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Abstract: The Internet of Medical Things (IoMT) and cloud-based healthcare
applications, services are beneficial for better decision-making in recent years.
Melanoma is a deadly cancer with a higher mortality rate than other skin can-
cer types such as basal cell, squamous cell, and Merkel cell. However, detection
and treatment at an early stage can result in a higher chance of survival.
The classical methods of detection are expensive and labor-intensive. Also,
they rely on a trained practitioner’s level, and the availability of the needed
equipment is essential for the early detection of Melanoma. The current
improvement in computer-aided systems is providing very encouraging results
in terms of precision and effectiveness. In this article, we propose an improved
region growing technique for efficient extraction of the lesion boundary. This
analysis and detection of Melanoma are helpful for the expert dermatologist.
The CNN features are extracted using the pre-trained VGG-19 deep learning
model. In the end, the selected features are classified by SVM. The proposed
technique is gauged on openly accessible two datasets ISIC 2017 and PH2.
For the evaluation of our proposed framework, qualitative and quantitative
experiments are performed. The suggested segmentation method has provided
encouraging statistical results of Jaccard index 0.94, accuracy 95.7% on ISIC
2017, and Jaccard index 0.91, accuracy 93.3% on the PH2 dataset. These
results are notably better than the results of prevalent methods available on the
same datasets. The machine learning SVM classifier executes significantly well
on the suggested feature vector, and the comparative analysis is carried out
with existing methods in terms of accuracy. The proposed method detects and
classifies melanoma far better than other methods. Besides, our framework
gained promising results in both segmentation and classification phases.
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1 Introduction

The human body has skin as a fast-developing organ. A layer of protection for humans protects
all life in this world. It is the skin that envelops the human body and protects it from harm. Among the
various kinds of cancer, skin cancer is significant cancer that affects light-skin tone people. Melanoma
is a riskier form of skin cancer. Usually, it is affecting young people from the age of 15 to 29 [1].
According to the American Cancer Society (ACS) [2], in 2020, the expected death cases will be 6,850
out of 100,350, of which 4,610 are male and 2,240 are female. The disease’s critical nature has forced
the need to better discover skin cancers within a suitable time, removing the need for biopsy and better
and reliable diagnostic results.

Skin cancer has been categorized into two groups: non-melanoma, and melanoma. The second
category of skin cancer is selected in this research because it is deadly among the other two. In addition,
it can quickly spread from one body part to another. However, persistence rates are higher if it is
identified and diagnosed timely. There are two approaches for melanoma detection, the first is the
clinical diagnosis-based approach, and the second is the computer-aided diagnosis system.

The clinical diagnosis-based approaches are categorized into two methods: 1) Biopsy and 2)
Dermatologist analysis. The biopsy is an invasive method, and on the other hand, the dermatologist
analysis process is non-invasive, but their accuracy is nearly 75% [3], which is not promising. In the
biopsy method, the skin tissue sample is taken for a laboratory test. This melanoma detection test takes
time, and it is painful. The patient can tolerate this one-time pain, but if melanoma cannot detect a
timely or early stage, it becomes dangerous or sometimes the reason for patient death.

For melanoma detection, the dermatologists follow these methods: ABCDE, Seven, or three
checkpoint lists. However, in some cases, where dermoscopic image contrast quality is low and lesion
or healthy skin cannot differentiate properly, these methods failed to work accurately. Moreover, the
sometimes delay in getting the time for a dermatologist and limited availability of expert dermatologists
is also the reason for late melanoma detection [4]. Due to these causes, the need for computer-aided
systems is very demanding and necessary to overcome the death rate of melanoma patients.

Skin cancer melanoma detection and identification is a very critical task for dermatologists.
As a result, many computer-aided systems are developed for automatic melanoma detection and
classification that facilitate dermatologists and patients. There are four significant steps for creating a
computerized system: 1) Pre-processing, 2) Lesion segmentation, 3) Feature extraction and selection,
and 4) Classification.

In medical image processing, the segmentation of skin lesion extraction is necessary for the
primary analysis of melanoma from dermoscopic images [5]. Analysts for skin cancer melanoma detec-
tion have proposed several computer-aided systems [6]. A variety of approaches such as threshold-
based [7,8], region-based, edge-based, saliency map [9,10], convolutional neural network (CNN) and
deep learning approaches are already implemented to solve the task of lesion segmentation. Threshold-
based approaches are mainly used as one of the simplest methods [11,12], which works well on high
contrast images.

Region-based methods are also beneficial for where lesions and skin color are heterogeneous [13].
The seed-based approach is used in region-based techniques that combine the regions as per normal
image information and comparative data of the adjacent pixels. The region-based approaches include
region growing, J-Image Segmentation (JSEG) watershed [14], and Statistical Region Merging (SRM)
[15]. The edge-based segmentation approaches principally utilized the edge’s knowledge of input image
and estimated the lesion boundary, and the post-processing techniques are also applied [16].
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The efficient feature vector is helpful for classifiers to categorize the objects accurately. Different
features like hand-crafted, pattern, histogram-based, and deep learning features are utilized for skin
lesion classification. The hand-crafted features can now detect melanoma accurately because the
skin lesion datasets contain various image varieties and different artifacts [17]. Deep learning is
machine learning’s new and robust field, which helps learn a higher level of data abstraction. Through
several different algorithms, deep learning can be implemented. Deep learning is used to compute the
hierarchical and higher-level features that cannot be efficiently extracted from traditional machine
learning techniques [18,19].

The detection of malignant melanoma from benign melanoma is also very tough for the computer-
aided system [20]. Fig. 1 shows two images’ columns; one is benign, meaning non-cancerous, and the
next is malignant cancerous. Both side’s images are similar. The human eyes are unable to identify
which lesion is melanoma or benign [21]. Even the dermatologist suggests the patient for biopsy when
they are not confirmed about the lesion. The biopsy method is itself painful and time taking. Moreover,
challenging images include gel/bubbles, marker-ink, color-chart, ruler-marks, dark-corner, skin-hairs,
and the last most crucial challenge, the hottest challenge, is low contrast images [22,23].

Figure 1: Benign and malignant melanoma sample images

Melanoma is a fatal form of skin cancer that must be diagnosed early for effective treatment
[24,25]. Melanoma affects a patient life even it can become a reason for death if its diagnosis is not
accomplished on time. A rough pigment network and some suspicious signs do not help diagnose
melanoma from dermoscopic images [26,27]. Hence, it is essential to develop an efficient and accurate
method for analyzing skin lesions in big datasets, extracting the lesion boundary, and classifying lesions
into ‘Benign’ and ‘Melanoma’ [28,29]. Therefore, from our proposed methods, the dermatologists and
the patients will get the benefit. Even patients can avoid the painful biopsy test and save their money
on other tests.

The main contributions of this research article are:

1) We enhanced the low contrast lesion area’s quality by implementing the statistical novel
intensity histogram method to calculate the positive and negative slope.

2) Proposed an improved region growing approach to detect the boundary of skin lesion dermo-
scopic images using convolutional filter and morphological operations.

3) The dataset PH2 has the minimum images among all classes, so data augmentation is applied
to balance the levels.
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4) The-trained deep visual geometry group (VGG-19) model to was suggested to extract features
from segmented skin lesion images. Before the extraction of convolutional neural network
(CNN) features, transfer learning is performed on the VGG-19 pre-trained model.

The rest of this article is prepared as follows. In Section 2, we define the proposed methodology
in detail. Section 3 evaluates and analyzes the proposed method. We summarized our fundamental
research based on experimental results in Section 4. Finally, In Section 5 we conclude our work.

2 Proposed Methodology

The proposed methodology has four phases, as defined below in Fig. 2. Phase 1: Pre-Processing,
Phase 2: Proposed Segmentation, Phase 3: CNN Features Extraction, and Phase 4: Machine Learning
Classification of skin lesion into two classes, benign and melanoma. A detailed explanation of each
phase is given below.

Figure 2: The proposed methodology for melanoma detection

2.1 Pre-Processing

Pre-processing is the mandatory step for every computer-aided system [30]. The pre-processing
performs the essential task of improving image quality and eliminating unnecessary objects from an
image. Different algorithms like histogram-based methods, morphological-based methods, and soft-
computing-based methods are used to enhance the quality of low contrast images [31].

The acquisition of diverse dermoscopic images from two different datasets does not appropriate
for the proposed segmentation process. Therefore, before process the image into the segmentation
phase, it is mandatory to pre-process the input image. Therefore, the pre-processing phase is essential to
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obtain high accuracy in the subsequent phases, especially segmentation. In addition, the ISIC dataset
contains a variety of dermoscopic images in which low contrast images are challenging to handle.

Here, the contrast enhancement technique is implemented by an intensity histogram. In this
technique, the dominant level (local maxima) is calculated, then contrast is equally distributed to the
dermoscopic image. First, the histogram of every image is created to estimate the local minima of the
histogram slope. The slopes (positive and negative) are graphically described in Fig. 3. The positive
slope is the high points of x and y. The negative slope is the decreased points of x and y.

Figure 3: Pre-processing for local minima calculation. (a) The skin lesion image. (b) Intensity
histogram. (c) Calculate local minima

The positive slope (PS) as defined in Eq. (2); negative slope (NS) as described in Eq. (2) are
calculated. Here, delta y (�y) and delta x (�x) is the difference in slope ending value (y2, x2) and
slope initial value (y1, x1). After evaluating the positive and negative slope values, the value of local
minima is extracted by applying the condition where x (intensity levels) and y (number of pixels with
each intensity level) are greater than 0; then these values are under the positive slope, and local minima
(LM) values are described in Eq. (3).

Positive Slope = PS = �y
�x

(1)
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Negative Slope = NS = �y
�x

(2)

f ′(x) = LM if f (x, y) > 0 (3)

The results are flawless as shown in Fig. 4 before contrast enhancement (original image) and
after contrast enhancement. In addition, the visibility of low contrast images is now transparent after
performing the contrast enhancement technique.

Figure 4: Sample images before and after pre-processing on ISIC 2017 and PH2 datasets

2.2 Skin Lesion Segmentation

In phase 2, the pre-processed image is used for the segment of the lesion. The improved region-
growing technique is applying for the extraction of the boundary of the lesion. In the suggested
method, the preliminary seed mask is created using the region window size 50 ∗ 50. Here, two
conditions apply if the adjacent pixel has the same color value and is not a part of another cluster
or region. First, this pixel value is added to the cluster or region. This process is continuing until then,
change in the pixel value.

After this step, the convolution filter is applied to extract boundary of the lesion. Using this
operation is to blur the image that is smooth, and no edge is observed. After that, a re-thresholding
value is applied to it to refine the lesion’s current boundary edges. Finally, the improved segmented
binary image is achieved after performing the morphological dilation operation. The proposed lesion
segmentation method steps are graphically demonstrated in Fig. 5. In the traditional region growing
method, only completed the contouring by adding similar neighbor pixels. In our proposed improved
region growing method, the convolution filter and re-threshold value are applied.
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Figure 5: Detail process flow of the proposed segmentation method

The selection of pixels of an image is based on the condition as given in Eq. (4). Here, Pi defines
the different regions, Pj is for the same region, and M is for the initial mask.

n∑

i,j

R(Pi ∪ Pj) {Pi = M ∧ Pj < M (4)

The detailed process flow algorithm cycle is explaining below:

Algorithm 1: Proposed Skin Lesion Segmentation Method
Input: Pre-processed image.
Output: 224 ∗ 224 Segmented RGB image
1: Mask M Generation as Seed Value.
2: Allocate the Initial Mask to 50 ∗ 50.
3: Using this seed mask, the gradient of its adjacent pixels in the image is defined.
4: For individual pixel value in the gradient of adjacent pixels.
5: Do
6: If the pixel value is a part of another cluster or region (Pi) and has a similar/equal or

less (Pj) value to the M,
7: Then add the pixel value into the corresponding cluster.

(Continued)
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Algorithm 1: Continued
9: Else
10: Check the next value of the pixel.
11: Repeat until all pixels’ values in the adjacent gradient are checked
12: Convolutional filter (blurring the segmented image).
13: Edge refinements using Re-thresholding.
14: Filling operation.
15: Closing operation.
16: Perform a morphological dilation operation using four disk structure elements.

2.3 Features Extraction and Selection

One of CNN’s architectures is VGG19-Net, which is, among others, is used extensively, and has
good documentation [32]. This Convolution Net has been favored over others due to the excellent
performance in the ImageNet dataset. The two publicly available variations are 16 and 19 weight layers
due to their superior outcome over other variations [33].

In this article, the selection for the VGG-19 architecture explains in Fig. 6 because it generalizes
better to other datasets. The network input layer is required that a 224 × 224-pixel RGB image is
inputted. The input image goes through 5 convolutional blocks. The 3 × 3 receptive field of small
convolutional filters is used. A 2D convolution layer operation (the quantity of filters changes among
blocks) is contained in each convolutional block. The ReLU is included in each hidden layer as the
activation function layer (nonlinearity operation), and it has spatial pooling through the feeding of a
max-pooling layer.

Figure 6: Deep feature extraction and entropy-based feature selection. Given i pairs of 224 × 224
segmented images as the input of the feature extraction module. After extracting FV × 4096 features,
the entropy-based feature selection is performed, and 2000 features are selected
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The network ends with a classifier block containing three FC layers. The 70% to 30% (70:30) ratio
is selected between training and testing data. To train the network, the number of images is available
to datasets is insufficient. So, to overcome this problem, the transfer learning technique is employed
on the VGG-19 pre-trained model. Also, the data augmentation is applied for the class melanoma that
having a smaller number of images. The cancer type ‘Malignant Melanoma’ has the minimum images,
so the data augmentation is applied to balance the classes.

After that, 4096 features are extracted from the 7th fully connected layer of the neural network.
Then apply the feature selection entropy method is utilized. Finally, the 2000 features are selected to
classify the skin lesion images.

2.4 Lesion Classification

The classification is performed in 2000, selected ‘Deep CNN’ features. Two publicly online
available datasets, ISIC 2017 and PH2, are utilized for analysis. The machine learning classifier SVM
is being used to categorize these two classes: Melanoma and benign.

3 Experiments and Results
3.1 Experimental Setup and Datasets

The proposed framework is implemented using MATLAB 2019a on windows 10 home edition.
The hardware used in this approach has the following specifications: 2.8 GHz Intel (R) Core (TM) i5-
8250U CPU with the 64-bit operating system, 12.0 GB RAM, and NVIDIA GeForce 940MX graphic
card. The proposed framework for lesion detection and melanoma recognition is assessed on two
freely online available dermoscopic datasets, including ISIC 2017 and PH2 [34]. The ISIC 2017 dataset
contains 2,600 dermoscopic images. The resolution of these images is 296 by 1456. The dataset has
2,109 non-melanoma images, and 491 are melanoma images shown in Tab. 1.

Table 1: ISIC 2017 dataset division of images

ISIC 2017 dataset images

Skin lesion category Dermoscopic images

Non-melanoma (benign) 2,109
Melanoma 491
Total 2,600

A total of 200 images are accessible in the PH2 dataset. The resolution of 8-bit images is 768 ∗ 660.
In PH2, there are two categories: 1) non-melanoma (benign, common nevi), and 2) Melanoma. The
detailed dataset division is shown in Tab. 2. In addition, the images extracted by expert dermatologists,
known as ground truth images, are also available for the validation of the segmentation phase.

3.2 Skin Lesion Segmentation Results

The segmentation results are analyzed by comparing the ground truth images and statistical
performance measures used to assess the proposed segmentation method.
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Table 2: PH2 dataset division of images

PH2 dataset images

Skin lesion category Dermoscopic images

Non-melanoma Benign 80
Common nevi 80

Melanoma 40
Total 200

3.2.1 Qualitative Experiment

For the qualitative experiments, the ground truth images are used to compare the similarity
between expert segmented images and our proposed method segmented images. First, some random
images are selected from the ISIC 2017 dataset and represent these images graphically, as shown in
Fig. 7. In column (a), the original images from dataset ISIC 2017 are listed. The second column (b)
described the Pre-processing step in which the contrast enhancement method is applied. In the third
column (c), the binary segmented images are presented. The segmented images are shown in the fourth
column (d) after applying the proposed segmentation method. The last column (e) demonstrated the
comparison between the segmented images with ground truth images. The green boundary describes
the ground truth image, and the blue boundary defines the segmented image.

Figure 7: (a) Original image. (b) Pre-process image. (c) Binary segmented image. (d) Proposed
segmented RGB image. (e) Comparison with ground truth image
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Here, it can be observed that the segmented images achieved from the proposed segmentation
method are much nearer to the ground truth images. Also, for the PH2 dataset, roughly images are
chosen, and the visual presentation of these images is shown in Fig. 8. Like the ISIC 2017 dataset, the
steps from (a) to (e) are also performed for the PH2 dataset. In the end column (e), the comparison
between our method with ground truth images shows that the proposed segmentation method similarly
works well on the PH2 dataset.

Figure 8: (a) Original image. (b) Pre-process image. (c) Binary segmented image. (d) Proposed
segmented RGB image. (e) Comparison

3.2.2 Quantitative Experiment

The accuracy (AC), Jaccard index (JI), dice index (DI), precision (Prec), and recall (Rec) these
performance measures are used for the evaluation of the segmentation phase as presented in equations
from Eqs. (5) to (9). Here, in equations, the TP is the true positive rate, TN is the true negative rate,
FP is the false positive rate, and FN is the false-negative rate.

AC = TP + TN
TP + TN + FP + FN

(5)

JI = TP
TP + FP + FN

(6)

DI = 2 ∗ TP
(2 ∗ TP) + FP + FN

(7)
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Prec = TP
TP + FP

(8)

Rec = TP
TP + FN

(9)

The experiment is performed on the ISIC 2017 dataset, which contains a total of 2000 images. In
Tab. 3, the top 10 images result are given. The overall average accuracy achieved is 95.74%.

Table 3: Proposed segmentation method statistical results on ISIC 2017 dataset

Sr No Image name AC (%) JI (%) DI (%) Prec (%) Rec (%)

1 ISIC_0000065 98.03 0.98 0.99 0.99 0.99
2 ISIC_0000145 97.82 0.98 0.99 0.98 1.00
3 ISIC_0000543 97.41 0.97 0.99 0.98 0.99
4 ISIC_0000029 97.38 0.97 0.99 1.00 0.98
5 ISIC_0011332 96.11 0.96 0.98 1.00 0.96
6 ISIC_0000080 96.05 0.96 0.98 0.98 0.98
7 ISIC_0000185 95.94 0.96 0.98 0.96 1.00
8 ISIC_0000152 95.80 0.96 0.98 0.96 1.00
9 ISIC_0000068 95.80 0.96 0.98 1.00 0.96
10 ISIC_0010447 95.74 0.96 0.98 0.96 1.00
Overall average 96.60 0.96 0.98 0.98 0.98

Correspondingly, the PH2 dataset detailed segmentation results are also specified in Tab. 4. The
experiment is performed on a total of 200 images of the dataset PH2. However, the results are presented
in a few images. The overall average accuracy is 95.41%.

Table 4: Proposed segmentation method statistical results on PH2 dataset

Sr No Image name AC (%) JI (%) DI (%) Prec (%) Rec (%)

1 IMD021 96.20 0.87 0.93 0.88 0.99
2 IMD312 96.00 0.86 0.92 1.00 0.86
3 IMD057 95.88 0.92 0.96 1.00 0.92
4 IMD016 95.60 0.92 0.96 0.93 0.99
5 IMD169 94.52 0.90 0.95 1.00 0.90
6 IMD047 94.50 0.90 0.95 0.96 0.94
7 IMD015 94.40 0.93 0.96 0.94 0.99
8 IMD149 94.11 0.94 0.97 1.00 0.94
9 IMD078 93.89 0.94 0.97 0.97 0.97
10 IMD036 93.60 0.92 0.96 0.99 0.92
Overall average 94.87 0.91 0.953 0.967 0.942
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3.3 Skin Lesion Classification Results

After analyzing the segmentation results, the classification performance is evaluated using statis-
tical performance measures as Precision, Sensitivity, Specificity, and Accuracy. The machine learning
classifiers Fine-Tree, Cubic-SVM, and Fine-KNN, are selected, which gave the best accuracies. For
example, it can be seen in Tab. 5; the selected features showed the accuracy of 95.1% by Fine-Tree
classifier, 95.9% on Fine-KNN classifier, and 96.9% on Cubic-SVM classifier using dataset ISIC 2017.
Equations in display format are separated from the paragraphs of the text.

Table 5: Classification results summary for dataset ISIC 2017

Dataset: ISIC 2017 Evaluation metrics

Classifier Features Precision (%) SE (%) SP (%) AC (%)

Fine-tree VGG-19 95.5 95 95 95.1
Cubic-SVM VGG-19 96.5 97 96.5 96.9
Fine-KNN VGG-19 95.5 96 95.5 95.9

The performance of Cubic-SVM is also verified by the confusion matrix, as presented in Fig. 9.

Figure 9: Confusion matrix of Cubic-SVM classification results on dataset ISIC 2017
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The machine learning classifiers were also applied to the PH2 dataset. As can see in Tab. 6. The
Cubic-SVM gave efficient accuracy, which is 96.4%.

Table 6: Classification results summary for dataset PH2

Dataset PH2 Evaluation metrics

Classifier Features Precision (%) SE (%) SP (%) AC (%)

Fine-tree VGG-19 91.6 91 91 91.3
Cubic-SVM VGG-19 96.3 96.3 96.3 96.4
Fine-KNN VGG-19 95.6 95.6 95.5 95.8

The performance of Cubic-SVM can be validated from the confusion matrix, as illustrated in
Fig. 10.

Figure 10: Confusion matrix of Cubic-SVM classification results on dataset ISIC 2017

The diagonal part in green color in the confusion matrix shows that the lesion true class percentage
is 94% benign and 99% melanoma in Fig. 9 and 96% atypical nevus, 93% common nevus, and 100%
melanoma in Fig. 10. The pink class color defined the false that is not classified accurately.
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4 Discussion

The proposed framework for detecting skin cancer melanoma has four phases, as shown in Fig. 2.
In the first phase, contrast enhancement was performed on all datasets images to increase the contrast
of skin lesion images. In the second phase, the proposed segmentation algorithm is explained step by
step. In the third phase, the deep features are extracted to classify the lesion into benign and melanoma.
In the last phase, the classification is performed by utilized the machine learning classifiers. In Section
3, the segmentation results are presented in terms of graphically and tabular form. The two free online
available datasets are used for lesion segmentation and classification.

The proposed segmentation method is compared with the existing techniques using the datasets
ISIC 2017 and PH2, as defined in Tab. 7. Bi et al., [35] utilized the hand-crafted features and joint
reverse classification for lesion categorization. As a result, they achieved 92.0% accuracy on the PH2
dataset. Gutiérrez-Arriola et al. [36] presented a method based on pre-processing, and through ISIC
2017, it gained 91.0% accuracy. Navarro et al., [37] implemented the super pixel-based segmentation
method. On the dataset ISIC 2017, their approach reached 85.4% accuracy. The deep learning pre-
trained architecture VGG16 and ResNet are used in [38], and through the deep features, the achieved
accuracy is 93.8%. Moreover, the deep learning architecture Inception is used in [39] their fused features
gained 94.7% accuracy. Thus, the proposed method attained the accuracies of 95.0% on ISIC 2017 and
93.0% on the PH2 dataset.

Table 7: Comparison of the proposed segmentation method with state-of-art methods

References/authors Year Dataset Accuracy (%)

[35] 2016 PH2 92.0
[36] 2017 ISIC 2017 91.0
[37] 2018 ISIC 2017 85.4
[38] 2019 ISIC 2017 93.8
[39] 2019 ISIC 2017 94.7
[40] 2019 PH2 91.7
Proposed method 2020 ISIC 2017 95.0

PH2 93.3

Qualitative and several quantitative methods assess lesion segmentation and classification per-
formance. Our proposed framework achieved specificity as 0.963, sensitivity as 0.964, accuracy (AC)
as 0.96. Besides, for segmentation, the average dice index (DI) results were verified as 0.98, which
signified segmentation efficient performance. Furthermore, the comparative analysis by the state-of-
art approaches and the outcomes of experiments have revealed the proposed framework’s dominance.

However, in some cases, the proposed segmentation method fails to extract the lesion from healthy
skin. Some of the failure case images from ISIC 2017 are shown in Fig. 11. These cases are because
the color of the lesion is very close to skin tone color.
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Figure 11: The proposed method failed to extract the lesion accurately because of normal skin’s visual
comparability

5 Conclusion

Medical image processing has suggested many solutions to support dermatologists in extracting
skin lesion boundaries and classification. In this article, an improved region growing method is imple-
mented to segmentation skin lesions from dermoscopic images. The deep learning VGG-19 model
is implemented for the extraction of high-level features. Moreover, entropy selection is performed
for the selection of unique features. The selected features are future consumed for classification by
SVM. The proposed technique is demonstrated on two freely available datasets, ISIC 2017 and PH2.
It is determined that the machine learning SVM classifier performs considerably well with proposed
deep features. Different kinds of skin lesion images or pictures may be taken from a mobile or the
internet in the future. Finally, these images will be utilized for the segmentation and classification of
skin lesions. Moreover, for classification, other training classifiers can also be explored for skin lesion
categorization.
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