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Abstract: Convolutional Neural Networks (CNN) have been successfully
employed in the field of image classification. However, CNN trained using
images from several years ago may be unable to identify how such images
have changed over time. Cross-age face recognition is, therefore, a substantial
challenge. Several efforts have been made to resolve facial changes over time
utilizing recurrent neural networks (RNN) with CNN. The structure of RNN
contains hidden contextual information in a hidden state to transfer a state in
the previous step to the next step. This paper proposes a novel model called
Hidden State-CNN (HSCNN). This adds to CNN a convolution layer of the
hidden state saved as a parameter in the previous step and requires no more
computing resources than CNN. The previous CNN-RNN models perform
CNN and RNN, separately and then merge the results. Therefore, their
systems consume twice the memory resources and CPU time, compared with
the HSCNN system, which works the same as CNN only. HSCNN consists of
3 types of models. All models load hidden state ht−1 from parameters of the
previous step and save ht as a parameter for the next step. In addition, model-
B adds ht−1 to x, which is the previous output. The summation of ht−1 and x
is multiplied by weight W. In model-C the convolution layer has two weights:
W1 and W2. Training HSCNN with faces of the previous step is for testing
faces of the next step in the experiment. That is, HSCNN trained with past
facial data is then used to verify future data. It has been found to exhibit 10
percent greater accuracy than traditional CNN with a celeb face database.
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1 Introduction

Face recognition (FR) systems have been continually developed for personal authentication. These
efforts have resulted in FR applications acting on mobile phones [1]. Researchers have proposed
several ideas for FR systems: eigen faces [2], independent component analysis [3], linear discriminant
analysis [4,5], three-dimensional (3D) method [6–9], and liveness detection schemes to prevent the
misuse of photographic images [10]. Using data acquisition methodology, Jafri et al. [11] divided FR
techniques into three categories: intensity images, video sequences, and 3D or infra-red techniques.
They introduced AI approaches as one of the operating methods for intensity images and reported
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that it worked efficiently for somewhat complex FR scenarios. Such techniques had not previously
been utilized for practical everyday purposes.

In 2012, AlexNet [12] was proposed and became a turning point in large-scale image recognition. It
was the first CNN, one of the deep learning techniques, and was declared the winner of the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) 2012 with 83.6% accuracy. In ILSVRC 2013,
Clarifai was the winner with 88.3% [13,14], whereas in ILSVRC 2014, GoogLeNet was the winner with
93.3% [15]. The latter was an astonishing result because humans trained for annotator comparison
exhibited approximately 95% accuracy in ILSVRC [16]. In 2014, using a nine-layer CNN, DeepFace
[17] achieved 97.35% accuracy in FR, closely approaching the 97.53% ability of humans to recognize
cropped Labeled Faces in the Wild (LFW) benchmark [18]. However, DeepID2 [19] achieved 99.15%
face verification accuracy with the balanced identification and verification features on ConvNet, which
contained four convolution layers. In 2015, DeepID3 [20] achieved 99.53% accuracy using VGGNet
(Visual Geometry Group Net) [21], whereas FaceNet [22] achieved 99.63% using only 128-bytes per
face.

CNN consists of convolution layers, pooling layers, and fully connected layers. However, a number
of problems still needed to be addressed. For instance, CNN trained with past images failed to verify
changed images according to a time sequence. In their in-depth FR survey, Wang et al. [23] described
three types of cross-factor FR algorithms as challenges to address in real-world applications: cross-
pose, cross-age, and makeup. Cross-age FR is a substantial challenge with respect to facial aging over
time. Several researchers have attempted to resolve this issue. For instance, Liu et al. [24] proposed an
age estimation system for faces with CNN. Bianco et al. [25] and Khiyari et al. [26] applied CNN to
learn cross-age information. Li et al. [27] suggested metric learning in a deep CNN. Other studies have
suggested combining CNN with recurrent neural networks (RNN) to verify changed images because
RNN can predict data sequences [28]. RNN contains contextual information in a hidden state to
transfer a state in the previous step to the next step, and has been found to generate sequences in
various domains, including text [29], motion capture data [30], and music [31,32].

This paper proposes a novel model called Hidden State-CNN (HSCNN) as well as training the
modified CNN with past data to verify future data. HSCNN adds to CNN a convolution layer of the
hidden state saved as a parameter. The contributions of the present study are as follows:

First, the proposed model, HSCNN, exhibits 10 percent greater accuracy than traditional CNN
with a celeb face database [33]. Facial images of the future were tested after training based on facial
images of the past. HSCNN adds the hidden state saved as a parameter in the previous step to the
CNN structure. Further details on this process are provided in Section 4.2.

Secondly, because HSCNN included the hidden state of RNN in the proposed architecture, it
was efficient in its use of computing resources. Other researchers have performed CNN and RNN,
separately, and merged the results in the system, consuming double the number of resources and
processing time. Further details are presented in Section 2.

Thirdly, this paper indicates that HSCNN can train with only two images of one person per step.
Also, the loss value reached 0.4 in just 40 epochs in training with loading parameters and 250 epochs in
training without loading parameters. Therefore, the HSCNN achieves efficiency because it uses only
two images and trains in 40 epochs with loading parameters. This is explained further in Section 4.1.

In the remainder of this paper, Section 2 introduces related works, Section 3 outlines the proposed
method, Section 4 presents the experimental results, and Section 5 provides the conclusion.
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2 Related Works

Some neural network models can acquire contextual information in various text environments
using recurrent layers. Convolutional Recurrent Neural Networks (CRNN) works for a scene text
recognition system to read scene texts in the image [34]. It contains both convolutional and LSTM
recurrent layers of the network architecture and uses past state and current input to predict the
subsequent text. Recurrent Convolutional Neural Networks (RCNN) also uses a recurrent structure to
classify text from document datasets [35]. The combined CNN and RNN model uses relations between
phrases and word sequences [36] and in the field of natural language processing (NLP) [37].

Regarding changed images, combining CNN with RNN methods have been proposed in image
classification [38] and a medical paper for blood cell images [39]. These authors merged the features
extracted from CNN and RNN to determine the long-term dependency and continuity relationship. A
CNN-LSTM algorithm was proposed for stock price prediction according to leading indicators [40].
This algorithm employed a sequence array of historical data as the input image of the CNN and feature
vectors extracted from the CNN as the input vector of LSTM. However, these methods used CNN
and RNN, separately, and merged the results vectors extracted from CNN to RNN. Therefore, their
systems consume twice the memory resources and CPU time, compared with the proposed system,
which works the same as CNN only. Fig. 1 presents an overview of the models developed by Yin et al.
[38] and Liang et al. [39].

Figure 1: Overview of previous CNN-RNN models

Han introduced incremental learning in CNN [41]. Incremental-CNN (I-CNN) was tested using
the MNIST dataset. HSCNN referenced I-CNN, which used hidden states (ht−1, ht) and an added
convolution layer. For training, I-CNN used the MNIST database of handwritten digits comprising
60,000 examples and changed handwritten digits (CHD) comprising 1,000 images. This paper proposes
HSCNN, a new structure combining CNN with RNN. It adds a hidden state of RNN into a
convolution layer of CNN. Consequently, HSCNN acts like CNN and performs efficiently for cross-
age FR.
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3 Proposed Method: Hidden State CNN

The following subsections explain the equation of the loss function cross-entropy error and
optimizer of the stochastic gradient descent used in the proposed method. And then, 3 types of models
of Hidden State CNN are described.

3.1 Loss Function and Optimizer

In HSCNN, experiments indicated that cross-entropy error (CEE) was the appropriate loss
function (cost function or objective function). The best model has a cross-entropy error of 0. The
smaller the CEE, the better the model. The CEE equation is:

E = −
∑

k

tklogeyk (1)

where tk is the truth label, and yk is the softmax probability for the kth class. When calculating the log,
a minimal value near the 0.0 delta is necessary to prevent a ‘0’ error. In the python code, the CEE
equation is:

E = −
∑

k

tkloge(yk + delta) (2)

Also, the optimizer is the stochastic gradient descent (SGD), which is a method for optimizing a
loss function. The equation is:

W = W − η
∂L
∂W

(3)

where W is the weight, η is the learning rate, and ∂L
∂W

is the gradient of the loss function L for W.

3.2 Hidden State CNN (HSCNN)

HSCNN consists of 3 types of models: model-A, model-B, and model-C. Model-A is the same as
I-CNN. Fig. 2 presents the overall structure of HSCNN, which is the modified AlexNet with hidden
state ht of Convolution layer 5. HSCNN consists of convolution layers, RelU function, pooling layers,
affine layers, and soft max function such as traditional CNN, but it also has hidden states: ht−1 and ht.
This distinguishes HSCNN from CNN.

Figure 2: The overall structure of HSCNN

Fig. 3 presents the structure of model-A. Model-A loads hidden state ht−1 from the parameters of
the previous step and saves ht as a parameter for the next step. It adds the convolution layer 6 and W2.
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The activation function of the rectified linear unit (RelU) equation of model-A is:

ht = RelU{(x · W1 + b1) + (ht−1 · W2 + b2)} (4)

Fig. 4 presents the structure of model-B. Model-B loads hidden state ht−1 from parameters of
the previous step and saves ht as a parameter for the next step. The model adds ht−1 to x, which was
the previous output. The summation of ht−1 and x is multiplied by weight W. The activation function
of the rectified linear unit (RelU) equation of model-B is:

RelU_output = RelU{(x + ht−1) · W + b)} (5)

Figure 3: The structure of model-A of HSCNN

Figure 4: The structure of model-B of HSCNN

Fig. 5 presents the structure of model-C. Model-C loads hidden state ht−1 from parameters of the
previous step and saves ht as av parameter for the next step. In this case, the convolution layer has two
weights: W1 and W2. The activation function of the rectified linear unit (RelU) equation of model-C
is:

ht = RelU(x · W1 + ht−1 · W2 + b) (6)
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Figure 5: The structure of model-C of HSCNN

4 Experimental Results

In the experiment, HSCNN used Cross-Entropy Error as the loss function, Stochastic Gradient
Descent (SGD) as the optimizer, and the Instruction rate (Ir) was 0.001. HSCNN also used python,
NumPy library, and CuPy library for the NVIDIA GPUs employed for software coding.

4.1 Preparations for Experiments

The essential items required for the experiments are listed in Tab. 1. The experiments used
FaceApp Pro to make old faces from young faces and Abrosoft Fanta Morph Deluxe to generate
100 morphing facial images between young and old faces.

Table 1: Items prepared for the experiments

Items Details

Face dataset 550 ∗ 102 = 56,100
550 pairing from 1,100 persons
102 images/pairing

Deep learning machine CPU: AMD 3G(Zen2), 7 nm,
24core, thread 48, 64bit
VGA: NVIDIA TITAN RTX 2ea
RAM: 32GB 4ea

Photo editing application FaceApp Pro
Photo morphing software Abrosoft FantaMorph Deluxe

The facial images of 1,100 persons were selected from the celeb face database, known as the Large-
scale CelebFaces Attributes (CelebA) Dataset. Those faces were then paired with a similar face; for
example, man to man, woman to woman, Asian to Asian, and so on. One was chosen as the young
face between paired faces and the other was changed to the old face. To make these changes, the photo
editing application FaceApp Pro was used. Between the transition from young faces to old faces, 100
continually changing faces were created using the photo morphing software FantaMorph.

The difference between the young and old images of the same person made by FaceApp Pro was
not sufficient, so the experiments also paired the faces of two other persons. Thus, the young face
and old face of each pair were different persons. Finally, 102 images changing from young to old were
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created for all 550 paired images. Number 1 is the youngest image, and number 102 is the oldest. 102
images show the aging state over time from young to old. Number 1 is the youngest image, and number
102 is the oldest. 102 images show the aging state over time from young to old. Numbers 1 to 10 are
young images used as the first training data, and the last numbers 101 to 102 are old images and used
as final target images. Using 90 images from numbers 11 to 100, the experiments used 10 steps to learn
and test aging changes over time. When learning using 9 images in each of 10 steps, all 90 images are
used. However, in this case, learning occurs on the entire data, and the training result of the proposed
model or CNN was almost the same. So the prediction experiments become meaningless. Therefore,
to clearly confirm the results of the prediction experiment, two images are trained for each step, and
the two images mean a specific point in the middle of facial aging. This is the same as testing the face
at the last oldest point with two final target images. Tab. 2 presents sample images from the dataset
and their numbers for each step: primary step, target step, and step 1 to step 10. Beyond primary step,
each step has only two samples. There is a substantial difference between images number 60 to number
90; however, after number 90, all facial images look almost identical.

Table 2: Dataset samples of changed images according to steps

Step Image Number Step Image Number Step Image Number

Primary 1 to 10 4 59, 60 8 79, 80

1 29, 30 5 64, 65 9 84, 85

2 39, 40 6 69, 70 10 89, 90

3 49, 50 7 74, 75 target 101, 102

HSCNN appears to be an extremely efficient method as it achieved 99.9% accuracy and 0.01 loss
value with only two training images in each step from step 1 to step 10. Also, the HSCNN is trained
with loading parameters saved in the previous step. The use of loading parameters means the training
epochs can be shortened. Fig. 6 indicates that the loss value reaches 0.4 in 250 epochs in training
without loading parameters and just 40 epochs with loading parameters. Thus, the HSCNN achieves
efficiency because it uses only two images and trains in 40 epochs with loading parameters.

4.2 Experiments

The experiments utilized AlexNet as the traditional CNN and created three models of HSCNN
modifying AlexNet. All models added hidden states to the convolution five-layer and used the RelU
5 layer of the AlexNet.
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Figure 6: The efficiency of HSCNN

Fig. 7 presents the samples of train steps of the experiments and it shows the accuracy of each
training step and loss values through 150 epochs. In the case of training step 3 of model-A, the graph
shows the accuracy of training step 3, testing of step 4, step 5, step 6, step 7, step 8, step 9, step 10,
and target step. It also shows the loss values according to the epochs. For including loss values in one
graph, loss values were divided by 10.

Figure 7: The samples of train steps of the experiments

The experiments consisted of 2 groups: experiment I, experiment II. Experiment I tested the target
step, and experiment II tested step 3 (behind the training step). Step 1 employed the parameters saved
in the primary step, while step 2 used the parameters saved in step 1.
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Tab. 3 presents the accuracy of the target step in testing faces. Tab. 4 presents the accuracy of step
3 behind, according to the models, in testing faces. The test of step 3 behind means that HSCNN tested
step 4 when training step 1, and step 5 when training step 2.

Table 3: Accuracy (%) of testing the target step (Experiment I)

Train step Test step Model-A Model-B Model-C AlexNet

1 Target 2.2 2.1 1.0 1.6
2 Target 8.4 5.9 2.4 3.0
3 Target 24.6 8.7 7.0 6.7
4 Target 39.7 33.3 22.4 22.9
5 Target 52.0 52.0 41.0 39.7
6 Target 66.3 69.5 61.9 58.9
7 Target 82.9 83.2 80.1 79.0
8 Target 94.9 92.6 93.3 92.6
9 Target 99.8 99.8 99.8 97.9
10 Target 99.9 99.9 99.9 99.9

Table 4: Accuracy (%) of testing the step 3 behind (Experiment II)

Train step Test step HSCNN
Model-A

HSCNN
Model-B

HSCNN
Model-C

CNN-AlexNet

1 4 71.0 63.8 60.5 52.9
2 5 88.3 70.7 67.9 57.0
3 6 95.9 73.4 84.4 70.8
4 7 98.8 94.0 98.0 99.0
5 8 99.0 96.2 98.5 98.8
6 9 98.6 97.8 97.9 99.1
7 10 98.9 97.5 98.9 98.8

Based on Tabs. 3 and 4, the results of the experiments are presented in Figs. 8–10. Fig. 8 depicts
the differences between model-A and AlexNet. These indicate that model-A achieved more than 10%
higher accuracy in step 3 to step 5 of experiment I and in step 1 to step 3 of experiment II. Therefore,
model-A can be employed for both long- and short-time changes.

Fig. 9 depicts the differences between model-B and AlexNet. These indicate that model-B achieved
more than 10% higher accuracy in step 4 to step 6 of experiment I and in step 1 to step 2 of experiment
II. Therefore, model-B can be employed to predict both long- and short-time changes. Fig. 10 depicts
the differences between model-C and AlexNet. These indicate that model-C achieved more than 10%
higher accuracy in step 2 to step 3 of experiment II, but not in any step of experiment I. Therefore,
model-C is considered an appropriate method to predict short-time changes.



3756 CMC, 2022, vol.71, no.2

Figure 8: The results of the model-A and AlexNet experiments

Figure 9: The results of model-B and AlexNet experiments

Figure 10: The results of model-C and AlexNet experiments

5 Conclusion

This paper proposes a novel model, Hidden State-CNN (HSCNN), which adds to CNN a
convolution layer of the hidden state. Training with past data to verify future data was the aim of
the experiments, and HSCNN exhibited 10 percent higher accuracy with the celeb face database than
the traditional CNN. The experiments consisted of 2 groups. Experiment I tested the target step and
experiment II tested step 3 behind the training step. The latter step means that step 4 was tested
when training step 1. Experiment I assessed long-time changes, and experiment II relatively short-
time changes. Both yielded similar results. Furthermore, HSCNN achieved a more efficient use of
computing resources because its structure differed from that of other CNN-RNN methods. HSCNN
also represented a new and efficient training process to verify changing faces. It used only two training
images in each step and achieved 99.9% accuracy and 0.01 loss value.
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