Computers, Materials & Continua & Tech Science Press

DOI:10.32604/cmc.2022.019904
Article

Hybrid In-Vehicle Background Noise Reduction for Robust Speech
Recognition: The Possibilities of Next Generation SG Data Networks

Radek Martinek', Jan Baros', Rene Jaros', Lukas Danys"* and Jan Nedoma’

'VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of
Cybernetics and Biomedical Engineering, 708 00, Ostrava-Poruba, Czechia
2VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of
Telecommunications, 708 00, Ostrava-Poruba, Czechia
*Corresponding Author: Lukas Danys. Email: lukas.danys@vsb.cz
Received: 30 April 2021; Accepted: 01 July 2021

Abstract: This pilot study focuses on employment of hybrid LMS-ICA system
for in-vehicle background noise reduction. Modern vehicles are nowadays
increasingly supporting voice commands, which are one of the pillars of
autonomous and SMART vehicles. Robust speaker recognition for context-
aware in-vehicle applications is limited to a certain extent by in-vehicle back-
ground noise. This article presents the new concept of a hybrid system,
which is implemented as a virtual instrument. The highly modular concept
of the virtual car used in combination with real recordings of various driving
scenarios enables effective testing of the investigated methods of in-vehicle
background noise reduction. The study also presents a unique concept of an
adaptive system using intelligent clusters of distributed next generation 5G
data networks, which allows the exchange of interference information and/or
optimal hybrid algorithm settings between individual vehicles. On average,
the unfiltered voice commands were successfully recognized in 29.34% of
all scenarios, while the LMS reached up to 71.81%, and LMS-ICA hybrid
improved the performance further to 73.03%.

Keywords: 5G noise reduction; hybrid algorithms; speech recognition; 5G data
networks; in-vehicle background noise

1 Introduction

Speech recognition systems are one of the fundamental parts of future smart vehicles. Voice-
activated technology is slowly introduced in almost every manufactured models of various car brands.
It is often connected to infotainment system of the vehicle and can be used to control various features,
spanning from sat-nav to radio, media or phone. While the technology is still maturing, the reliability of
different systems can vary greatly. The simpler systems are only relying on predefined set of commands,
while the more advanced are capable of learning the driver’s voice over time and understand phrases
and words easily. It is basically utilized to boost the safety and convenience of the driver, so that he/she
can focus on the road and not interact with various physical buttons and knobs [1].
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The car however is a very specific everchanging environment. While the higher-end model tends
to be sound insulated really well, the lower tier of cars is built around certain manufacturing price,
cutting unnecessary costs. The outside environment and certain sounds can therefore penetrate into
the driver’s cabin, influencing speech recognition systems. These lower-end and cheaper vehicles also
tend to have much slower infotainment hardware, slower or simpler on-board infotainment systems or
limited microphone arrays. In addition, the certain sounds caused by varying quality of roads (mainly
by interaction between tires/wheels and potholes) also influence the precision of speech recognition
systems. While the cabin might at first seem like an ideal place for voice recognition system, it is one
of the toughest places for its implementation. While it is possible, it is difficult to pull out speech
from noisy environment, especially in the lower-tier vehicles, which are the most susceptible to higher
ambient noise levels.

Voice recognition and fluent understanding of human speech and voice command is computa-
tionally demanding. The vehicular electronics is often built around harsh environmental conditions
and automotive grade processors are often outdated and build for specific tasks, offering only limited
performance. That’s why the systems with certain vocabularies were introduced — the system only has
to partially recognize the command, picking from one of the predefined words. These systems are
often designed for single words, so the driver must go through multiple steps to achieve the desired
outcome [1].

Everything is slowly changing with introduction of modern digital voice assistants, which are well
known from mobile devices. Google Assistant [2], Apple’s Siri or Amazon Alexa are nowadays relying
on powerful cloud solutions for analysis and recognition of complex voice commands. While these
systems are certainly useful, they rely on internet connection and are often used via Android Auto or
Apple CarPlay [3]. They are also influenced by ambient noise, which has to be filtered out for proper
command recognition. The mobile devices and on-board wireless modems are nowadays connected
via LTE and will slowly transfer into the 5G era.

The quality and performance of individual car brands is slowly approaching comparable levels,
thus making it difficult for individual manufacturers to offer something new and interesting. The user
experience and quality of on-board system is one of the only remaining ways to differentiate between
each brand. It is certain, that with the ongoing development of smart and even autonomous vehicles,
the on-board voice assistants will be an inseparable part of modern cars.

As was mentioned, the conditions in driver’s cabin are varying greatly. Apart from ideal conditions,
the voice recognition system requires the best possible input source. While these conditions are difficult
to achieve, it is possible to leverage the powerful adaptive systems to filter out unrequired noise,
effectively extracting the most important information for evaluation [4].

There are multiple scenarios, which can be improved by deployment of adaptive systems. We can
introduce a concept of vehicle 4.0, which would employ an advanced array of onboard microphones in
combination with either powerful infotainment or reliable 5G link. Let’s say there is a set of potholes on
a road and multiple vehicles passes through them. Drivers on board of these vehicles are either calling
or using voice commands, so they need to filter out any unnecessary noise from their voice signal [5].
When the first car pass through the mentioned potholes, the on-board adaptive system would react
straight away, filtering at least part of the noise. However, it is likely, that the installed system is not
capable of real-time denoising. As the adaptive algorithms often needs a bit of time for their training
the first vehicle in a row would send the small dataset with filter parameters either to cloud or directly to
the other passing vehicles via link with lower latency, such as 5G network [6]. The next vehicle can start
to process the problem straight away, slowly preparing for the encounter with potholes. When another



CMC, 2022, vol.71, no.3 4661

vehicle passes through the potholes, it could be already prepared for real-time filtration or at least have
better filter parameters for the next passing vehicle. This system would heavily rely on highspeed, and
low-latency link offered by 5G, as the speed and distance of individual vehicles can vary greatly. The
precision of the processing algorithm can be refined even further by introducing other parameters,
such as real-time telemetry data, tire size, speed etc. In addition, certain older vehicles could leverage
the power of newer models, gathering their optimized on-road data and input information from more
complex microphone arrays. As the newer 5G standards are capable of rollback to earlier releases or
even 4G, the newer vehicles can act as an important source of information for older, partially outdated
models. The whole system can be seen in Fig. 1.
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Figure 1: The noise analysis of pothole-vehicle interaction by newer and older vehicles

As presented by Bisio et al. [7] the audio processing technologies are a key feature of modern
vehicles. They can be employed by a vast array of commercial applications. Speech is nowadays not
only limited to simple commands but can also be used for security services (such as speaker verification
and authentication) or accessibility solutions (speech-to-text, text-to-speech, hands-free). Moreover,
the modern vehicles are often relying on touchscreen controls. While its certainly useful, some basic
functionalities should still stick to robust control, or the system should at least offer an alternative way
of controlling these important subsystems. One example is the recently released Skoda Octavia gen 4.
Some systems, such as air conditioning are used via touchscreen controls. Some users have reported
that the infotainment system can sometimes freeze and must be restarted. While the manufacturer
will offer bugfixes to overcome this issue, it can cause discomfort and problems for the driver. The
onboard voice assistant Laura offers an alternative way of controlling the previously mentioned
system. However, it relies on cloud calculation of advanced voice commands, therefore the vehicle
must be connected to mobile network. The offline functionality offers only basic commands, which
are present in pretrained vocabularies. According to Bisio et al., the next generation of human-vehicle
interfaces will incorporate biometric person recognition for customized on-board entertainment or
driver monitoring and profiling applications. The speaker identification, mood of users or number of
users are important information, which can be only extracted, when the voice is properly filtered out.
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2 Speech Signal Processing

Automatic speech recognition systems are very sensitive to different types of noise. For example,
ambient noise makes speech recognition very difficult. This is the reason, why recorded signals are
processed by some advanced processing method before speech recognition is performed [8]. Advanced
signal processing methods have a great importance for elimination of unwanted signal parts. Basically,
there are two fundamental types of methods: adaptive and non-adaptive.

Adaptive methods are characterized by the ability to adapt to a given system. Basically, these
methods are based on learning system, which can adapt its own properties to changing working
environment. This means that adaptive methods can automatically set the coefficients according to the
changing values of the system. During speech recognition, these methods use the primary signal, which
contains speech signal with noise, and the reference signal, which contains only noise. While the linear
filtering can be used for narrowband interference, it is unsuitable for broadband interference. Adaptive
methods can be divided into nonlinear and linear adaptive techniques. Nonlinear adaptive techniques
include, for example, artificial neural networks (ANN), methods using hybrid neural networks (HNN),
adaptive neuro-fuzzy inference systems (ANFIS) or genetic algorithms (GA). Linear adaptive methods
include algorithms based on the principles of Kalman filtering (KF), least mean squares filter (LMS),
recursive least squares filter (RLS) or methods based on the principle of adaptive linear neuron
(ADALINE) [9-12].

Non-adaptive methods do not use any learning system and work with selected parameters
and coefficients. These methods can be divided into single channel and multichannel methods.
Single channel non-adaptive methods include Fourier transform (FT), wavelet transform (WT) and
empirical mode decomposition (EMD). Multichannel non-adaptive methods include mainly blind
source separation methods (BSS), which include independent component analysis (ICA), principal
component analysis (PCA) and singular value decomposition (SVD) [13-16].

In this article, LMS algorithm and ICA method were used for creation of automatic speech
recognition system. These methods were chosen based on compromise between accuracy, computation
cost and calculation speed. Subsections below deals with mathematical apparatus and limitation of
used methods.

2.1 Least Mean Squares Filter

LMS algorithm is based on a gradient optimization for determining the coefficients. This
algorithm is based on the Wiener filtering theory, stochastic averaging, and the least squares method.
This method (same as another adaptive algorithms) is basically attempting to minimize output error
é(n) calculated by Eq. (1), where d(n) is desired signal and y(n) is real output signal. Desired signal
d(n) is known and real output signal y(n) is calculated in every iteration of LMS filter by Eq. (2).
Adjustment of LMS weights is given at the end of every iteration by update Eq. (3), where u is the
convergence parameter (step size), X(n) is the input signal and w(n) is the vector of filter coefficients.
Convergence parameter u determines how fast and how well the algorithm converges. A great influence
on the computational complexity has the order of the filter NV [17-20].

é(n) = d(n) — y(n), (1)

y(n) = w' (mx(n), 2)
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w(n+ 1) = w(n) + 2ueé(n)x(n). (3)

During elimination of noisy part of speech signal, primary signal and reference signal are the
inputs of LMS algorithm. After application of LMS algorithm, reference signal is adjusted with
respect to the primary signal and prepared for subtraction. Then the adjusted reference signal is
subtracted from primary signal. After this procedure, a clean speech signal and separated error signal
are obtained.

2.2 Independent Component Analysis

This method belongs into group of BSS methods and is based on higher order statistics. The
aim of this method is finding linear representation of non-Gaussian data. These data need to contain
statistically independent components. During separation of speech signal, ICA method requires at
least two microphones. Each microphone X, (¢) has to be placed in different location and at a different
distance from the speaking person. Every microphone then records every source s;(¢) signals that must
be separated. In this article, this method is used to extract component containing noise and component
containing required speech signal. Eq. (4) describes composition of the signals X,(7), where A, is
a mixing matrix. To resolve an issue with an unknown parameter A,,., Eq. (5) is used to estimate
independent components from mixed speech signals, where W is the inverse matrix from the A,
matrix [21-23].

There is a significant number of ICA based algorithms. Among them are FastICA, JADE, SOBI,
Infomax, FlexilCA, KICA, RADICAL ICA, AMUSE etc [22,24-26]. All these algorithms require
performing ICA preprocessing in form of centering (creation of zero mean vector) and whitening
(creation of vector with unit scattering). The most widely used and very promising algorithm is
FastICA, which is also used in this study. First, maximum number of iterations k and criterium of
convergence § must be selected. FastICA algorithm is then based on following steps [21-23]:

1) Random normalized vector w™ is created.

2) Vector w* is stored in w and calculation of kurtosis is performed, see Eq. (6).

3) Normalization of recalculated vector w* is performed.

4) Checking if scalar multiplying between w* and w is smaller than the selected convergence
criterion 4, and if cycle run more times than selected maximum number of iterations k.

5) If condition in previous step is false, then repeat steps 2)-4).

;C = Amix . 37 (4)
S=W.x )
wh = E{xg(w'X)} — E{g (W' X)}w. (6)

2.3 Hybrid Speech Recognition System

In this article, a hybrid system based on LMS algorithm and ICA method was used for automatic
speech recognition system. First, primary signal, which contains speech signal with noise, and the
reference signal, which contains only noise, are preprocessed by bandpass finite impulse response
(FIR) @lter with 300 Hz lower limit frequency and with 3400 Hz upper limit frequency. Then, primary
signal d(n) and reference signal x(n) are used as input into LMS algorithm. Output signal y(n) and
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error signal é(n) from LMS algorithm are used as input into ICA method to estimate two components
¥ (n) and y,(n). One component ¥, (n) which represents clean speech signal used for speech recognition
and another component y,(n) which represents clean noise signal. Fig. 2 shows block diagram of
described hybrid system.
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Figure 2: Hybrid system based on LMS algorithm and ICA method

The consecutive estimation of ideal LMS parameters can be seen in Fig. 3. The trajectory and
estimation of LMS algorithm is highly dependent on the performance of onboard system-on-chip
(SoC). The low-end vehicles can either rely on cloud computing or other vehicles located in the vicinity,
which offers untapped higher performance. When the vehicles are calculating the ideal parameters,
they could basically rely on each other to specify the parameters and pinpoint the ideal algorithm
parameters.

3 Conducted Experiments

Speech signal filtering methods were verified by a set of conducted experiments in two separate
vehicles. The first scenario was designed to represent the worst-case scenario. A Skoda Felicia (1994—
2001) vehicle was selected as a suitable candidate. Its combustion engine has only 50 kW and it can
reach up to 152 kmph. This archaic vehicle has limited sound insulation and the in-vehicle environment
is highly influenced by background and environmental noise. The second vehicle was much more
recent. A battery electric vehicle (BEV) first generation 80 kW (top speed —144 kmph) Nissan Leaf
was selected to represent the newer models. Since this vehicle is powered by electricity, the background
noise caused by the engine is minimal. This vehicle can be therefore used in a scenario, when only the
environmental noise is important, representing the future all electric vehicles.
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Figure 3: Estimation of ideal LMS parameters in 2D and 3D representation

Four measuring microphones were used in each scenario. The primary microphone (index #0)
situated near the rearview mirror was used for both speech and interference recording. Remaining
reference microphones (indexes #1, #2, #3) were mounted in each window compartments and
recorded acoustic interferences caused by the vehicle itself. The precise diagram with microphone
locations can be seen in Fig. 4.

Samples were gathered at different driving speeds (20 kmph, 50 kmph, 100 kmph and 130 kmph)
with scenarios with differently opened windows. In the beginning all windows were closed, then they
were all opened and, in the end, only one of them was opened, while the rest was closed.

3.1 Hardware

The measuring system consisted of a professional Steinberg UR44 sound card and four Rode NT5
microphones. The system was managed through a PC with software based on virtual instrumentation.
The UR44 sound card has a total of 4 analog inputs, which can be used to connect either a microphone
array or a musical instrument. It supports various standardized communication protocols such as
ASIO, WDM or Core Audio. The resolution of the AD conversion is up to 24 bits with different
standardized sampling frequency values (from 44.1 to 192 kHz). The sound card also provides
phantom power for connected microphones (from +24 VDC to +48 VDC).



4666 CMC, 2022, vol.71, no.3

AT#D ] Lab
Al#1 Steinberg USB . VIEW
#0 - Primary microphone Al#2 UR44 : Windows
:; Reference Al#3 SoundCard . Spoegh
§3 microphones = e(_:o__g:mz_er_ -
#0 3
#1 #2

Figure 4: Locations of measuring microphones and the whole measuring platform

The Rode NTS5 microphone is a small compact microphone with an XLR connector. The
diaphragm is of 1/2” size and consists of an externally deflected capacitor. The membrane is gold-
plated, which improves its properties. The microphone is directional with cardioid directional char-
acteristics, the frequency range of the microphone is between 20 Hz and 20 kHz (corresponds to the
range of human hearing). In order to use the microphone, it must be connected to the input of a sound
card supporting phantom power.

3.2 Software

LabVIEW was chosen as a suitable programming environment, since it offers an extensive library
of signal processing functions and is capable of fast development of multi-threaded appliacations.
Available ASIO API libraries provides another undeniable advantage since they offer a complete
WavelO library.

The application was designed to be highly modular to make any future modifications as fast
as possible. QMH (Queued Message Handler) was chosen as a core application architecture. Each
microphone can be therefore considered as a separate unit or input source.

A commercially available recognizer integrated into the Windows OS was used as a speech
recognizer. The Speech SDK 5.1 must be installed to maintain a reliable connection to LabVIEW.
The recognizer converts the speech into text, which is then analyzed to estimate the correct command.

In order for the signal to be modified or filtered by any adaptive filtering method, it is necessary to
adjust the signal path. As the speech recognizer runs in the background of the OS as a service, i tis not
possible to select any other than the default audio inputs — i.e., it is not possible to select LabVIEW
output. To solve this issue, the signal path was adjusted by a VB-Cable software, which emulates both
the inputs and outputs of the sound card.

The front panel of the application can be seen in Fig. 6, which faithfully replicates the standard
dashboard of Nissan Leaf. There are 4 alarm indicators on the front panel: revs, speed, temperature
and fuel level. After the initial start of the application, is necessary to say the “Start engine” command,
which will start the vehicle and the simulation itself. The recording of car idle status will be maintained
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and the system is therefore ready for input commands. Subsequently i tis possible to control the
application according to a predefined vocabulary set. To switch the simulated vehicle off, it is first
necessary to stop the vehicle by manualy setting the speed value to 0 kmph and then say “Stop engine”
command. This will turn off all indicators and the simulated engine will shut down as well. The
application is then waiting for a restart (“Start engine” command). A simplified diagram of the whole
application can be seen in Fig. 5.
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Figure 5: Simplified diagram of the controlling algorithm

Figure 6: The application front panel with icons for individual commands
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The application-supported vocabulary can be seen in Tab. 1. The vocabulary consists of two parts
— first part is focused on the front panel (i.e., the vehicle) while the second one can be used to activate
various interference sources.

Table 1: Vocabulary for voice control of the car interior simulation application

Command Meaning

Front panel-car commands

“Start engine” Starts the engine

“Stop engine” Stops the engine

“Winker left” Left winker switch
“Winker right”; Right winker switch
“Daytime lights” Daytime lights switch
“High beam lights” High beam lights switch
“Auto lights” Automatic high beam lights switch
“Front fog lights” Front fog lights switch
“Rear fog lights” Rear fog lights switch
“Accept call” Accepts the incoming call
“Decline call” Rejects the incoming call
“Radio ON” Turn on the radio

“Radio OFF” Turn off the radio

“Istop ON” Turn on the I-stop

“Istop OFF” Turn off the I-stop

Noise simulation commands

“Cruise control Sets the cruise control to a specific
VALUE” VALUE in km/h

“Open windows” Opens all windows

“Close windows” Close all windows

“Open the Opens the specified window
LEFT/IRIGHT

FRONTI/REAR

window”

“Close the Closes the specified window
LEFT/RIGHT

FRONTI/REAR

window”

4 Results of Experiments

The recognition results were estimated based on the recognized/unrecognized status. To verify
the whole experiment a 100 repetitions were performed. Tabs. 2—Tab. 4 represent various scenarios
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measured with experimental vehicle and their individual recognition rates. A significant improvement
of sucessful recognition can be seen in Fig. 7. When the driver’s front window was opened, the original
success rate was only 39% on average. After applying the LMS algorithm, the average success rate
was improved to up to 95%. The “Accept call” command offered the lowest recognition rate from
all the analyzed commands while running the 80 kmph scenario — 57%. A combination of LMS and
ICA offered average recognition rate of 98% and the “Accept call” command reached even 100%.
It is important to mention that the LMS and ICA combination can have a negative effect on some
specific commands such as “Radio Off”. While the standalone LMS offered a 100% recognition rate,
the LMS+ICA combination had only 78%. On the other side, when the worst-case scenario was
measured (all windows opened) a LMS+ICA combination offered significantly better results than the
standalone LMS. Exact results of the whole vocabulary measured at 80 kmph can be seen in Tab. 2.

Table 2: Recognition success rate for experimental vehicle at 80 km/h

LMS & ICA Front left window opened All windows opened
Command No filtration @ LMS LMS + ICA  No filtration LMS LMS +
(%) (%) (%) (%) (%) ICA (%)
“Winker left” 33 100 100 0 85 78
“Winker right” 42 100 100 0 91 80
“Daytime lights” 54 100 100 15 100 100
“High beam lights” 42 100 100 60 100 100
“Auto lights” 36 94 100 18 100 100
“Cruise control 20” 60 98 100 9 63 92
“Cruise control 50" 45 100 100 9 81 100
“Cruise control 100” 54 97 100 6 100 98
“Cruise control 130” 39 100 100 5 91 96
“Front fog lights” 12 100 100 12 100 100
“Rear fog lights” 36 100 100 79 98 100
“Accept call” 27 57 100 42 44 100
“Decline call” 75 90 100 33 57 100
“Radio ON” 33 100 100 15 42 94
“Radio OFF” 12 100 78 33 85 65
“Istop ON” 5 84 100 6 63 100
“Istop OFF” 66 100 85 39 97 93

When the speed was increased to 100 kmph, the results deteriorated even further due to the higher
acoustic pressure changes, which caused background hum. On the average, the ICA method again
offers better results (by approx. 5%). There are however two specific cases, in which the LMS + ICA
combination reached unsatisfactory results — the “Winker left” and “Winker right” commands. While
the LMS managed to recognize the driver in about 80% of all cases, the LMS + ICA maintained only
9% and 3% respectively. Similar results were maintained when the windows were opened. The results
were probably caused by the nature of the interference (pressure waves caused by changing gusts of
wind). A bar graph presenting the results for 100 kmph can be seen in Fig. 8, while the exact results
can be seen in Tab. 3.
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Table 3: Recognition success rate for experimental vehicle at 100 km/h

LMS & ICA Front left window opened All windows opened
Command No filtration LMS LMS 4+  No filtration LMS LMS +
(%) (%) ICA (%) (%) (%) ICA (%)
“Winker left” 24 84 9 0 72 12
“Winker right” 36 78 3 0 35 8
“Daytime lights” 42 92 88 27 90 78
“High beam lights” 50 93 84 12 100 51
“Auto lights” 21 100 90 18 72 75
“Cruise control 20" 33 60 51 0 36 42
“Cruise control 50" 54 88 72 9 66 36
“Cruise control 80” 24 63 69 0 60 54
“Cruise control 130” 18 42 31 0 35 3
“Front fog lights” 21 69 80 18 72 75
“Rear fog lights” 36 58 90 78 54 87
“Accept call” 18 100 95 39 100 73
“Decline call” 34 100 100 57 100 72
“Radio ON” 33 100 78 27 75 70
“Radio OFF” 8 9 66 42 82 54
“Istop ON” 5 100 87 9 81 66
“Istop OFF” 52 6 90 63 28 87

For the last measurements, the maximal permitted speed in Czech Republic was chosen — a 130
kmph. Compared to the previous results, the table was expanded and also offers values with closed
windows, as the noise penetrating from the surroundings into the car was significant. Prior to filtering,
the recognition success rate with closed windows was only 58% on average, for example the “Radio
On” command has not been recognized even once. After applying the adaptive LMS algorithm, the
recognition rate was 89%, while the hybrid LMS + ICA offered even 93%. When the driver’s window
was opened, the average pre-filter recognition value dropped to 27%. A total of 7 commands were not
even recognized. After the adaptive LMS algorithm was introduced, the recognition rate improved
to an average of 66%. The LMS + ICA hybrid improved the rate by further 6%. After opening all
windows, there was a very significant drop in recognition rate for all scenarios. Before the filtration, the
recognition rate was only 7%. After the LMS was used, the recognition rate was improved to 29% and
ICA managed to improve it further to 30%. Conditions in interior were already quite extreme and the
functionality of the whole platform was borderline unusable. The speech was basically overshadowed
by huge pressure waves caused by wind. A bar graph presenting the results for 120 kmph can be seen
in Fig. 9 and the exact results are visible in Tab. 4.
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Table 4: Recognition success rate for experimental vehicle at 130 km/h

LMS & ICA All windows closed Front left window opened All windows opened
Command No LMS LMS+ No LMS LMS+ No LMS LMS +
filtration (%) ICA (%) filtration (%) ICA (%) filtration (%) ICA (%)
(%) (%) (%)
“Winker left” 9 78 93 60 81 60 0 12 52
“Winker right” 30 90 57 27 63 72 0 15 66
“Daytime lights” 12 90 100 60 78 98 0 75 45
“High beam 57 100 100 5 63 100 0 73 30
lights”
“Auto lights” 45 93 100 0 57 90 0 65 27
“Cruise control 100 93 92 0 60 90 0 0 12
20"
“Cruise control 100 96 100 0 33 75 0 0 18
50"
“Cruise control 100 100 100 0 66 72 0 0 26
80"
“Cruise control 100 96 100 6 69 57 0 0 21
130"
“Front fog lights” 57 81 100 0 30 60 0 51 40
“Rear fog lights” 63 100 100 28 69 88 4 40 35
“Accept call” 95 51 100 100 95 100 1 27 15
“Decline call” 100 93 100 60 84 96 0 10 12
“Radio ON” 0 81 100 0 88 30 0 0 5
“Radio OFF” 50 69 60 5 38 36 45 30 10
“Istop ON” 0 100 100 0 51 40 0 0 0
“Istop OFF” 50 94 78 100 100 65 63 100 82

In Fig. 10 the immediate course of the “decline call” command before and after the application
of the LMS algorithm can be seen. It can be noticed that the algorithm effectively removes noise and
interference, and the words “decline” and “call” remain isolated. With gradually increasing speed and
thus more noise pollution, it can be seen that the LMS algorithm manages to isolate speech. However
the amplitude of the useful signal decreases, since it is partially filtered as well. The filter order N was
set tof 530, while the y parameter was set to 0.001. When listening to the LMS filtered sound signal,
it is possible to clearly recognize the isolated words, but the intonation is sgnificantly distorted by the
bandpass 300 Hz — 3400 Hz filter.
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Figure 7: Recognition success rate for experimental vehicle at 80 km/h
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Figure 8: Recognition success rate for experimental vehicle at 100 km/h
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Figure 9: Recognition success rate for experimental vehicle at 130 km/h
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Figure 10: Example of “Decline call” command before and after LMS filtration. The scenario with
opened driver’s windows

5 Discussion and Conclusion

Based on the presented testing scenarios, both LMS and LMS+ICA combination managed to
significantly improve the system reliability. The speech processing is particularly important in the
worst-case scenarios. While the non-filtered speech was successfully recognized only in 7% of all cases,
the LMS offered up to 29% and LMS-ICA combination up to 30%. In this specific scenario, the
difference between LMS and LMS-ICA might be insignificant, and the computational complexity is
probably unjustified. The employment of advanced algorithms or their combinations will depend on
the hardware equipment of specific vehicles. The signal can be further enhanced by machine learning
and neural networks — while these techniques are certainly powerful, they also tend to be much more
demanding than conventional methods. The future deployment of Al is currently planned.

Our future research will be focused on testing of different types of hybrid systems for automatic
speech recognition. While the LMS+ICA combination offered satisfactory results, other algorithms
can be used instead. There are different types of ICA based algorithms, each with different advantages
and disadvantages. For example, during the presented initial tests, a fastlCA was used. In the future
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JADE, flexICA, SOBI, InfoMax, RADICAL, robustICA etc., can be used in place of fastiICA. LMS,
which was chosen based on its low computational complexity, simplicity and accuracy. Choosing the
ideal adaptive algorithm is difficult and this area will be explored further as well. Recursive least
squares (RLS) algorithm can offer higher accuracy in certain areas but has a higher computational
complexity. There is also a RLS type with lower complexity called fast transversal filter (FTF), which
seems like an ideal candidate for further testing.

Technical University of Ostrava (VSB-TUO) has recently acquired two fully customizable Skoda
Superb testing vehicles. These vehicles offer the latest Volkswagen hardware, which is partially
unlocked for development at university. The conducted tests can now be tested in these modern vehicles
and the speech recognition system can be deployed together with Skoda proprietary Laura voice
assistant, comparing the performance of the already integrated system to modified scenario with the
presented algorithms.

The presented systems can be also deployed in different areas. Based on the previous conducted
tests, the system is also capable of speech recognition in production plants — operating even in harsh
environments. System with minor adjustments filtered voice commands and adjusted parameters on
the fly, while working next to the press machine. The article covering this problematic is currently
in processing and will be published shortly. Testing of other scenarios (voice recognition in trains or
planes) are currently scheduled, and the results will be compared to current research.

Both research branches will be further explored in newly built VSB-TUO testbed CPIT TL3.
This specialized building is focused on three main development areas — smart factory, home care
and automotive — offering sophisticated building management systems, energy flow monitoring [27],
integrated extensive network of various advanced sensor systems and high speed data transmissions.
CPIT TL3 will be opened in 6/2021.

The presented article offered the first insight into our adaptive speech recognition system. The
platform was built around professional hardware components (Steinberg and Rode), which was
integrated into real vehicle (Skoda). While the platform had its limiting factors, it still managed to
significantly improve measured values. When comparing the unfiltered voice commands to the LMS
and LMS+ICA combinations, the system reached up to 7 times better performance. The best results
were achieved in the worst-case scenarios, when the car was driving at higher speeds with opened
windows. When the car was driving at lower speeds (i.e., 100 kmph), the LMS+ICA combinations
improved the system reliability by up to 50%.
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