation on how the binarization affects the metaheuristics, also the previous work don’t propose
a pre-processing phase to reduce the computational cost of the instances of the SCP.

In this paper, we present a new approach to solving the SCP based on Wen Tsao-Pan’s Fruit Fly
Swarm Algorithm (FFSA) [21]. This metaheuristic is based on the foraging behavior of fruit flies,
which use the senses of smell and vision to find their food; in terms of the algorithm, these senses are
represented by a combination of local (smell) and global (vision) searches to improve the quality of
solutions. Since FFSA was developed for continuous spaces and SCP is a binary problem, our work
contributes to propose several binarization methods for a continuous algorithm in order to promote
a better distribution between exploration/exploitation. In order to achieve this balance, we present
eight different transfer functions and five discretization methods, generating a total of 39 variations
to the original BFFSA. The results of this work suggests that BFFSA (the binary version of FFSA) is
a robust algorithm, capable to produce good results at a low computational cost.

This article is organized as follows: A brief description of the Set Coverage Problem in Section
2, the presentation of Pan’s Fruit Fly Algorithm in Section 3, an adaptation of Pan’s metaheuristic to
work in a binary search space in Section 4. Our proposal with the description of the functions and
methods used to allow the algorithm to run in discrete spaces in Section 5. Finally, we present our
results, conclusions, and possible future lines of research in Sections 6 and 7.

2 Set Covering Problem

The SCP is a classical covering problem and is defined as a binary matrix A where ai,j ∈ {0, 1} is
the value of each cell in the matrix and i, j are the size of m-rows and n-columns, respectively:⎛
⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

... · · · · · · ...
am1 am2 · · · amn

⎞
⎟⎟⎠ (1)

Defining the column j satisfies a row i if aij is equal to 1 and this will be the contrary case if this
is 0. In addition, it has an associated cost c ∈ C, where C = {c1, c2, . . . , cn} together with
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i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n} are the sets of rows and columns, respectively. The problem
results in the following objective: to minimize the cost of the subset S ⊆ J, with the constraint that
all rows i ∈ I are covered by at least one column j ∈ J. It is taken into consideration that when the
column j is in the subset of solution S, this is equal to 1 and 0 otherwise. The SCP can be defined as
the following:

Minimize Z =
n∑

j=1

cjxj (2)

Subject to Eqs. (3) and (4):
n∑

j=1

ai,jxj ≥ 1 ∀i ∈ I (3)

xj ∈ {0, 1} ∀j ∈ J (4)

One of the many practical applications of this problem is the location of fire stations. Lets consider
a city divided in a finite number of areas which need to locate and build fire stations. Each one of these
areas need to be covered by at least one station, but a single fire station can only bring coverage to its
own area and the adjacent ones; also, the problem requires that the number of stations to build needs
to be the minimum.

Intentionally, we have selected an instance of SCP with m = 11 and n = 11 to represent it
graphically in Fig. 1 and by Eqs. (5)–(16). When a SCP formulation has a constant cost (a value of
1 in this case), we will refer to it as an Unicost SCP instance.

Figure 1: Solution to the practical example of SCP

Minimize Z =
11∑

j=1

cjxj (5)

Subject to:

AREA1 = x1 + x2 + x3 + x4 ≥ 1 (6)



4298 CMC, 2022, vol.71, no.3

AREA2 = x1 + x2 + x3 + x5 ≥ 1 (7)

AREA3 = x1 + x2 + x3 + x4 + x5 + x6 ≥ 1 (8)

AREA4 = x1 + x3 + x4 + x6 + x7 ≥ 1 (9)

AREA5 = x2 + x3 + x5 + x6 + x8 + x9 ≥ 1 (10)

AREA6 = x3 + x4 + x5 + x6 + x7 + x8 ≥ 1 (11)

AREA7 = x4 + x6 + x7 + x8 ≥ 1 (12)

AREA8 = x5 + x6 + x7 + x8 + x9 + x10 ≥ 1 (13)

AREA9 = x5 + x8 + x9 + x10 + x11 ≥ 1 (14)

AREA10 = x8 + x9 + x10 + x11 ≥ 1 (15)

AREA11 = x9 + x10 + x11 ≥ 1 (16)

As the SCP is a NP-hard class problem, one of the many difficulties that benchmarks arise is their
size and the computational time associated. To solve this, many authors propose to do a pre-processing
of the problem before apply any exact method or metaheuristic in order to obtain instances that are
equivalent to original but smaller in terms of rows and columns. In the next section, we describe the
methods used in this research.

2.1 Pre-Processing

To accelerate the problem solving, we introduce a preprocessing phase before run the metaheuristic
to reduce the size of instances and improve the performance of the algorithm. In this article, we
use two methods that have proven to be more effective: Column Domination [22] and Column
Inclusion [23].

Column Domination: It consists into deleting the redundant columns without affecting the final
solution. In other words, if the rows belonging to the column j can be covered by another column with
a cost lower than cj, then the column j is dominated and it can be removed. This method is detailed in
the Algorithm 1.

Algorithm 1: Column Domination
1: Order all columns by cost, ascending.
2: if Two or more columns have the same cost then
3: Order those columns by the amount of rows Ij covered by column j, descending
4: Check if rows Ij can be covered by a set of other columns with a cost lower than c j

(Continued)



CMC, 2022, vol.71, no.3 4299

Algorithm 1: Continued
5: if Cost is lower then
6: The column j is dominated and it can be removed.
7: end if
8: end if

Column Inclusion: If a row is covered by only one column after the above domination, that column
must be included in the optimal solution, and there is no need to evaluate its feasibility.

3 Fruit Fly Swarm Algorithm

The FFSA is a bio-inspired metaheuristic [21] based on the foraging behavior of fruit flies or
vinegar flies for finding food, considering that their smell (osphresis) and vision senses are much
better than in any other specie. The foraging behavior processes consider smell the food source, fly to
it and then visualize the same food source to determine a better direction.

In Fig. 2, there is a graphical representation of these foraging search processes. Consider S1, S2

and S3 as fruit flies from our population. During the smell-based search, the flies will randomly move
across the search space, so their new positions will be (X1, Y1), (X2, Y2) and (X3, Y3) respectively; then,
in the next phase, flies will be evaluated in their smell concentration (fitness function) to determine
which one is the best in the group; for our example, we are using the reciprocal of distance to the origin
(1/ Disti) as fitness function. Finally, and knowing which one is the best fruit fly, the population will
move into its direction to get closer to the food source.

Figure 2: Food searching of a group of fruit flies

The traditional FFSA consists of 4 phases. These are: initialization, smell-based search, popula-
tion evaluation, and vision-based search. In the initialization phase, parameters are set and the fruit
flies (solutions) are created randomly with a very sensitive osphresis and vision organs. During the
smell-based search phase, flies use their senses to feel all kinds of smells in the air and fly towards the
corresponding locations. Then, the flies are evaluated to find the best concentration of smell. When
they are near to food, in the vision-based search phase, they fly toward the food source using their
vision organ. The pseudocode of these phases is detailed in Algorithm 2.
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Algorithm 2: Fruit Fly Swarm
1: Initialization
2: Initialize population size (N)
3: Initialize generation max (gen)
4: for i = 1 to N do
5: Create randomly Fi, the i-th fruit fly
6: end for
7: for t = 1 to gen do
8: Smell-based search
9: Emulate the smell sense by modifying population with random values
10: Fi = Fi + random_value
11: Population evaluation
12: Evaluate solutions fitness using the objective function.
13: Vision-based search.
14: BF = Best fruit fly
15: for i = 1 to N do
16: Fi = (Fi + BF)/2
17: end for
18: end for

The FFSA has been successfully used to solve continuous problems such as: the financial
distress [21], web auction logistics service [24], power load forecasting [25], design of key control
characteristics for automobile parts [26] and distribution of pollution particles [27].

4 Binary-Fruit Fly Swarm Algorithm

In contrast with traditional FFSA, the BFFSA [28] uses a discrete binary string (Fig. 3) to
represent a solution and a probability vector to generates the population (Fig. 4); then, the value of
each bit of the fruit flies goes from zero to one (and vice versa) to exploit the neighborhood in the smell-
based search process and perform a global vision-based search to improve the exploration ability. This
new algorithm, detailed later in pseudocode (Algorithm 3), preserves the four phases but adds three
search methods: Smell-based, Local-Vision-based and Global-Vision-based. Also, these methods will
add new parameters to perform searches; all of them are detailed in Tab. 1.

Figure 3: Representation of a fruit fly (solution) in BFFSA

Figure 4: Representation of the probability vector in BFFSA

Algorithm 3: Binary Fruit Fly Swarm Algorithms
1: Initialization Phase
2: Initialize parameter values of N, gen, S, L and b
3: Initialize probability vector p(t = 0)

(Continued)
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Algorithm 3: Continued
4: for i = 1 to N do
5: for d = 1 to n do
6: Create randomly the Fd bit
7: end for
8: end for
9: for t = 1 to gen do
10: Smell-based Search
11: for i = 1 to N do
12: for s = 1 to S do
13: Create the Fi,s neighbor, flipping L bits around Fi

14: end for
15: end for
16: Apply the repair operator
17: Population Evaluation Phase
18: Evaluate solution fitness using the objective function
19: Local-Vision-based Search
20: for i = 1 to N do
21: Find the best neighbor Fi,best for Fi

22: Make the neighborhood fly towards Fi,best

23: end for
24: Global-Vision-based Search
25: Find the best fruit fly in the population, Fbest

26: Select randomly two flies F 1 and F 2

27: Update probability vector p(t)
28: for i = 1 to N do
29: Create Fi according to p(t)
30: end for
31: end for

Table 1: BFFSA parameters

Parameters Detail

N Population size.
Gen Generations (iterations).
S Neighbors to create during smell-based search.
L Bits to flip randomly when generating neighbors.
B Coefficient of vision sensitivity.

This article proposes and evaluates new instances for BFFSA, created from the combination of
the original binary algorithm, eight transfer functions and two discrete methods, in order to improve
solutions.
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4.1 Initialization

In the BFFSA, each fruit fly is a solution represented by a n-bit binary vector, where n is the
number of columns in the instance to solve. Thus, in a fruit fly Fi, the value Fd represents the dth

binary decision bit, d ∈ [1, n]. All fruit flies are generated by an n-dimensional probability vector p(t),
where t represents generation (or iteration) with t ∈ [1, gen]. Then, the pd

(t) is the probability in the dth

dimension of the fruit fly Fi to be 1 during generation t. The pseudocode for this phase is detailed in
Algorithm 4.

Algorithm 4: Initial population in BFFSA
1: for i = 1 to N do
2: for d = 1 to n do
3: if rand() < pd(0) then
4: Fd =1
5: else
6: Fd =0
7: end if
8: end for
9: end for

To generate a uniformly distributed population in the search space, the probability vector must
be p(0) = [0.5, 0.5, . . . , 0.5], so all columns have fifty percent probability of being selected. In the next
generation, a new population with N fruit flies will be generated using this probability vector.

4.2 Smell-Based Search

In this phase, we create S neighbors randomly around each fruit fly Fi using the smell-based
search. Each one of these neighbors are generated using the following method: first, we select randomly
L-bits, and then we flip these L columns values to the opposite binary value. For example, if we have
a 9-bit fruit fly and L = 3, the smell-based search may produce a neighbor like the one represented
in Fig. 5.

Figure 5: Creation of a neighbor during smell-based search

At this point, a population with (N · S)− fruit flies is evaluated using the objective function. In
case to get unfeasible solutions, we apply a repair operator. This additional phase will be explained
later (SubSection 4.5).

4.3 Local-Vision-Based Search

Once all solutions in the neighborhood are feasible, the fruit flies are evaluated with the vision
sense (the objective function) to find the best local neighbor and fly towards it. If a better neighbor is
found, then the whole neighborhood will fly towards it and this recently discovered “local best” fruit
fly will replace the previous solution; otherwise, solution will remain the same.
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4.4 Global-Vision-Based Search

This search works on the exploration ability (Eqs. (17) and (18)), considering that previous phases
are more focused into the exploitation ability. To update the next fruit flies generation, this phase
updates the probability vector with the differential information between the best fruit fly Fbest and two
random fruit flies (F1 and F2) to set a coefficient for the vision sensitivity b to enhance the exploration.

Δd(t + 1) = Fd
best + 0.5(Fd

1 − Fd
2 ) (17)

pd(t + 1) = 1

(1 + e−b(Δd(t+1)−0.5)
(18)

As we can see in the Eq. (17), the algorithm have a high probability of exploration in the first steps
of the search, because the two random fruit flies tend to be far away one of the other, but always with
the guide of the best fruit fly Fbest. Once the flies are stuck on close positions, they tend to perform
more exploitation with the smell-based search and the local-vision-based search.

4.5 Repair Operator

A common issue with metaheuristics is the generation of unfeasible solutions during an iteration.
For the SCP, this means that some individuals will not cover all rows and a subset of constraints may
be violated. To solve this issue, the algorithm implements a repair operator to make all individuals
feasible and eliminate redundancy. The method described in [29] calculates a ratio between the cost of
an uncovered column (cj) and the number of uncovered rows covered by that column; once all rows
are covered and the solution is feasible, the operator includes an optimization step to eliminate any
redundant column (Algorithm 5).

Algorithm 5: Repair Operator
1: I = The set of all rows;
2: J = The set of all columns;
3: αi = The set of columns that cover row i, i ∈ I ;
4: βj = The set of rows covered by column j, j ∈ J;
5: K = The set of columns in a solution;
6: wi = The number of columns that cover row i, i ∈ I . For this, wi = |S ∩αi |, ∀i ∈ I ;
7: U = The set of uncovered rows. For this, U = {i|wi = 0, ∀i ∈ I};
8: for row i ∈ U (in increasing order of i) do
9: Find the first column j in increasing order of j ∈ αi that minimizes

cj

|U∩ bj | ;
10: Add j to K and set wi = wi + 1, ∀i ∈ bj;
11: Set U = U − bj;
12: end for
13: for column j ∈ K (in decreasing order of j) do
14: if wi ≥ 2 then
15: K = K j;
16: wi = wi − 1, ∀i ∈ βj;
17: end if
18: end for

(Continued)
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Algorithm 5: Continued
19: K is now a feasible solution for the SCP that contains no redundant columns;
18: end for
19: K is now a feasible solution for the SCP that contains no redundant columns;

5 Proposed Binarization Methods for the BFFSA

In this article, we propose to modify the original BFFSA with a two-step binarization technique
(Fig. 6), which will transform the solution from R to an “InterSpace” (in Z) and then to the binary
space. Following a procedure similar to the one proposed in [30,31], we will replace the equation for
global searching (Eq. (18)) with one of the eight transfer functions (Eqs. (19)–(26)) showed in the
Tab. 2. Specifically, our idea is to replace the calculation for the differential information b(Δd

i − 0.5),
with one of these eight transfer functions in order to define the probability to move an element of the
solution from 1 to 0 (or vice versa), forcing the fruit flies to be in the interval [0, 1]. With this change,
we force to have a controlled balance between exploration and exploitation in all the search steps of the
algorithm. Thus, we promote the search of new areas meanwhile we search better solution in known
promising areas.

Figure 6: Classic binarization scheme

Table 2: First step-transfer functions

Type Mathematical formula Equations

S1 [32,33]

PS1(Δ
d(t + 1)) = 1

1 + e−2b(Δd (t+1)−0.5)

(19)

S2 [33,34]
PS2(Δ

d(t + 1)) = 1

1+e−b(Δd (t+1)−0.5)

(20)

S3 [32,33]
PS3(Δ

d(t + 1)) = 1

1+e
−b(Δd (t+1)−0.5)

2

(21)

S4 [32,33]
PS4(Δ

d(t + 1)) = 1

1+e
−b(Δd (t+1)−0.5)

3

(22)

V1 [33,35]
PV1(Δ

d(t + 1)) = ∣∣erf
(√

π

2
(b(Δd(t + 1) − 0.5))

) ∣∣ (23)

(Continued)
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Table 2: Continued
Type Mathematical formula Equations

V2 [33,35]
PV2(Δ

d(t + 1)) = |tanh(b((Δd(t + 1) − 0.5))) | (24)

V3 [32,33]

PV3(Δ
d(t + 1)) =

∣∣∣∣ Δd (t+1)√
1+(b(Δd (t+1)−0.5))

2

∣∣∣∣
(25)

V4 [32,33]
PV4(Δ

d(t + 1)) = ∣∣ 2
π

arctan
(

π

2
(b(Δd(t + 1) − 0.5))

)∣∣ (26)

It is important to note that of the S-shaped (left-hand in Fig. 7) and V-shaped (right-hand in
Fig. 7) functions presented here, the original BFFSA uses the transfer function PS2 with a standard
discretization method. In this paper, we test a universe of 40 different instances of the algorithm, where
39 of the 40 are new variations realized by our research.

Figure 7: (a) S and (b) V transfer functions

After updating the probability vector with one of these S-shaped or V-shaped transfer functions,
an element of a fruit fly will be updated using one of the following discretization methods: Standard,
Complement, Static Probability, Elitist and Elitist Roulette, detailed in Tab. 3 with the Eqs. (27)–(31),
respectively. In all of them, Fd represents the dth position of the fruit fly Fi, Fbest is the best fruit fly in
the current generation and α is the static probability.

6 Experiment Results

The modified BFFSA with the transfer functions proposed has been implemented in Java in a
Common KVM processor of 2.66 GHz with 4 GB RAM computer, running Microsoft Windows 7.
The parameter tuning for the algorithm is detailed in Tab. 4.
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Table 3: Second step-techniques of binarization

Type Binarization Equations

Standard

Fd
i (t + 1) =

{
xj

w, if rand ≤ pd(t + 1)

0, else

(27)

Complement

Fd
i (t + 1) =

{
xj

w, if rand ≤ pd(t + 1)

0, else

(28)

Static
probability

Fd
i (t + 1) =

⎧⎪⎨
⎪⎩

0, if pd(t + 1) ≤ a
Fd

i (t), if a < pd(t + 1) ≤ 1
2
(1 + a)

1, if pd(t + 1) ≥ 1
2
(1 + a)

(29)

Elitist

Fd
i (t + 1) =

{
Fd

best, if rand < pd(t + 1)

0, else

(30)

Elitist
roulette Fd

i (t + 1) ={
P[pd(t + 1) = ζj] = f (ζ )∑

δ∈Qg f (δ)
, if rand ≤ pd(t + 1)

P[pd(t + 1) = 0] = 1, else

(31)

Table 4: Parameter tuning for BFFSA experiments

Parameters Detail Value

N Population size. 50
Gen Generations (iterations). 400
S Neighbors to create during

smell-based search.
5

L Bits to flip randomly when
generating neighbors.

3

b Coefficient of vision sensitivity. 15
α Static probability 0.2
k Number of best individuals for

Elitist Roulette method
3

All the datasets tested are from Beasley’s OR Library 3. In total, we solved 65 data files; instances
4, 5, 6 are from [36], instances A, B, C, D are from [22] and instances NRE, NRF, NRG, NRH are the
unknown-solution problem set from [37]. Details of datasets are described in Tab. 5.

For each instance, we report the average values obtained after run 30 times each algorithm.
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Table 5: Set covering instances

Instance
set

Number of
instances

m n Cost
range

Density
(%)

Optimal
solution

4 10 200 1000 [1,100] 2 Known
5 10 200 2000 [1,100] 2 Known
6 5 200 1000 [1,100] 5 Known
A 5 300 3000 [1,100] 2 Known
B 5 300 3000 [1,100] 5 Known
C 5 400 4000 [1,100] 2 Known
D 5 400 4000 [1,100] 5 Known
NRE 5 500 5000 [1,100] 10 Unknown
NRF 5 500 5000 [1,100] 20 Unknown
NRG 5 1000 10000 [1,100] 2 Unknown
NRH 5 1000 10000 [1,100] 5 Unknown

6.1 Comparison of Proposed BFFSA with Other Metaheuristics

The Tabs. 6–13 show the detailed results obtained by different instances of our modified BFFSA.
In all of them, the results are presented along with the transfer function (TF) and discretization
method (DM) used in each case, and compared with other metaheuristics in terms of minimum and
maximum number of optimal founded (ZMIN, ZMAX ) and the relative percentage deviation (RPD),
which represents the deviation of the objective value Z (fitness) from ZOPT (Eq. (32)).

RPD = 100(ZMIN − ZOPT)

ZOPT

(32)

Table 6: Computational results for instance set 4

Instance 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10

Zopt 429 512 516 494 512 560 430 492 641 514

Our approach

BFFSA Zmin 429 512 516 494 512 560 430 492 641 514
Zavg 431.57 512 516 495.53 514.2 560.87 430.67 494.2 646.83 514.1
RPD 0 0 0 0 0 0 0 0 0 0
TF S2 S4 S4 S4 S4 S3 S3 S4 V4 S3
DM STD STD ELT ELT STD STD STD STD ELT STD

Other Approaches

BCS Zmin 430 512 517 494 512 560 430 492 641 514
Zavg 432 516 519 503 516 563 431 495 645 526
RPD 0.23 0 0.19 0 0 0 0 0 0 0

(Continued)
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Table 6: Continued

BBH Zmin 430 512 516 495 514 560 430 493 644 514
Zavg 430 512 517 501 519 562 432 495 648 517
RPD 0.23 0 0 0.20 0.39 0 0 0.2 0.46 0

BCSO Zmin 459 570 590 547 545 560 430 493 644 514
Zavg 480 594 607 578 554 562 432 495 648 517
RPD 7 11.3 14.3 10.7 6.40 0 0 0.2 0.46 0

BFO Zmin 429 517 519 495 514 563 430 497 655 519
Zavg 430 517 522 497 515 565 430 499 658 523
RPD 0 0.97 0.58 0.2 0.39 0.53 0 1.01 2.18 0.97

BSFLA Zmin 430 516 520 501 514 563 431 497 656 518
Zavg 430 518 520 504 514 563 432 499 656 519
RPD 0.23 0.78 0.78 1.42 0.39 0.54 0.23 1.02 2.34 0.78

BELA Zmin 447 559 537 527 527 607 448 509 682 571
Zavg 448 559 539 530 529 608 449 512 682 571
RPD 4.20 9.18 4.07 6.68 2.93 8.39 4.19 3.46 6.40 11.09

BABC Zmin 430 513 519 495 514 561 431 493 649 571
Zavg 430 513 521 496 517 565 434 494 651 519
RPD 0.23 0.20 0.58 0.20 0.39 0.18 0.23 0.20 0.93 0.58

Table 7: Computational results for instance set 5

Instance 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10

Zopt 253 302 226 242 211 213 293 288 279 265

Our approach

BFFSA Zmin 253 304 226 242 211 213 293 288 279 265
Zavg 255.6 305.67 227.73 242.03 211 213.5 294.03 288.87 279.8 265.07
RPD 0 0.66 0 0 0 0 0 0 0 0
TF S3 S4 S3 S2 V4 V4 S4 S3 S4 S4
DM STD STD STD COMP COMP COMP ELT STD STD STD

Other approaches

BCS Zmin 253 304 226 242 212 213 293 288 279 265
Zavg 256 307 227 243 213 215 294 290 280 266
RPD 0 0.66 0 0 0.47 0 0 0 0 0

BBH Zmin 253 305 228 242 211 213 293 288 279 265
Zavg 256 307 230 242 211 213 294 289 280 267
RPD 0 0.99 0.88 0 0 0 0 0 0 0

(Continued)
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Table 7: Continued

BCSO Zmin 279 339 247 251 230 232 332 320 295 285
Zavg 287 340 251 253 230 243 338 330 297 287
RPD 10.3 12.3 9.3 3.7 9 8.9 13.3 11.1 5.7 7.5

BFO Zmin 257 309 229 242 211 213 298 291 284 268
Zavg 260 311 233 242 213 213 301 292 284 270
RPD 1.58 2.31 1.32 0 0 0 1.70 1.04 1.79 1.13

BSFLA Zmin 254 307 228 242 211 213 297 291 281 265
Zavg 255 307 230 242 213 214 299 293 283 266
RPD 0.40 1.66 0.88 0 0 0 1.37 1.04 0.72 0

BELA Zmin 280 318 242 251 225 247 316 315 314 280
Zavg 281 321 242 252 227 248 317 317 315 281
RPD 10.67 5.30 7.08 3.72 6.64 15.96 7.85 9.38 12.54 5.66

BABC Zmin 254 309 229 242 211 214 298 289 280 267
Zavg 255 309 233 245 212 214 301 291 281 270
RPD 0.40 2.32 1.33 0 0 0.47 1.71 0.35 0.36 0.75

Table 8: Computational results for instance set 6 and A

Instance 6.1 6.2 6.3 6.4 6.5 A.1 A.2 A.3 A.4 A.5

Zopt 138 146 145 131 161 253 252 232 234 236

Our approach

BFFSA Zmin 138 146 145 131 161 253 254 233 234 236
Zavg 140.07 148.93 146.70 131 162.30 254.80 258.90 234.80 234.77 236.40
RPD 0 0 0 0 0 0 0.79 0.43 0 0
TF S2 S3 S4 S3 S3 S1 S4 S3 S3 V4
DM COMP STD ELT STD STD COMP STD STD ELT ELT

Other approaches

BCS Zmin 140 146 145 131 161 254 256 233 237 236
Zavg 141 147 146 133 163 254 257 235 239 237
RPD 0.14 0 0 0 0 0.34 0.16 0.43 0.13 0

BBH Zmin 140 147 145 131 161 253 253 233 234 236
Zavg 142 150 147 131 164 255 254 234 234 237
RPD 1.45 0.68 0 0 0 0 0.39 0.43 0 0

BCSO Zmin 151 152 160 138 169 286 274 257 248 244
Zavg 160 157 164 142 173 287 276 263 251 244
RPD 9.40 4.10 10.3 5.30 5 13 8.70 10.80 6 3

(Continued)
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Table 8: Continued

BFO Zmin 138 147 147 131 164 255 259 238 235 236
Zavg 140 149 150 131 157 256 261 240 237 237
RPD 0 0.68 1.37 0 1.86 0.79 2.77 2.58 0.42 0

BSFLA Zmin 140 147 147 131 166 255 260 237 235 236
Zavg 141 147 148 133 169 258 260 239 238 239
RPD 10.14 9.59 10.34 6.87 14.29 3.16 10.71 8.62 6.84 2.12

BELA Zmin 152 160 160 140 184 261 279 252 250 241
Zavg 152 161 163 142 187 264 281 253 252 243
RPD 10.14 9.59 10.34 6.87 14.29 3.16 10.71 8.62 6.84 2.12

BABC Zmin 142 147 148 131 165 254 257 235 236 236
Zavg 143 150 149 133 167 254 259 238 237 238
RPD 2.90 0.68 2.07 0 2.48 0.40 1.98 1.29 0.85 0

Table 9: Computational results for instance set B and C

Instance B.1 B.2 B.3 B.4 B.5 C.1 C.2 C.3 C.4 C.5

Zopt 69 76 80 79 72 227 219 243 219 215

Our approach

BFFSA Zmin 69 76 80 79 72 227 219 247 219 215
Zavg 70.67 76.27 80.17 80.1 72 230.77 221.57 254.27 223.07 216.8
RPD 0 0 0 0 0 0 0 1.65 0 0
TF S2 S3 S1 V3 S1 V3 S4 S3 S3 V4
DM COMP ELT COMP COMP COMP COMP ELT STD ELT ELT

Other approaches

BCS Zmin 69 76 80 79 72 228 221 247 221 216
Zavg 70 79 80 81 73 230 223 249 223 217
RPD 0 0 0 0 0 0.44 0.9 1.62 0.9 0.46

BBH Zmin 69 76 80 79 72 229 219 245 219 215
Zavg 70 77 81 81 73 231 220 246 219 216
RPD 0 0 0 0 0 0.88 0 0.82 0 0

BCSO Zmin 79 86 85 89 73 242 240 277 250 243
Zavg 79 89 85 89 73 242 241 278 250 244
RPD 14.5 13.2 6.3 12.7 1.4 6.6 9.6 14 12.3 13

BFO Zmin 71 78 80 80 72 230 223 253 227 217
Zavg 72 78 80 81 73 232 225 253 228 219
RPD 2.89 2.63 0 1.26 0 1.32 1.83 4.12 3.65 0.93

(Continued)
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Table 9: Continued

BSFLA Zmin 70 76 80 79 72 229 223 253 227 217
Zavg 70 77 80 80 73 231 225 253 228 218
RPD 1.45 0 0 0 0 0.88 1.83 4.12 3.65 0.93

BELA Zmin 86 88 85 84 78 237 237 271 246 224
Zavg 87 88 87 88 81 238 239 271 248 225
RPD 24.64 15.79 6.25 6.33 8.33 4.41 8.22 11.52 12.33 4.19

BABC Zmin 70 78 80 80 72 231 222 254 231 216
Zavg 70 79 80 81 74 233 223 255 233 217
RPD 1.45 2.63 0 1.27 0 1.76 1.37 4.53 5.48 0.47

Table 10: Computational results for instance set D

Instance D.1 D.2 D.3 D.4 D.5

Zopt 60 66 72 62 61

Our approach

BFFSA Zmin 60 67 73 62 61
Zavg 60 67.73 75.7 63.37 62.63
RPD 0 1.52 1.39 0 0
TF S1 S3 S4 S2 S3
DM ERLT ELT ELT COMP ELT

Other approaches

BCS Zmin 60 66 73 62 61
Zavg 60 66 74 62 62
RPD 0 0 0.14 0 0

BBH Zmin 60 67 73 62 61
Zavg 60 68 74 62 62
RPD 0 1.51 138 0 0

BCSO Zmin 65 70 79 64 65
Zavg 66 70 81 67 66
RPD 8.3 6.1 9.7 3.2 6.6

BFO Zmin 60 68 75 62 63
Zavg 61 68 77 62 63
RPD 0 3.03 4.16 0 3.27

BSFLA Zmin 60 67 75 63 63
Zavg 62 68 77 63 66
RPD 0 1.52 4.17 1.61 3.28

(Continued)



4312 CMC, 2022, vol.71, no.3

Table 10: Continued

BELA Zmin 62 73 79 67 66
Zavg 62 74 81 69 67
RPD 3.33 10.61 9.72 8.06 8.20

BABC Zmin 60 68 76 63 63
Zavg 61 68 77 63 66
RPD 0 3.03 5.56 1.61 3.28

Table 11: Computational results for instance set NRE and NRF

Instance NRE.1 NRE.2 NRE.3 NRE.4 NRE.5 NRF.1 NRF.2 NRF.3 NRF.4 NRF.5

Zopt 29 30 27 28 28 14 15 14 14 13

Our approach

BFFSA Zmin 29 30 28 29 28 14 15 15 15 14
Zavg 29 32.13 28.7 29.63 28.93 15 15.9 16.73 15.03 15.1
RPD 0 0 3.7 3.57 0 0 0 7.14 7.14 7.69
TF S3 S3 S4 S4 V4 V4 S4 S4 V1 V3
DM ELT ELT ELT ELT ELT ELT ELT ELT ELT ELT

Other approaches

BCS Zmin 29 31 28 30 28 14 15 16 15 14
Zavg 30 32 29 31 29 14 16 16 16 15
RPD 0 0.32 0.36 0.67 0 0 0 4.28 7.14 7.69

BBH Zmin 29 31 28 29 28 14 15 16 15 14
Zavg 30 34 32 33 29 15 16 16 16 15
RPD 0 3.33 3.7 3.57 0 0 0 4.28 7.14 7.69

BCSO Zmin 29 34 31 32 30 17 18 17 17 15
Zavg 30 34 32 33 30 17 18 17 17 16
RPD 0 13.3 14.8 14.3 7.1 21.4 20 21.4 21.4 15.4

BFO Zmin 29 32 29 29 29 15 16 16 15 15
Zavg 31 32 30 31 29 17 16 17 18 19
RPD 0 6.66 7.4 3.57 3.57 7.14 6.66 14.28 7.14 15.38

BSFLA Zmin 29 31 28 29 28 15 15 16 15 15
Zavg 29 32 28 30 31 15 15 17 16 17
RPD 0 3.33 3.7 3.57 0 7.14 0 14.29 7.14 23.08

BELA Zmin 30 35 34 33 30 17 18 17 17 16
Zavg 31 35 34 34 31 17 18 18 19 17
RPD 3.45 16.67 25.93 17.86 7.14 21.43 20 21.43 21.43 23.08

(Continued)
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Table 11: Continued

BABC Zmin 29 32 29 29 29 14 16 16 15 15
Zavg 33 32 31 30 32 15 16 17 17 16
RPD 0 6.67 7.41 3.57 3.57 0 6.67 14.29 7.14 15.38

Table 12: Computational results for instance set NRG

Instance NRG.1 NRG.2 NRG.3 NRG.4 NRG.5

Zopt 176 154 166 168 168

Our approach

BFFSA Zmin 178 159 170 170 173
Zavg 180.3 160.43 171.57 172.2 175
RPD 1.14 3.25 2.41 1.19 2.98
TF S4 V4 S4 V4 S4
DM ELT ELT ELT ELT ELT

Other approaches

BCS Zmin 176 156 169 170 170
Zavg 177 157 170 171 171
RPD 0 0.13 1.8 1.19 0.12

BBH Zmin 179 158 169 170 168
Zavg 181 160 169 171 169
RPD 1.7 2.59 1.8 1.19 0

BCSO Zmin 190 165 187 179 181
Zavg 193 166 188 183 184
RPD 8 7.1 20.6 6.5 7.7

BFO Zmin 185 161 175 176 177
Zavg 191 163 177 176 181
RPD 5.11 4.54 5.42 4.76 5.35

BSFLA Zmin 182 161 173 173 174
Zavg 183 161 174 177 174
RPD 3.41 4.55 4.22 2.98 3.57

BELA Zmin 194 176 184 196 198
Zavg 196 176 185 197 199
RPD 10.23 14.29 10.84 16.67 17.86

BABC Zmin 183 162 174 175 179
Zavg 184 163 175 177 181
RPD 3.98 5.19 4.82 4.17 6.55
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For comparison purposes, we consider the values reported in [16] for Binary Cuckoo Search (BCS)
and Binary Black Hole (BBH); also, we have taken results for Binary Cat Swarm Optimization (BCSO)
[15], Binary Firefly Optimization (BFO) [13], Binary Shuffled Frog Leap Algorithm (BSFLA) [18],
Binary Electromagnetism-like Algorithm (BELA) [38] and Binary Artificial Bee Colony (BABC) [39].

Table 13: Computational results for instance set NRH

Instance NRH.1 NRH.2 NRH.3 NRH.4 NRH.5

Zopt 63 63 59 58 55

Our approach

BFFSA Zmin 66 66 61 63 55
Zavg 67.47 66 63 63.5 58.07
RPD 4.76 4.76 3.39 3.39 0
TF S3 S3 S4 S3 S4
DM ELT ELT ELT ELT ELT

Other approaches

BCS Zmin 64 64 62 59 56
Zavg 64 64 63 60 57
RPD 0.16 0.16 10.16 6.77 7.27

BBH Zmin 66 67 65 63 62
Zavg 67 68 65 64 62
RPD 4.76 6.34 10.16 8.62 12.72

BCSO Zmin 70 67 68 66 61
Zavg 71 67 70 67 62
RPD 11.1 6.3 15.3 13.8 10.9

BFO Zmin 69 66 65 63 59
Zavg 70 66 67 65 60
RPD 9.52 4.76 10.16 6.77 7.27

BSFLA Zmin 68 66 62 63 59
Zavg 69 66 63 64 61
RPD 7.94 4.76 5.08 8.62 7.27

BELA Zmin 70 71 68 70 69
Zavg 71 71 70 72 69
RPD 11.11 12.70 15.25 20.69 25.45

BABC Zmin 70 69 66 64 60
Zavg 71 72 67 64 61
RPD 11.11 9.52 11.86 10.34 9.09

Tab. 6 presents the results obtained from instance set 4. in this case our algorithm was better to all
others in comparison, as it reached optimal values in all instances; BCSO, BSFLA, BELA and BABC
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are unable to achieve optimal values and BFO reached only two. The closest methods in comparison
were BCS with eight optimal and BBH with five.

Tab. 7 describes the results from instance set 5. Once again, our algorithm got the best results
along with BCS and BBH. Algorithms BCSO and BELA are unable to solve optimally any instance,
BABC found only two optimal values, BFO reached three and BSFLA got four.

Tab. 8 illustrates the results from instance sets 6 and A. Our algorithm performed well, reaching
eight optimal values (the whole set 6 and 3 from set A). BBH was slightly better than BCS this time,
BCSO and BELA are unable to optimally solve any instance, BABC is capable to find only two optimal
values (one in each set), BFO reached three and BSFLA got four.

Tab. 9 shows the results from instance set B and C. In case of set B, our algorithm had a very good
performance, reaching all the optimal values, just like BCS and BBH. For instance set C, situation is
similar, as BFFSA reached four out of five optimal values, outperforming all other methods.

Tab. 10 shows the results from instance set D. Here, the BFFSA and BBH (3 optimal values each
one) could not reach results of BCS. However, we can still say this is an acceptable result, considering
that all other approaches got less than 30% of optimal values.

For the NRE and NRF sets described in Tab. 11, only two RPD = 0 per set are reached by the
BFFSA algorithm. Other approaches fail in general to find optimum values as the instance set becomes
harder. Only BCS and BBH are closer to our results. BSFLA and BABC achieve one optimum for the
instances belonging to set NRF, while BBH and BCS reach three.

Finally, for the hardest instance sets NRG and NRH (see Tabs. 12 and 13), we observe that the
RPD obtained by the proposed BBFOA is good enough to compete with the approaches like BCS and
BBH, as in the three cases, they could only reached one optimal value.

7 Conclusion

This article proposes several variations to BFFSA (39 to be precise), created by adding to the
original BFFSA different transfer functions and discrete methods in order to improve the solutions
obtained. All of these BBFOA-variations were tested into 65 SCP instances and the values reported
correspond to the algorithm with the best performance. From our results, we conclude that variations
presented are robust enough to compete with other algorithms as we were able to find many optimal
solutions with a little parameter tuning.

We observed that best combinations of transfer functions and discretization methods depend on
the instance size. For small instances (4, 5, 6, A, B, C, D) best results were achieved with transfer
functions pS3 and pS4 plus the Standard discretization, whereas for huge instances (NRE, NRF, NRG,
NRH) the best combinations are the same transfer functions pS3 and pS4, but with the Elitist method.
A point to remark is that the use of the Elitist discretization is not exclusive for this algorithm and
problem; other articles like [40] report good results with it.

In the future, we are interested in the hybridization of BFFSA with other meta-heuristics or apply
an hyper-heuristics version. In the short term, we expect to test our algorithms on other SCP libraries,
such like the Unicost (available at OR-Library website) or Italian railways [41] benchmarks. Due to
the good results and the simplicity of this algorithm, it could be used to solve other combinatorial
problems.
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