
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.022988

Article

Unified FPGA Design for the HEVC Dequantization and Inverse Transform
Modules

Turki M. Alanazi and Ahmed Ben Atitallah*

Department of Electrical Engineering, Jouf University, Sakaka, Aljouf, 2014, Saudi Arabia
*Corresponding Author: Ahmed Ben Atitallah. Email: abenatitallah@ju.edu.sa

Received: 25 August 2021; Accepted: 03 November 2021

Abstract: As the newest standard, the High Efficiency Video Coding (HEVC)
is specially designed to minimize the bitrate for video data transfer and to
support High Definition (HD) and ULTRA HD video resolutions at the
cost of increasing computational complexity relative to earlier standards like
the H.264. Therefore, real-time video decoding with HEVC decoder becomes
a challenging task. However, the Dequantization and Inverse Transform
(DE/IT) are one of the computationally intensive modules in the HEVC
decoder which are used to reconstruct the residual block. Thus, in this paper,
a unified hardware architecture is proposed to implement the HEVC DE/IT
module for all Transform Unit (TU) block size, including 4 × 4, 8 × 8, 16 × 16
and 32 × 32. This architecture is designed using the High-Level Synthesis
(HLS) and the Low-Level Synthesis (LLS) methods in order to compare and
determine the best method to implement in real-time the DE/IT module. In
fact, the C/C++ programming language is used to generate an optimized
hardware design for DE/IT module through the Xilinx Vivado HLS tool. On
the other hand, the LLS hardware architecture is designed by the VHSIC
Hardware Description language (VHDL) and using the pipeline technique to
decrease the processing time. The experimental results on the Xilinx XC7Z020
FPGA show that the LLS design increases the throughput in term of frame
rate by 80% relative to HLS design with a 4.4% increase in the number of
Look-Up Tables (LUTs). Compared with existing related works in literature,
the proposed architectures demonstrate significant advantages in hardware
cost and performance improvement.

Keywords: HEVC decoder; dequantization; IDCT/IDST; LLS design; HLS
design; FPGA

1 Introduction

Nowadays, several consumer electronic devices such as television [1], smartphone [2], tablet [3],
etc use video standard codec for video compressing and transmitting data with minimum bitrate. In
this context, a High Efficiency Video Coding (HEVC) video standard is developed [4,5]. The HEVC is

http://dx.doi.org/10.32604/cmc.2022.022988
mailto:abenatitallah@ju.edu.sa

4320 CMC, 2022, vol.71, no.3

a video compression standard that can provide a good performance than the previous standard, i.e.,
H.264/AVC [6]. In fact, it can support a high video resolution which can reach to 8K (7680 × 4320)
and reduces the bitrate approximately by 50% relative to H.264/AVC [7,8] with same video quality.

In video standard codec the Dequantization and Inverse Transform (DE/IT) play a very important
role to reconstruct the compressed video sequences [9]. Nevertheless, in HEVC video decoder, the
DE/IT module allows to reconstruct the residual block which can be with several size 4 × 4, 8 × 8,
16 × 16, and 32 × 32. In fact, the largest coding unit in HEVC can be up to 64 × 64 in size, and
the Transform Unit (TU) sizes can be 4 × 4, 8 × 8, 16 × 16, and 32 × 32 [10]. This multiple TU sizes
improve the compression performance but increase the computational complexity to reach a real-time
execution [11,12]. In this context, based on the complexity analysis of the HEVC decoder modules
for all-intra configuration performed in [13], we can notice that the entropy decoding (ED), the intra
prediction (IP) and the DE/IT modules consume on average 38%, 32% and 20% of the total decoding
time, respectively. However, according to the analysis given in [14] for the ED module, it is obviously
that the computational complexity presented in the regular CABAC algorithm makes it difficult to be
pipelined and parallelized in such hardware context. This complexity is caused by the critical bin-to-
bin data dependencies and the use of feedback between entropy decoding steps. On the other hand,
we have proposed in [13] a hardware architecture to implement the IP block. For this reason, we focus
in this work to propose an efficient hardware design to reduce the computational complexity of the
HEVC DE/IT module.

Recently, field-programmable gate arrays (FPGAs) have been gaining popularity for image
and video processing. Indeed, modern FPGAs have sufficient resources to implement a complex
application [15,16]. The traditional approach used to design and implement any algorithm in FPGA
is Low-Level Synthesis (LLS) using hardware description language (HDL) such as VHSIC hardware
description language (VHDL or Verilog). With such low-level design, it is possible to adjust the
Register Transfer Level (RTL) description to generate an optimized hardware architecture [17–19].
But, this kind of design requires a lot of time and effort specially for complex algorithm. To alleviate
this problem, the High-Level Synthesis (HLS) is introduced [20–22]. Nevertheless, the HLS flow uses
the high-level programming language like C/C++, systemC, etc to generate automatically the RTL
design. This approach makes the code more readable, shortens design and verification times, and
increases the design reusability over those of handwritten HDL equivalents.

In literature, many architectures are proposed to implement the dequantization and inverse
transform modules for HEVC decoder. In fact, the design outlined in [23] presents an FPGA
implementation of the HEVC 2D integer inverse discrete cosine transform (2D-IDCT) using different
HLS tools. The developed design can decode 54 frames/sec (FPS) for 1080p video sequences. In [24],
the authors provide a System-On-Chip FPGA platform based on Xilinx Zynq to integrate the DCT
coding block as an accelerator with HLS tool. The proposed design is capable to perform the coding
of 1080@30fps. In [25], a LLS hardware architecture for 2D-IDCT is proposed. This architecture
can process 4K@28fps at 135 MHz under XC7Z045 Xilinx FPGA. In addition, Chen et al. [26]
design a 2D-IDCT architecture that supports all TU sizes. This architecture can calculate two rows in
parallel during the 1D-IDCT instead of only one. In this case, the maximum throughput achieved is
about 4K@30fps with the Xilinx Zynq platform. But Liang et al. [27] present an architecture that
supports the 2D integer inverse discrete sine transform (2D-IDST) and 2D-IDCT using two 1D-
IDCT/IDST units and memory block. This architecture calculates four residual pixels in parallel in
each clock cycle. This design can decode 7680 × 4320@30fps. In [28] a hardware implementation of
the 2D dequantization, IDCT and IDST (2D-DE/IDCT/IDST) for HEVC decoder is described. The
proposed architecture can perform the decoding of 4K@30fps at 200 MHz clock frequency in TSMC

CMC, 2022, vol.71, no.3 4321

40 nm technology. However, such implementation presents a good compromise in terms of energy
efficiency, resources utilization and performance but miss flexibility in term of programmability. On
the other, in [29] an efficient OpenCL implementation of the HEVC 2D-DE/IDCT/IDST module is
proposed. This software implementation is realized based on an exploitation of the parallel processing
offered by modern Graphic Processing Unit (GPUs). The proposed solution can decode 4K@15fps
on GeForce GTX 780Ti@1046 MHz. This implementation preserves the flexibility and accuracy of
software but with an increase in power consumption.

Hence, the aim of this paper is to provide a unified and optimized hardware architecture to
implement the 2D-DE/IDCT/IDST module for HEVC decoder. This architecture should support
4 × 4, 8 × 8, 16 × 16 and 32 × 32 HEVC TU block size and offer a trade-off between performance,
hardware cost and processing time. For this, the LLS and HLS design flow are used and explored
to design a hardware architecture for HEVC 2D-DE/IDCT/IDST module. However, the HLS 2D-
DE/IDCT/IDST design is explored through the Xilinx Vivado HLS 2018.1 tool by adding specific
directives (e.g., PIPILINE, RESSOURCE, etc) to the high level programming language such as
C/C++ code. But, the LLS 2D-DE/IDCT/IDST design is developed by using the pipeline technique
through the VHDL language. The hardware architectures for both methods are mapped and evaluated
on Xilinx XC7Z020 FPGA for processing time and hardware cost in order to determine which design
method (LLS or HLS) provides better design productivity when facing a complex algorithm like the
2D-DE/IDCT/IDST module for HEVC decoder.

The remainder of the paper is structured as follows. Section 2 introduces an overview of
HEVC 2D-DE/IDCT/IDST module. Section 3 describes the hardware architecture designed for
2D-DE/IDCT/IDST module using HLS and LLS design flow. The implementation results and
performance evaluation are reported in Section 4. Finally, Section 5 concludes the paper.

2 Dequantization and Inverse Transform in HEVC Decoder

In HEVC, each frame is partitioned into coding tree block structure involving different sizes of
large coding units (LCUs) up to 64 × 64. As illustrated in Fig. 1, each LCU can be recursively split into
several sizes of coding units (CUs). Starting from a defined partition of CUs, it is possible to further
generate two other types of units corresponding to prediction unit (PU), which is used for inter/intra
prediction processes, and TU, which is the elementary unit of dequantization and inverse transform.
However, the size of the TU block is defined by HEVC encoder and can be 4 × 4, 8 × 8, 16 × 16 and
32 × 32.

Thus, the 2D-DE/IDCT/IDST module receives the coefficients of the TU block from the entropy
decoder and applies the dequantization to restore the original Transform coefficients. The dequanti-
zation scheme as specified be HEVC is given by Eq. (1).

CoeffDQ =((level ∗ f(QP%6)<<(QP/6))+offset)>>(log2N − 9 + B) (1)

Offset = 1 <<(log2N − 10 + B) (2)

where coeffDQ is the dequantized coefficient, level is the quantized DCT coefficient, QP is the
quantization parameter ranged from 0 to 51 (every TU has its own QP value), N is the size of TU
block, B is the bit depth and the function f(QP%6) is determined from Tab. 1. The coeffDQ is clipped
to the range [−32768, 32768] to guarantee that the dequantized coefficient is computed with 16-bit.

4322 CMC, 2022, vol.71, no.3

Figure 1: Coding structure in HEVC standard

Table 1: Definition of f(QP%6)

QP%6 0 1 2 3 4 5
F (.) 40 45 51 57 64 72

After dequantization, the 2D-IDCT is performed. In fact, the IDCT module takes dequantized
coefficient and performs as two separate 1D-IDCT to obtain is outputs the residual block. The HEVC
decoder supports two types of inverse transform which are IDCT and IDST. The IDST is applied
only to the 4 × 4 TU block. During decoding, the transformed coefficients are converted back to the
spatial domain via an inverse transform. According the HEVC, the 2D-IDCT/IDST can be expressed
by Eq. (3).

DST = tM × SRC × M (3)

where SRC is the transformed block, DST is the residual block and M is a N×N IDCT/IDST
coefficient matrix which defined by HEVC standard. The value N is depending of the TU size. For each
TU size, it has its own transform matrix. But, the 32 × 32 TU’s transform matrix includes other sizes
TU’s transform matrix. In HEVC, the 2D-IDCT/IDST is computed by two 1D-IDCT/IDST where a
column inverse transform is followed by a row inverse transform.

To decrease the implementation complexity of 2D-IDCT/IDST, Chen et al. [30] was proposed a
fast algorithm for transform by decomposing the transform matrix MN to some zero matrixes. This
decomposition technique is presented by Eq. (4).

MN = PN ×
[

MN,even 0
0 MN,odd

]
× BN (4)

where PN is the permutation matrix. BN is the N-point butterfly structure. MN,odd and MN,even are the
odd and even parts of MN, respectively. For example, Eq. (5) illustrates the 8 × 8 coefficient matrix

CMC, 2022, vol.71, no.3 4323

in HEVC and Eq. (6) the decomposition of this matrix. Fig. 2 presents the flowchart of 8-points 1D-
IDCT based on Chen’s algorithm.

M8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

64 64 64 64 64 64 64 64
89 75 50 18 −18 −50 −75 −89
83 36 −36 −83 −83 −36 36 83
75 −18 −89 −50 50 89 18 −75
64 −64 −64 64 64 −64 −64 64
50 −89 18 75 −75 −18 89 −50
36 −83 83 −36 −36 83 −83 36
18 −50 75 −89 89 −75 50 −18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

M8 = P8 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

64 64 64 64 0 0 0 0
83 36 −36 −83 0 0 0 0
64 −64 −64 64 0 0 0 0
36 −83 83 −36 0 0 0 0
0 0 0 0 18 50 75 89
0 0 0 0 −50 −89 −18 75
0 0 0 0 75 18 −89 50
0 0 0 0 −89 75 −50 18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× B8 (6)

where:

P8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

B8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 −1 0 0 0
0 0 1 0 0 −1 0 0
0 1 0 0 0 0 −1 0
1 0 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

4324 CMC, 2022, vol.71, no.3

P
er

m
ua

tio
n EE

EO

SRC0

SRC1

SRC2

SRC0

SRC4

SRC2

SRC6

EE0

EE1

EO1

EO0

DST0

DST1

DST2

DST3

O3

O2

O1

O0

DST4

DST5

DST6

DST7

P
er

m
ua

tio
n

SRC0

SRC2

SRC4

SRC6

SRC1

SRC3

SRC5

SRC7

SRC3

SRC4

SRC5

SRC6

SRC7

4-
po

in
tO

dd

E0

E1

E2

E3

4-point Even 8-point Butterfly

Figure 2: Flowchart of 8-points 1D-IDCT based on chen’s algorithm

3 2D-DE/IDCT/IDST Hardware Architecture

In this section, we describe the HLS and LLS hardware architectures designed to implement the
HEVC 2D-DE/IDCT/IDST algorithm on Xilinx XC7Z020 FPGA. In this work, the HEVC test Model
(HM16.0) [31] is used as reference software.

3.1 HLS 2D-DE/IDCT/IDST Hardware Architecture

HLS is gaining more and more popularity specially when using FPGA circuit. Nevertheless,
with HLS, it becomes possible to reduce the conception and validation time of the hardware design.
Therefore, the exploration and the simulation of multiple hardware architectures can be done in the
shortest time. But, HLS requests designers to restructure programs, change a source code and add a
specific directive to get a good result. In this context, Xilinx developed the Vivado HLS tool. This tool
accepts as input a high-level programming language such as C/C++ and generates automatically as
output an RTL hardware description. Through this tool, it is possible to add several directives (such
as LOOP unrolling, ALLOCATION, RESOURCE, etc) in order to generate an optimize RTL design
in terms of hardware cost and processing time.

For the HLS implementation of the HEVC 2D-DE/IDCT/IDST module, the C code of this
module is extracted from HM16.0. The 2D-DE/IDCT/IDST algorithm is implemented with HLS
based on the algorithm proposed in Fig. 3. In fact, some characteristics are taken account in this
algorithm to reduce the hardware cost and complexity and generate a performant HLS design for 2D-
DE/IDCT/IDST module. However, the HLS design supports 4/8/16/32 TU size. The dequantization
and 2D-IDCT/IDST are integrated in one design to minimize the processing time. Moreover, the even-
odd 1D-IDCT/IDST algorithm is used as shown in Fig. 2. In addition, 8-point 1D-IDCT is computed
by using 4-point IDCT (even part), 4-point odd and butterfly module. Even for 16-point IDCT is
calculated based-on 8-point 1D-IDCT, 8-point odd and butterfly module. Also, 32-point IDCT is
determined from 16-point 1D-IDCT, 16-point odd and butterfly module. Further, all multiplication
operations in 1D-IDCT/IDST are replaced by shift and addition based on the study realized in [25].
Furthermore, 1D-IDCT/IDST module is called two time and the intermediate memory block is used
to save and transpose coefficients to generate 2D-IDCT/IDST. All these characteristics allow to reduce
the hardware cost and hardware complexity.

CMC, 2022, vol.71, no.3 4325

Dequantization for
4/8/16/32 TU block

Start

1D-IDCT/IDST4
(4-point Even)

1D-IDCT8?

4-point Odd & Butterfly

1D-IDCT16?

8-point Odd & Butterfly

1D-IDCT32?

16-point Odd & Butterfly

2D-IDCT/
IDST4?

Transpose Memory

2D-IDCT8?

2D-IDCT16?

2D-IDCT32?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

Reconst. 4/8/16/31
residual block

End

Figure 3: Dataflow of the HLS 2D-DE/IDCT/IDST module for HEVC decoder

However, in the beginning, the HLS architecture receives as input the TU size, the correspond
coefficients (maximum 1024 coefficients) and the QP value. Then, these coefficients are dequantized
to generate the transform coefficients. After that, if the TU size is egal to 4 × 4, thus in the first step,
the 1D-IDCT4/IDST4 will be applied to the columns of TU to generate the 1D-transfrom coefficients.
In the second step, these coefficients are stored in transpose memory to be used for 2D-transfrom. In

4326 CMC, 2022, vol.71, no.3

the last step, the 1D-IDCT4/IDST4 will be applied to the row of TU to reconstruct the residual block.
But, if the TU size is equal to 8 × 8, 16 × 16 or 32 × 32, so the 4-point odd, 8-point odd and 16-point
odd are used with 4-point even and butterfly module to produce 1D/2D-IDCT8/16/32 coefficients,
respectively.

In order to improve the design performances, several directives are added incrementally to the
HEVC 2D-DE/IDCT/IDST C code. A part of the C code developed and given as input to Xilinx
Vivado HLS tool 18.1 is shown in Figs. 4 and 5 used for dequantization and 1D-IDCT8, respectively.
Thus, several designs are generated to implement the 2D-DE/IDCT/IDST module. In fact, Design
1 is generated without adding any directive. The synthesis results on the Xilinx XC7Z020 FPGA
shows that this design uses 21466 (40.3%) of Look-Up Tables (LUTs), 10252 (19.3%) of Flip-Flops
(FFs), 40 (18.2%) of DSP blocks and 30 (21.4%) of BRAM as illustrated in Fig. 6 and needs in
worst case 15562 clock cycles to reconstruct the 32 × 32 residual block (Fig. 7). From these results,
we notice that the number of clock cycles is high. For that, the PIPELINE directive should be used
to decrease the number of clock cycles. In fact, from Figs. 4 and 5, we can see that the dequantization
and IDCT C codes use loop iteration to reconstruct the transom and residual coefficients. The length
of the loop iterations depends of the TU size. So, the loop can reach 1024 iterations. However, the
PIPLINE directive is applied to loop iterations with interval equal to 1 to reduce the cycles number
of latencies required for an input data to reach its output. Consequently, the Design 2 is created.
According to Figs. 6 and 7, Design 2 allows to decrease by 91% the number of clock cycles but with
an important increase in the hardware cost by 45% of LUTs, 62.3% of FFs, 47.4% of DSP blocks and
44.5% of BRAMs relative to Design 1. Therefore, to reduce the hardware cost, the Design 3 is generated
by using the ALLOCATION and RESSOURCE directives. Indeed, the ALLOCATION directive is
added to process the multiplication operations in the level of dequantization equation which allows
to share the hardware resources between several operations. Furthermore, the RESOURCE directive
is used to implement the residual and dequantization arrays by a specific memory block (BRAMs).
This optimization has allowed to decrease the hardware cost by 42% of LUTs, 30.8% of FFs, 42.1%
of DSP blocks and 55.5% of BRAMs but with an increase by 61% in the number of clock cycles
compared to Design 2 as reported in Figs. 6 and 7. On the other hand, we can constate that the Design
3 provides a decrease in number of clock cycles by about 67% in worst case but with an increase by 5%
of LUTs, 45% of FFs and 9% of DSP blocks relative to Design 1. Afterward, the Design 3 is used for
the comparative study with LLS 2D-DE/IDCT/IDST because it offers a trade-off between hardware
cost and processing time.

Figure 4: Dequantization Vivado HLS C code

CMC, 2022, vol.71, no.3 4327

Figure 5: 8-point IDCT Vivado HLS C code

LUTs FFs DSP BRAM_18K

Design 1 40.3 19.3 18.2 21.4

Design 2 73.5 51.1 34.5 38.6

Design 3 42.6 35.3 20.0 17.1

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

%

Figure 6: HLS synthesis results of HEVC 2D-DE/IDCT/IDST module

3.2 LLS 2D-DE/IDCT/IDST Hardware Architecture

The hardware architecture depicted in Fig. 8 describes the LLS design of the HEVC 2D-
DE/IDCT/IDST module. In fact, this architecture is composed by four dequantization units
(Unit_DQ0, Unit_DQ1, Unit_DQ2 and Unit_DQ3), 1D-IDCT/IDST unit, transpose memory unit
and control unit. It receives as input four 16-bit coefficients (Coeff0, Coeff1, Coeff2 and Coeff3) each
three clock cycles from the entropy decoder, size of TU block (sel signal), QP value (QP signal) and
start signal and generates as output the residual block and Done_DQ/IDCT signal which indicates
that the residual block is ready. However, the designed architecture contains the dequantization and

4328 CMC, 2022, vol.71, no.3

1D-IDCT/IDST units in one design in order to benefit of the pipeline technique which can decrease
the processing time.

TU = 4x4 TU = 8x8 TU = 16x16 TU = 32x32

Design 1 242 1307 5802 15562

Design 2 39 113 491 1396

Design 3 81 268 935 3600

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

C
L

O
C

K
 C

Y
C

L
E

S

Figure 7: Number of clock cycles to reconstruct 4/8/16/32 residual block

Unit_DQ0

Unit_DQ1

Unit_DQ3

Coeff0

Coeff1

Coeff3

4/8/16/32 pixels
16-bit

16-bit

16-bit

16-bit

Unit_DQ2
Coeff2

16-bit

1D-IDCT/IDST

B
an

k
R

eg
is

te
r

128-bit

Data_out

0

67 0

67
Fifo(31)

Column(0)

Column(31)
0

67 0

67
Fifo(0)

4/8/16/32 pixels
16-bit

B
an

k
R

eg
is

te
r

16-bit

Transpose Memory

Control unit

CLKStart_IDCT

CLKCLKStart_DQ

Done_DQ/IDCT

CLK Start Reset Sel QP
6-bit

Figure 8: LLS hardware architecture for HEVC 2D-DE/IDCT/IDST module

CMC, 2022, vol.71, no.3 4329

3.2.1 Unit_DQ

Fig. 9 presents the hardware architecture of Unit_DQ. This architecture is developed based on
Eq. (1). Indeed, two Read-Only-Memory (ROM1 and ROM2) are used to store the precalculated
values proportional to QP%6 and QP/6, respectively. These memories are addressed based on QP value
through the control unit. However, the 16-bit level signal receives the quantized coefficient which is
multiplied by the value collected for ROM1. Then, the obtained result is shifted by the value collected
from ROM2, added to the offset value and shifted by offset1. In the end, the 16-bit dequantization
coefficient is obtained in two clock cycles through CoeffQ signal.

Control UnitStart_DQ
CLK

RESET
Done_DQ

ROM1
IQstep

Address CLK

Multiplier

Adder

Shifter
>>

CLK

CoeffIQ

Level

Shifter
<<

QP

6-bit

N

16-bit

2-bit

16-bit

D
eM

ux

offset

offset1

ROM2
QP/6

Address CLK

Figure 9: Hardware architecture of Unit_DQ

3.2.2 1D-IDCT/IDST

Fig. 10 depicts the 1D-IDCT/IDST hardware architecture. This architecture is designed to support
4 × 4, 8 × 8, 16 × 16 and 32 × 32 TU size and use even-odd IDCT decomposition. In fact, the 32-
point 1D-IDCT is constructed by using a 4-point even, a 4-point odd, an 8-point odd and a 16-
point odd. Moreover, to reduce the hardware cost, the multiplication operations are replaced by shift
and addition. Also, when analyzing the IDCT equation, we constate that there are some repetitive
coefficients (X2, X4, X9, X18, X36, X64, X90). The Xcoeff components is used to compute these
coefficients which are used to deduce the other cofficients (i.e.,: X75=X64+X9+X2). However, 1D-
IDCT/IDST architecture receives dequantized coefficients through 32 SRC signals and produces the
transformed coefficients through 32 DST signals in 12 clock cycles, 24 clock cycles, 80 clock cycles
and 160 clock cycles for 4/8/16/32 TU size, respectively.

4330 CMC, 2022, vol.71, no.3

1D-IDCT32

1D-IDCT16

1D-IDCT8

1D-IDCT4/
IDST4

XCoeff

SRC0

SRC3

SRC4

SRC7

SRC16

SRC31

SRC8

SRC15

DST0

DST3

DST4

DST7

DST16

DST31

DST8

DST15

Figure 10: 1D-IDCT/IDST hardware architecture

3.2.3 Transpose Memory

The transpose memory is used to store the intermediate coefficients between column and row of
the inverse transform. It can store the coefficients of all TU size. The access to memory is optimized
by concatenation eight 16-bit coefficients. In fact, in one clock cycles, it is possible to write and read
128-bit which mean eight coefficients in same time.

3.2.4 Control Unit

The control unit serves to share and synchronize data between all units in our design as shown in
Fig. 11. Accordingly, for 4 × 4 TU size, in the first step the control unit send four 16-bit coefficients (1st

column) to the dequantized units. Then, in the second step, the dequantized units receive the 2sd column
after 3 clock cycles and the 1D-IDCT4/IDST4 process the 1st column in 3 clock cycles. After that, in the
third step, 1st column is concatenated and stored in transpose memory in one clock cycle, the 2sd column
is processed by inverse transform in 3 clock cycles and the 3th column is treated by the dequantized
units in 2 clock cycles. Thus, the pipeline technique is used between all units to optimize the processing
time. So, for 4 × 4 TU size, firstly the TU is processed column by column by dequantized units and
1D-IDCT4/IDST4 and the output coefficients for each column are stored in transpose memory. This
step needs 16 clock cycles. Then, the 1D-IDCT4/IDST4 is performed again row by row from transpose
memory. In the end, the DE/IDCT of 4 × 4 TU size is obtained in 29 clock cycles. All these steps are
used for 8/16/32 TU size and need 77 clock cycles, 280 clock cycles and 938 clock cycles, respectively
as shown in Fig. 11.

W

2

1D
IDCT4/
IDST4

DQ
4P

DQ
4P

4 6 8 9 10 14 16 18 20 22 24

M
E

M

M
E

M

R

26 28 30 32 34 74 76 192 194 196 198 200 202 204 275 277 279 768 770 772 774 776 778

DQ
4P

DQ
4PM

E
M

M
E

M

1D
IDCT4/
IDST4

1D
IDCT4/
IDST4

1D
IDCT4/
IDST4

1 3 5 7

2D
IDCT4/
IDST4

2D
IDCT4/
IDST4

2D
IDCT4/
IDST4

2D
IDCT4/
IDST4W W W R R R

11 13 15 17 1912 25 27 29 31 33 35 752321

1D
IDCT8

1D
IDCT8

1D
IDCT8

1D
IDCT8

W W W

1D
IDCT8

1D
IDCT8

1D
IDCT8

1D
IDCT8

W W WW W R

2D
IDCT8

2D
IDCT8

R

77

DQ
4P

DQ
4PM
E

M

M
E

M DQ
4P

DQ
4PM

E
M

M
E

M DQ
4P

DQ
4PM

E
M

M
E

M DQ
4P

DQ
4PM

E
M

1D
IDCT16

1D
IDCT16

1D
IDCT16

WW

1D
IDCT16

W

1D
IDCT16

W

1D
IDCT16

W

193 195 197 199 201 203 205

W R

2D
IDCT16

R

2D
IDCT16

276 278 280 769 771 773 775

1D
IDCT32

1D
IDCT32

1D
IDCT32

WW

1D
IDCT32

W

1D
IDCT32

W

1D
IDCT32

1D
IDCT32

1D
IDCT32

WW W R

2D
IDCT32

R

2D
IDCT32

W

780 782 933 935 937781 783 934777 779 938936

DQ
4P M

E
MDQ

4P M
E

MDQ
4P M

E
MDQ

4P M
E

MDQ
4P M

E
MDQ

4P M
E

M

E
nd

in
g

of
ID

C
T

8_
2D

E
nd

in
g

of
ID

C
T

16
_1

D

E
nd

i n
g

of
I D

C
T

16
_2

D

E
nd

in
g

of
ID

C
T

32
_1

D

E
nd

in
g

of
ID

C
T

32
_2

D

Clock
Cycles

DE/IDCT4
2D

DE/IDCT8
2D

DE/IDCT16
2D

DE/IDCT32
2D

Figure 11: Timing diagram for HEVC 2D-DE/IDCT/IDST module

CMC, 2022, vol.71, no.3 4331

4 Implementation Results and Performance Evaluation

Tab. 2 conducts a comparison of the synthesis results, number of clock cycles and clock frequency
for HLS and LLS 2D-DE/IDCT/IDST designs under XC7Z020 FPGA for 4 × 4, 8 × 8, 16 × 16 and
32 × 32 TU size. It can be seen from this table that the HLS design uses less LUTs by 4.4% but more
FFs, RAMs and DSPs by 9.5%, 5.7% and 18.2%, respectively, relative to LLS design. Moreover, the
LLS design allows to reduce the number of clock cycles by 64% compared to HLS design.

Table 2: Synthesis results of HLS and LLS flow for 2D-DE/IDCT/IDST under XC7Z020 FPGA

Design TU Blocks LUTs FFs RAM_18K DSP Freq.
(MHz)

Clock
cycles

HLS 32 × 32 3600
16 × 16 22.7K

(42.6%)
18.8K
(35.3%)

24
(17.1%)

44
(20%)

100 935
8 × 8 268
4 × 4 81

LLS 32 × 32 938
16 × 16 25K

(47%)
13.7K
(25.8%)

16
(11.4%)

4
(1.8%)

145 280
8 × 8 77
4 × 4 29

On the other hand, the performance of HLS and LLS design for HEVC 2D-DE/IDCT/IDST is
measured for several class of video sequences such as Class A (2560 × 1600), Class B (1920 × 1080),
Class C (1280 × 720) and Class D (832 × 480). So, from Fig. 12, we can see that the frame rate of LLS
design can reach 339 fps for class D and 33 fps for class A instead of 66 fps for class D and 6 fps for
class A using HLS design. However, with LLS design the frame rate is increased by 80% relative to
HLS design in worst case as shown in Fig. 13.

Class D Class C Class B Class A

HLS 66 28 13 6

LLS 339 147 65 33

0

50

100

150

200

250

300

350

400

FA
M

E
 R

A
T

E
 (

FP
S)

Figure 12: Frame rate comparison between HLS and LLS designs for A, B, C and D video class

4332 CMC, 2022, vol.71, no.3

79

80

80

81

81

82

82

Class D Class C Class B Class A

G
A

IN
 (

%
)

Figure 13: Gain in frame rate for LLS relative to HLS for A, B, C and D video class

Comparing our HLS 2D-DE/IDCT/IDST design with the HLS design proposed in [23] and [24]
used to implement only the 2D-IDCT and 2D-DCT, respectively, we can constate from Tab. 3 that our
design allows a gain in LUTs and DSP blocks reaching approximately 55% and 59% relative to [23]
and [24], respectively. Moreover, the maximal throughput of our design could perform the decoding
of 1080p@13fps at 100 MHz instead of the 1080p@54fps at 208 MHz and 1080p@30fps found in
[23] for 2D-IDCT and [24] 2D-DCT only, respectively. On the other hand, the designs [25] and [26]
propose the LLS design for the 2D-DCT and 2D-IDCT/IDST only which can achieve 4K@28fps and
4K@30fps, respectively. But, our proposed LLS 2D-DE/IDCT/IDST design can reach 1080p@65fps.
Hence, our design has better performance than [25] and [26] in term of frame rate and also use lower
LUTs and DSP blocks count than [25] and [26] by 28% and 96%, respectively, as reported in Tab. 3.
Further, comparing the LLS 2D-DE/IDCT/DST design with [21], we can constate that our design can
process 4K@16fps at 145 MHz instead of 4K@15fps on GeForce GTX 780Ti@1046 MHz in [29].
So, our design is more performant and can achieves lower power consumption. Besides, our design
permits more flexibility than [27] and [28] with the almost same performance.

Table 3: Literature comparison of the dequantization and inverse transform designs

Ref Algorithm Technology Design
specification

Resource cost FPS

[23] 2D-IDCT HLS FPGA XC6VLX550T@
208 MHz

50.5K LUTs 1080p@54fps

[24] 2D-DCT HLS FPGA XC7Z020 5.6K LUTs
108 DSP blocks

1080p@30fps

[25] 2D-IDCT LLS FPGA XC7Z045@135
MHz

34.6K LUTs
2 DSP blocks

4K@28fps

[26] 2D-
IDCT/IDST

LLS FPGA Xilinx Zynq@ 222
MHz

5.8K LUTs
108 DSP blocks

4K@30fps

[27] 2D-
IDCT/IDST

ASIC TSMC 65nm@435
MHz

183.6 Kgates 8K@30fps

[28] 2D-DE/IDCT/
IDST

ASIC TSMC 40nm@200
MHz

126 Kgates 4K@30fps

(Continued)

CMC, 2022, vol.71, no.3 4333

Table 3: Continued
Ref Algorithm Technology Design

specification
Resource cost FPS

[29] 2D-DE/IDCT/
IDST

SW GeForce GTX
780Ti@1046 MHz

- 4K@15fps

Our
design

2D-DE/IDCT/
IDST

HLS FPGA XC7Z020@100
MHz

22.7K LUTs
44 DSP blocks

1080p@13fps
4K@6fps

LLS FPGA XC7Z020@145
MHz

25K LUTs
4 DSP blocks

1080p@65fps
4K@16fps

5 Conclusion

In this work, a unified hardware architecture is proposed to implement the HEVC 2D-
DE/IDCT/IDST module for 4/8/16/32 TU block size. However, two design methods are used to design
this hardware architecture which are the HLS and the LLS design flow. Our goal was to compare these
two methods and to select the best architecture to implement the HEVC 2D-DE/IDCT/IDST module.
It is clear from experimental results under Xilinx XC7Z020 FPGA that the LLS design is more
performant than HLS design in terms of processing time and hardware cost. But, the performance
of HLS design depends on the selected directives, and the algorithm complexity and can be a good
solution to speed up the design time and time to market (TTM).

Funding Statement: This work was funded by the Deanship of Scientific Research at Jouf University
(Kingdom of Saudi Arabia) under grant No. DSR-2021-02-0391.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] B. Markwalter, “ATSC 3.0 begins commercial broadcasting: First IP based ultrahigh-definition TV

broadcasts on the air,” IEEE Consumer Electronics Magazine, vol. 7, no. 1, pp. 125–126, 2018.
[2] K. Wiens and P. Corcoran, “Repairability smackdown II: iPhone versus iPhone,” IEEE Consumer Elec-

tronics Magazine, vol. 3, no. 1, pp. 19–24, 2014.
[3] S. Kaur, “The revolution of tablet computers and apps: A look at emerging trends,” IEEE Consumer

Electronics Magazine, vol. 2, no. 1, pp. 36–41, 2013.
[4] G. J. Sullivan, J. Ohm, W. Han and T. Wiegand, “Overview of the high efficiency video coding (HEVC)

standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668,
2012.

[5] K. Glasman, “CE society TV: High efficiency video coding (HEVC),” IEEE Consumer Electronics Maga-
zine, vol. 6, no. 1, pp. 19–22, 2017.

[6] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, “Overview of the H.264/AVC video coding
standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–576,
2003.

[7] F. Bossen, B. Bross, K. Suhring and D. Flynn, “HEVC complexity and implementation analysis,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1685–1696, 2012.

4334 CMC, 2022, vol.71, no.3

[8] M. Kammoun, A. Ben Atitallah, R. Ben Atitallah and N. Masmoudi, “Design exploration of efficient
implementation on SoC heterogeneous platform: HEVC intra prediction application,”International Journal
of Circuit Theory and Applications, vol. 45, no. 12, pp. 2243–2259, 2017.

[9] A. Ben Atitallah, H. Loukil, P. Kadionik and N. Masmoudi, “Advanced design of TQ/IQT component for
H.264/AVC based on SoPC validation,” WESAS Transactions on Circuits and Systems, vol. 11, no. 7, pp.
211–223, 2012.

[10] M. Zhang, J. Qu and H. Bai, “Entropy-based fast largest coding unit partition algorithm in high-efficiency
video coding,” Entropy, vol. 15, no. 6, pp. 2277–2287, 2013.

[11] D. Coelho, R. Cintra, F. Bayer, S. Kulasekera, A. Madanayake et al., “Low-complexity loeffler DCT
approximations for image and video coding,” Journal of Low Power Electronics and Applications, vol. 8,
no. 46, pp. 1–26, 2018.

[12] A. Ben Atitallah, P. Kadionik, F. Ghozzi, P. Nouel, N. Masmoudi et al., “Optimization and implementation
on FPGA of the DCT/IDCT algorithm,” in Proc. IEEE ICASSP, Toulouse, France, 2006.

[13] A. Ben Atitallah and M. Kammoun, “High-level design of HEVC intra prediction algorithm,” in Proc.
ATSIP, Sousse, Tunisia, 2020.

[14] S. Vivienne and D. Marpe, “Entropy coding in HEVC,” High Efficiency Video Coding (HEVC), Cham,
Switzerland: Springer, pp. 209–274, 2014.

[15] A. Ben Atitallah, P. Kadionik, F. Ghozzi, P. Nouel, N. Masmoudi et al., “HW/SW codesign of the H.263
video coder,” in Proc. IEEE CCECE, Ottawa, ON, Canada, 2006.

[16] A. B. Atitallah, H. Loukil and N. Masmoudi, “FPGA design for H.264/AVC encoder,” International
Journal of Computer Science, Engineering and Applications, vol. 1, no. 5, pp. 119–138, 2011.

[17] A. Ben Atitallah, I. Abid, A. Boudabous and H. Loukil, “A new hardware architecture of the adaptive
vector median filter and validation in a hardware/software environment,” International Journal of Circuit
Theory and Applications, vol. 49, no. 8, pp. 2329–2347, 2021.

[18] M. Kthiri, B. Le Gal, P. Kadionik and A. Ben Atitallah, “A very high throughput deblocking filter for
H.264/AVC,” Journal of Signal Processing Systems, vol. 73, no. 2, pp. 189–199, 2013.

[19] A. Ben Atitallah, A. Boudabous, L. Khriji and N. Masmoudi, “Reconfigurable architecture of VDF filter
for multidimensional data,” International Journal of Circuit Theory and Applications, vol. 41, no. 10, pp.
1047–1058, 2013.

[20] S. Lahti, P. Sjövall, J. Vanne and T. D. Hämäläinen, “Are we there yet? a study on the state of high-level
synthesis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 5,
pp. 898–911, 2019.

[21] A. Ben Atitallah and M. Kammoun, “High-level design of HEVC intra prediction algorithm,” in Proc.
IEEE ATSIP, Sousse, Tunisia, 2020.

[22] T. M. Alanazi, A. Ben Atitallah and I. Abid, “An optimized SW/HW AVMF design based on high-level
synthesis flow for color images,” CMC-Computers Materials & Continua, vol. 68, no. 3, pp. 2925–2943,
2021.

[23] E. Kalali and I. Hamzaoglu, “FPGA implementations of HEVC inverse DCT using high-level synthesis,”
in Proc. DASIP, Krakow, Poland, 2015.

[24] B. Mohamed, A. Elsayed, O. Amin, E. Khafagy, M. Abdelrasoul et al., “High-level synthesis hardware
implementation and verification of HEVC DCT on SoC-FPGA,” in Proc. ICENCO, Cairo, Egypt, 2017.

[25] M. Kammoun, E. Maamouri, A. Ben Atitallah and N. Masmoudi, “An optimized hardware architecture of
4 × 4, 8 × 8, 16 × 16 and 32 × 32 inverse transform for HEVC,” in Proc. IEEE ATSIP, Monastir, Tunisia,
2016.

[26] M. Chen, Y. Zhang and L. Chao, “Efficient architecture of variable size HEVC 2D-DCT for FPGA
platforms,” International Journal of Electronics and Communications, vol. 73, pp. 1–8, 2017.

[27] H. Liang, W. He, G. He and Z. Mao, “Area-efficient HEVC IDCT/IDST architecture for 8kx4k video
decoding,” in Proc. IEICE Electron Express, 2016.

[28] M. Tikekar, C. -T. Huang, V. Sze and A. Chandrakasan, “Energy and area-efficient hardware implemen-
tation of HEVC inverse transform and dequantization,” in Proc. IEEE ICIP, Paris, France, 2014.

CMC, 2022, vol.71, no.3 4335

[29] D. F. De Souza, N. Roma and L. Sousa, “Opencl parallelization of the HEVC de-quantization and inverse
transform for heterogeneous platforms,” in Proc. IEEE EUSIPCO, Lisbon, Portugal, 2014.

[30] W. H. Chen, C. H. Smith and S. C. Fralick, “A fast computational algorithm for the discrete cosine
transform,” IEEE Transactions on Communications, vol. 25, no. 9, pp. 1004–1009, 1977.

[31] C. Rosewarne, Joint Collaborative Team on Video Coding (JCT-VC) (2017) High efficiency video coding
(HEVC) test model 16 (HM 16).

	Unified FPGA Design for the HEVC Dequantization and Inverse Transform Modules
	1 Introduction
	2 Dequantization and Inverse Transform in HEVC Decoder
	3 2D-DE/IDCT/IDST Hardware Architecture
	4 Implementation Results and Performance Evaluation
	5 Conclusion

