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Abstract: With the recent increase in the utilization of logistics and courier
services, it is time for research on logistics systems fused with the fourth
industry sector. Algorithm studies related to object recognition have been
actively conducted in convergence with the emerging artificial intelligence
field, but so far, algorithms suitable for automatic unloading devices that need
to identify a number of unstructured cargoes require further development. In
this study, the object recognition algorithm of the automatic loading device for
cargo was selected as the subject of the study, and a cargo object recognition
algorithm applicable to the automatic loading device is proposed to improve
the amorphous cargo identification performance. The fuzzy convergence algo-
rithm is an algorithm that applies Fuzzy C Means to existing algorithm forms
that fuse YOLO(You Only Look Once) and Mask R-CNN(Regions with
Convolutional Neuron Networks). Experiments conducted using the fuzzy
convergence algorithm showed an average of 33 FPS(Frames Per Second) and
a recognition rate of 95%. In addition, there were significant improvements in
the range of actual box recognition. The results of this study can contribute
to improving the performance of identifying amorphous cargoes in automatic
loading devices.

Keywords: Deep learning algorithm; YOLOv2; Mask R-CNN; Fuzzy C
Means; unloading system

1 Introduction

Artificial intelligence and deep learning technologies have recently developed faster than in the
past few centuries, and with the development of these technologies, various deep learning algorithms
are being used in the field of object and pattern recognition. Object and pattern recognition fields can
be utilized in a number of fields, such as military use, autonomous driving, and consequently eliminate
human physical fatigue and cognitive errors that can occur in those fields. In the logistics sector, it is
difficult to apply the object and pattern recognition field to handle unstructured cargoes of different
shapes and sizes. With the recent the growth of the online market, the logistics center is investing in
developing innovative technologies to handle the increased volume. The automatic unloading system
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for improving cargo handling efficiency must requires a deep running algorithm technology that can
recognize objects. The development of algorithms related to object recognition is actively underway.
However, algorithms that are suitable for automatic unloading systems that require the identification
of large numbers of unstructured cargo need to be developed. This paper aims to propose a deep
learning algorithm for the recognition of cargo objects in automatic unloading devices. To solve the
problem, we would like to analyze the deep learning algorithm and prior research and develop an
applicable improvement plan. Fig. 1 shows a schematic view of the courier cargo automatic loading
device considered in this study.

Figure 1: Automatic cargo unloading system

1.1 Related Literature Review

In order to implement efficient logistics processes, it is essential to develop robot technology that
combines various fields, and underlying research using various approaches has been conducted. Based
on the relevant technology and case study analysis results, a new cargo object recognition algorithm is
proposed. Shin et al. conducted a study on the utilization trends of logistics technologies based on the
4th Industrial Revolution to examine the current status and implications of the logistics industry of 4th
Industrial Revolution technologies such as robots, blockchain, Internet of Things, and big data. As
a result, we concluded that for artificial intelligence, combined with robots, the existing workforce
is well replaced and blockchain-based smart contracts will achieve the efficiency of the logistics
process. In addition, it was argued that this requires a supporting and educational infrastructure to
train and demand for personnel with artificial intelligence, big data analysis capabilities [1]. Kwak
et al. conducted tracking and spatial operation of facilities, components, finished products, etc.
in simulation-based manufacturing sites on methods for smart SCM(Supply Chain Management),
including design and implementation of logistics SCM system in a research on logistics object
tracking service for smart SCM. The study concluded that by combining detailed technology with
logistics units, unnecessary waste of resources and object tracking, technology improvement can be
contributed to enhancing corporate productivity by various manufacturing units such as quality
control and product production, packaging and delivery [2]. Yu et al. understood trends in robot work
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intelligence technology in the intelligent logistics/agriculture field and conducted research on robot
work intelligence for automation of logistics, robot work intelligence for automation of agriculture,
and concluded that standardization for interfaces between heterogeneous technologies and robots
should be carried out [3]. In the 4th Industrial Revolution, Choi et al. identified trends in the
driving/manipulation technology of logistics robots, technology trends of delivery robots, and related
element technologies. Cameras were sensitive to changes in illumination due to time and weather, and
concluded that research on these areas was needed in many ways, from accurately recognizing/estimat-
ing the shape of objects to capturing unknown shapes of objects by robots [4]. In a study of automatic
picking/classification system using image analysis, Park et al. produced a simple and repetitive type
of equipment that performs picking/classification operations on industrial sites. This study derived
the meaning as a prototype because it implements control using the Communications Department,
although it is a reduced-scale picking/classification equipment [5].

Won et al. analyzed deep learning algorithms in deep learning-based cargo recognition algorithm
studies for courier cargo automatic unloading equipment, and proposed deep learning algorithm
models that added a masking network that increased the accuracy of bounding boxes to YOLOv2
model base [6]. In a study on the factors affecting the intention to purchase logistics robots in the
logistics center through the technology acceptance model, Hwang et al. prepared 11 hypotheses on
technology acceptance variables and conducted an analysis on the results of the survey. The purpose
of the study is to understand the factors affecting the purchase intention of logistics robots in order to
be applied to domestic logistics centers, and to spread logistics robots, it is necessary to focus on the
usability of logistics robot technology and establish strategies to increase its usefulness [7]. This paper is
based on the development of ICT (Information and Communication Technologies) technology related
to the 4th Industrial Revolution, and applied to the automatic unloading system by incorporating
object recognition algorithms in the field of artificial intelligence deep learning into logistics 4.0. Fig. 2
shows a conceptual diagram for this.

Figure 2: Development of automation equipment and necessity of algorithm

Artificial intelligence technology to simulate human intelligence has been gradually developed.
This artificial intelligence technology attracted a lot of public attention when Deep Blue beat the
world chess champion G. Kasparov in 1997. While this deep blue was successful in many aspects
of popularity, Deep Blue’s intelligence was technically difficult to appreciate because it relied on the
knowledge of digitized chess masters and computing power to calculate the vast number of cases. By
comparison, recent AI technologies, represented by IBM’s Watson, Apple’s Siri, Google Now, and
others, have advanced toward human-level AI in that they automatically accumulate knowledge based
on big data instead of relying on expertise in the field. There are many perspectives and approaches to
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understanding artificial intelligence, but let’s take a look at data-based artificial intelligence, which has
led the rapid improvement in pattern recognition performance recently. Despite theoretical advances
in pattern recognition based on small data in the 1990s, its performance fell far short of that of human
intelligence. Deep learning is an important artificial intelligence technology that leads to performance
improvements in various pattern recognition fields, including voice recognition and image recognition,
in this context. There is a lot of research going on how to create better expression techniques and
models to learn to present it in a form that computers can understand when there is any data and as
a result of this effort. The concept of deep learning has actually been proposed and discussed in the
1980s or earlier. However, only after Professor Hinton’s 2006 paper published in Science did many
people begin to systematically study deep learning [8]. There have been several attempts to increase
the computational ability of deep learning, one of which was to create more neural network of deep
learning. On the contrary, there was also a discussion that creating a lot of deep learning neural
network networks has limitations in enhancing computational capabilities. It was the emergence of
backpropagation algorithms published by D. Rumelhart, G. Hinton, and R. Williams in 1986 that
people began to be enthusiastic about neural networks again.

In fact, backpropagation algorithms had been around before, but they began to draw attention
from their papers in 1986, and the neural network again attracted people’s attention with optimistic
prospects. This backpropagation algorithm has made not only single-layer neural networks but also
multi-layered neural networks with one or two hidden layers learnable. However, when SVMs(Support
Vector Machines) were introduced by V. Vapnik and C. Cortes in 1995, and performed better than
neural networks, people abandoned the neural network and flocked to SVMs. Over the next decade
or so, the neural network has been subjected to researchers’ indifference and neglect, but it has started
to draw attention again based on Professor Hinton of the University of Toronto’s 2006 Science paper.
Currently, the paradigm of pattern recognition has changed in the artificial intelligence field, and
research on voice recognition and image recognition is being conducted. In addition, it is recognized
as a technology that can mature the level of artificial intelligence by making achievements in areas
such as language comprehension. Currently, the most commonly used deep learning models for
various pattern recognition competitions and use services are CNNs(Convolutional Neural Networks)
and RNNs(Recurrent Neural Networks). CNNs’ first computational model is the Neocognitron
published by Fukushima in the 1980s [9]. Later in 1989, Y. LeCun combined the backpropagation
algorithm with Neocognitron to create CNNs. Recently, the trend of image recognition is to maximize
performance by expanding the size of CNNs and designing them to have various structures. For
RNNs, LSTM(Long Short-Term Memory), a type of RNNs, has recently been successfully applied
to cursive recognition or speech recognition as a neural network for time series data analysis [10].
Despite the successful operation of the algorithm, neural network learning took nearly three days and
this was considered unrealistic to be generally applicable to other fields. Nevertheless, there are three
main reasons why deep learning has been revived. The first is that the drawbacks of existing artificial
neural network models, which have previously been mentioned in the history of deep learning, have
been overcome. For a second reason, there is another factor in hardware development. In particular,
powerful GPUs significantly reduced the time spent on complex matrix operations in deep learning.
Finally, the third most important reason is Big Data. The massive influx of data, and efforts to
collect them, can all be aggregated, analyzed and used for learning, especially large amounts of data
and tag information produced by SNS users. Training vectors used for learning in artificial neural
networks should be labelled data (for supervised learning), and it is impossible to label all large
training sets. For this reason, supervised learning is performed only on some of the data used for
initial learning and unsupervised learning is performed on the rest of the training sets, and the results
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learned combine the results of the existing learning and the meta-tag information analyzed earlier
to complete the recognizer. Since the resurgence of deep learning, we have seen the highest levels
of performance in various fields, especially in the field of ASR(Automatic Speech Recognition) and
computer vision, which are typically TIMIT(Texas Instruments and MIT-generated voice databases)
and MNIST(Modified National Institute of Standards and Technology database). Recently, deep
learning algorithms based on Convolution Neural Networks have shown excellent performance,
especially in areas such as computer vision and voice recognition. MNIST database data is typically
used as evaluation data for image classification. MNIST consists of handwritten numbers, including
60,000 learning examples and 10,000 test examples. Similar to TIMIT, low-capacity MNIST data
enables multiple test configurations. This has led to the importance of deep learning in the areas of
image recognition and object recognition, which are major areas of computer vision. At that time,
knowing that deep learning worked fairly well for large-scale speech recognition, they used a deep
convolutional neural network structure designed 20 years ago on a large scale to fit large-scale tasks.
From 2013 to 2014, the error rate of ImageNet task results using deep learning quickly decreased,
coinciding with the trend in the large speech recognition field. As with the expansion of the field
of automatic speech recognition into the field of automatic speech translation and understanding,
the field of image classification has expanded to a more challenging field called automatic image
captioning.

1.2 Methodology

Computer vision and video processing cover a series of processes that process and analyze image
data, such as photography and video, to extract information embedded in the data. Typically, it
classifies classes of objects in photographs or videos, or detects the location of objects, as well
as includes areas that address integrated cognitive-based interaction problems coupled with other
branches of artificial intelligence, speech recognition, natural language processing, etc. The image
consists of a distribution of dots in a two-dimensional space called pixels. Traditional methods
digitized the correlation between pixels in two-dimensional space to screen highly correlated regions
and call them features. Recently, it has been utilized for a variety of purposes, including recognizing
objects based on distance information and applying them to moving robots [11]. Object detection
is a more challenging problem because it estimates the class of objects in the image as well as the
positional information of the objects. In particular, there are examples of using multiple background
models to perform object detection with techniques that are drawing attention in the field of embedded
machine vision related to security and surveillance systems [12]. The most widely used object detection
methods in relation to machine vision algorithms are local feature matching-based methods. A typical
regional feature matching process selects easy-to-identify features such as Harris corner, and extracts
feature vectors from local patches around the selected feature points. Local scale-invariant feature
point detection methods such as SURF are widely used to extract this feature vector [13,14]. In this
regard, Pedro F. Felzenszwalb et al. conducted the Object Detection with Discipline Trained Part
Based Models study [15]. The problem with this method is how to build a valid object model and
the slow computation of complex feature vector and matching relationship analysis processes, which
makes it difficult to apply in real-world environments. Not only is it difficult for humans to design
appropriate features for images in all domains, but in terms of overall performance and efficiency,
alternative measures have begun to be required for machines to derive appropriate features from
data themselves. The recent rapid growth of deep learning technologies has marked a new turning
point, proving to replace most of the problems involved in feature detection. Demand has exploded
in a variety of areas, ranging from fine-precision tasks such as detection of defects in automated
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factory systems to comprehensive interaction tasks based on image information such as recognition
of emotions between humans and robots.

Traditional object detection studies utilized methods such as SIFT(Scale-Invariant Feature
Transform), SURF(Speed-Up Robust Feature), and HOG(Histogram of Oriented Gradient) based on
low-level features. These approaches have faced limitations in performance improvement and various
attempts have occurred to utilize CNN to detect objects since 2012. Based on the Selective Search
algorithm, R-CNN proposed by Girshick’s research team proposes a region pro-position in the input
image. For each region, we classify the class of object patterns in the region through the CNN and
through the SVM classifier [16]. This CNN is based on AlexNet and imports a model of a preferentially
learned state for object classification. Mask R-CNN can be viewed as an algorithm that synthesizes the
RPN(Region Proposition Network) and Fast R-CNN, and a new mask branch has been added to Fast
R-CNN’s classification, localization (binding box regression) branch. It is also an algorithm in which
RoI(Region Of Interest) align replaced RoI pooling for FPN(Feature Pyramid Network) before RPN,
and masking of image segmentation. The Mask R-CNN first resizes the image and is then input-sized
to enter the backbone network. Create a featuremap on each layer via ResNet-101, and an additional
feature map from a feature map previously created via FPN. Each RPN is applied to the final generated
feature map to generate an out result. Among the anchor boxes created by Non-max-suppression,
delete all except the anchor boxes with the highest score, and size the anchor boxes with different
sizes through RoI alignment. Finally, pass the anchor box value to the mask branch to finish the final
process. As a related study, Qiqiang Chen performed road damage detection and classification studies
using dense Mask R-CNNs [17]. For road damage detection and classification, DenseNet produced
better results than conventional algorithms in its first attempt to apply the Mask R-CNN framework.
Ruohan Meng conducted a new steganography study based on instance segmentation [18]. A method
based on instance segmentation such as Mask R-CNN has been proposed.

Currently, most deep learning-based object recognition and detection have addressed this by
constructing the process of estimating the object’s location area and classifying the object’s class using a
separate CNN-based deep learning model. Object detection models in the R-CNN family first estimate
the object candidate area in the image and then find class class classification and object boundary boxes
based on it. In this process, due to the large number of estimated candidate areas and their resulting
overhead, there is a limitation to their performance as an application for utilization in the field, such
as real security systems or robot remote control, in terms of detection rates. Therefore, various studies
have been attempted to improve detection speed while maintaining object recognition rates. Among
them, the YOLO network, which has recently received the most attention, is designed to perform
both boundary box detection and class classification at the final output stage. In contrast to the three
modules that make up the network in the fastest and most accurate Fastest R-CNN family models,
which are responsible for feature detection, boundary box generation, and class classification, YOLO
is simple and fast because all steps take place within a single network. The final output terminal of
the YOLO network is a feature tensor that represents all potential candidates for object classes and
boundary boxes in the image. This tensor divides the input image into a grid of a certain size and
expresses the post probability that the boundary box generated in each grid will be the boundary box
for the target object and what the class of the object is. Measurements of accuracy show somewhat
lower results compared to Fast R-CNN, but offset this because it is overwhelmingly fast in terms
of speed. YOLO, a type of deep learning algorithm for object recognition, divides the image to be
predicted into grid cells and predicts one object for each cell. A predetermined number of Boundary
boxes determine the location and size of objects, and since only one object can be predicted for each
cell, the effectiveness of multiple objects overlapping can be compromised. Each boundary box consists
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of the location (x, y), size (w, h), and box confidence scores, with a total of five factors. The box
confidence score reflects the probability that the box contains objects and how accurate the boundary
box is. Conditional class probabilities are probabilities of which particular class the detected object
belongs to. YOLO predicts multiple bounding boxes for each grid cell, but must select one box that
best contains detected objects to calculate loss for true positives. To do this, calculate ground truth
and IOU and select one with the highest IOU. This results in better predictions for size or aspect
and aspect ratios. As a related study, Chintakindi Balaram Murthy conducted an efficient pedestrian
detection algorithm study using the YOLOv2 model [19]. In this work, K-means clustering techniques
were applied to the Pascal Voc-2007 + 2012 pedestrian dataset, and the fuzzy convergence algorithm
showed more effective results in detecting pedestrians than conventional algorithms. Javaria Amin
conducted a Convolution Bi-LSTM-based human pedestrian recognition study using video sequences,
resulting in 90% accurate prediction on the CASIA-A, CASIA-B, and CASIA-C datasets with the
fuzzy convergence algorithm [20]. In addition, Javaria Amin conducted a 3D semantic deep learning
network study for leukemia detection using YOLOV2, utilized ALL-IDB1, ALL-IDB2 and LISC
datasets to verify the precision, accuracy, and sensitivity of the fuzzy convergence algorithm, and
produced more effective results [21]. Tab. 1 shows characteristic comparisons for YOLOv2 and Mask
R-CNN. Qingyang Zhou recognized the problem of the existing object recognition algorithm that
small objects cannot be accurately detected when there is an obstacle around them in the safety helmet
detection method, and conducted a helmet wearing detection algorithm study based on AT-YOLO
deep mode. Experiments have shown that the mAP of the proposed method can reach 96.5%, and the
detection rate can reach 27 fps, Compared to other existing methods, detection accuracy and speed
are superior [22]. Asma Baccouche proposed an end-to-end system based on a YOLO (Only-Look
Once) model to simultaneously localize and classify suspicious breast lesions in mammography, and
evaluated the model on two publicly available datasets with 235 mammograms in the INbrest database
[23]. As a result of the study, the detection accuracy of 95.7%, 98.1%, and 98%, and 74.4%, 71.8%, and
73.2%, respectively, for mass lesions and calcified lesions in CBIS-DDSM, INbreast and personal
data sets.

Table 1: Fuzzy convergence algorithm recognition process

Algorithm Characteristic Feature Limit

Mask R-CNN Rapidity Real-time object
detection available

Pixel unit detection
difficulty

YOLOv2 Accuracy Information acquisition
possible without data
labels

Rapid object detection
difficulty

Deep learning is a powerful machine learning technique that can be used to training object
detectors. Algorithms of YOLO and R-CNN series are commonly used, and YOLO’s developmental
type, YOLOv2, is capable of rapid detection with real-time object detectors [24]. The advanced version
of the R-CNN family, Mask R-CNN, has the advantage of separating objects and obtaining data even
if the data label is not displayed. The case study also identified that FCM(Fuzzy C Means) based on the
Fuzzy function could be a solution if the object recognition process is uneven or the pattern boundaries
are not clear [25]. FCM application has identified the ability to increase three-dimensional object
recognition performance. Kim et al. conducted a pattern segmentation study using FCM, recognizing
the problem that pattern segmentation is difficult if images are uneven or pattern boundaries are



4174 CMC, 2022, vol.71, no.2

not clear [26]. As a result of the study, we propose a novel algorithm for detecting image patterns
from early face pattern images to accurately measure three-dimensional face information using spatial
coding patterns. The proposed pattern segmentation method as a result of the study showed improved
segmentation efficiency over conventional methods. The objective function of clustering is expressed
as shown in Eqs. (1) and (2).

J(uik, vi) =
c∑

i=1

n∑
k=1

um
ik(dik)

2 (1)
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where ujk is the degree of belonging to xk’s kth data in the Ith cluster, with a value between 0 and
1. When applied to image segmentation, corresponds to the pixel value of each pixel. And vi is the
Ith cluster centroid vector, corresponding to the pixel pixel value of each cluster. j (j = 1, . . . , l) is a
variable in the characteristic space, and m is the weight of the index indicating the effect of the degree
of fuzzification of the belonging function. The results of the purpose function, Eqs. (1) and (2), can be
expressed in Eqs. (3) and (4).
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Utilizing the presented equations, we perform the process of calculating the center of the fuzzy
cluster and calculating a new belonging function. The equation for deriving the belonging function
can be expressed by Eq. (5). Using Eq. (6) to derive the belonging function and Eq. (6) to derive the
amount of change in the threshold, the amount of change in the threshold is determined. If the amount
of change in the threshold is not appropriate, the algorithm is repeated until an appropriate threshold
is derived by applying r = r + 1.
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(dr
ik)

(dr
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2
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(5)
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ik

∣∣ (6)

In this study, we propose an algorithm to improve the performance of object detection by
selecting a delivery top-to-bottom robot in the logistics field as the target of the study. We perform
technical analysis and case study to review the methodology needed to solve the problem and
propose an algorithm with improved performance by improving the existing algorithm. To analyze
the performance of the fuzzy convergence algorithm, verification experiments were conducted by
implementing an experimental environment similar to the actual environment to derive results. Fig. 3
illustrates the performance of this study.
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Figure 3: Fuzzy convergence algorithm development process

2 Fuzzy Convergence Algorithm

The YOLOv2 algorithm, which is used as an object recognition method in the existing deep
learning field, has an advantage in speed and can be used for real-time object detection, but it is
difficult to detect pixel-wise images. Furthermore, the Mask R-CNN algorithm has the advantage
of accuracy, and although it is possible to analyze images to gather information without data labels,
it is difficult to quickly detect objects. Fig. 4 outlines the problems with this, and shows a schematic
process for it. Fuzzy C Means is combined with the speed of YOLOv2 and accuracy of Mask R-CNN
to increase certainty about object recognition. The problem with these existing algorithms can cause
errors in the logistics sector that do not properly detect couriers or calculate exact ranges even if they
detect couriers with unstructured shapes. In addition, the processing speed of the calculation process
is significantly slow, which may not be utilized in the real world. As such, the algorithms presented
so far have problems in various aspects, and it is still difficult to use them for object recognition of
unstructured parcels in the logistics industry. In this paper, we intend to improve the courier cargo
object recognition performance of logistics top-to-bottom robots by combining the existing deep
learning algorithms YOLOv2 and Mask R-CNN algorithms with the Fuzzy C Means methodology.

Figure 4: Characteristics of YOLO and Mask R-CNN
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The deep learning technology for cargo recognition proposed in this study uses an improved
YOLOv2 technology. Because cargoes are usually loaded with regular cargoes (boxes) and unstruc-
tured cargoes, RGB images with no space on the bottom of the object (margin on the image), the
typical R-CNN family deep learning technology has problems recognizing the location of the cargoes
when large-sized errors occur. Therefore, in this study, we propose a model that extracts objects based
on the YOLOv2 model characterized by fast real-time object detection and adds a masking network
that increases the accuracy of bounding boxes to the object. Fig. 5 shows the neural network of the
fuzzy convergence object detection algorithm.

Figure 5: Diagram of the fuzzy convergence algorithm

3 Validation and Verification Through Experiment
3.1 Experimental Configuration

To verify the fuzzy convergence algorithm, we implement an experimental environment similar
to the actual courier top-and-bottom system. Fig. 6 shows a schematic diagram for algorithm
verification. The courier cargo automatic loading system consists largely of a courier cargo transport
unit, multiple loading manifold, multiple loading equipment transport unit, incoming module, variable
conveyor, and suction gripper. Adsorption grippers can be adsorbed up to 15 cm at a time when
applying linear springs for pick-up of courier cargo and adsorbing cargoes with different depths. The
frame of the adsorption gripper and the multi-loading manifold is designed to be 2 m high and 2 m
wide, taking into account the height and width of the actual courier vehicle, and attaches a stereo
camera to the top. In order to handle cargo at the front using one stereo camera, the camera position
is equipped with a 2 m high manifold frame and the angle is adjusted between approximately 15
and 20 degrees. If the adsorption gripper consists of 20 adsorption modules of 10 cm∗10 cm, each
adsorption module can be individually controlled. Using stereo cameras and deep learning algorithms,
the first single-carrier cargo on the front is recognized and the work space and schedule are determined
according to the size of the adsorption gripper. According to the determined work schedule, the courier
cargoes of the topmost work space are adsorbed and unloaded on the variable conveyor, and when the
first stage of work is completed, the multi-loading equipment transfer unit moves the manifold to
about 2 m away from the next stage. During movement, the deep learning algorithm recognizes the
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location and distance of the courier cargo and controls the manifold by determining the next work
schedule.

Figure 6: Configuring the fuzzy convergence algorithm verification environment

The schematic system configuration of these courier cargo automatic loading devices and the
process for achieving their objectives were identified and reflected in the algorithm verification
experimental environment. The distance between the stereo camera that recognizes the courier cargo
image and the target courier cargo was kept at 1.5 m, and the stereo camera was positioned to recognize
the courier cargo at a height of 2 m. In addition, to increase the efficiency of recognition, LED
(Light-Emitting Diode) lights were installed on stereo cameras to perform verification of courier
cargo recognition algorithms. Fig. 7 shows the composition of the actual verification experimental
environment.

Figure 7: Verification environment configuration

3.2 Experimental Environment

The depth histogram is calculated by applying a histogram to the depth value of the stereo camera.
The interval of the histogram is implemented at intervals of 20 mm. The distinct frequency for interval
20 mm shall be at least a certain value to be representative of the interval, and the representative values
shall be at least 140 mm deviated and divided into up to three layers. Here, a constant value is given in
2∗ (width∗length) if it can vary depending on the resolution. This value is the frequency of the depth
values of non-cargo background values, and those below these values are considered backgrounds, not
cargoes. Among the valid representative values, the representative values present at the most distance
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represent the average distance value of the boxes stacked nearest. Use deep learning to recognize the
boxes and extract the center points of individual boxes. Clustering between boxes at height (y-value)
based on extracted center points, center points closer than 200 mm based on y-value of the top center
point are designated as the first block, and center points closer than 200 mm based on the top center
point are designated as the second block. Tab. 2 shows the set values of algorithm performance, and
Fig. 8 shows the experimental process step by step.

Table 2: Composition factor of fuzzy convergence algorithm

Hyper parameter Setting value Setting method

Initial learning rate 0.001 Variation with optimization
functions

Learning rate variation ratio 10% Fix
Batch size 8 Fix
Total epoch 100 Fix

Figure 8: Fuzzy convergence algorithm recognition process

4 Result Analysis of Fuzzy Convergence Algorithm

To evaluate the performance of the fuzzy convergence algorithm, a space similar to the actual
application environment was constructed, and the experimental space was based on the loading space
of the container cargo vehicle. The test data were required to include both single box images and
loaded box images. We also evaluated the performance over the number of batch sizes that could
affect the performance of the proposed model. Testing Data and verification data were learned using
4,000 images, respectively. As a result of the experiment, when batch size was 8, the recall rate was 8.32
and the courier service recognition was the best. In RGB image data, we show images of the overall
detection and recognition sequences described above, and show object ejection and center point results
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using deep learning. Furthermore, the proposed aneurism demonstrates satisfactory performance
in the detection and recognition of courier cargoes in real-world experiments. The performance of
the fuzzy convergence algorithm was verified by building a laboratory space similar to the actual
work space. Using a number of cargo boxes, 4,000 sheets were learned from the algorithm each to
conduct the verification. The fuzzy convergence algorithm and individual algorithms were validated
together under the same environmental conditions for performance comparison. The experimental
parameters and results can be found in Tabs. 2 and 3. Tab. 3 shows the results of the algorithm
verification performance. The FPS average of the existing Mask R-CNN algorithm is 13, the number
of objects detected is 48, the FPS average of the YOLOv2 algorithm is 45, and the number of objects
detected is 44. The fuzzy convergence algorithm has an FPS average of 33, and the number of objects
detected is 47. When comparing each algorithm, the fuzzy C mean convergence algorithm has a lower
FPS mean than YOLOv2 and a lower recognition rate than Mask R-CNN. However, the fuzzy C
mean convergence algorithm compensated for the shortcomings of the two existing algorithms and
showed high cargo recognition bounding box density of the existing algorithms. Fig. 9 shows the result
s for this.

Table 3: Fuzzy convergence algorithm recognition process

Model FPS Average Actual number of
boxes

Number of
recognized boxes

Recognition rate

Mask R-CNN 13 50 48 96%
YOLOv2 45 50 44 88%
Fuzzy convergence
algorithm

33 50 47 95%

Figure 9: Composition of fuzzy convergence algorithm
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5 Conclusion

This study was proposed based on the YOLOv2 model, which enables rapid object detection and
classification for cargo recognition of automatic unloading equipment. Mask R-CNN, which enables
the detection of accurate pixel units of cargo with YOLOv2, and Fuzzy C Means were applied to
improve recognition and performance. To verify the performance of the fuzzy convergence algorithm,
the experiment was conducted by building a space similar to the actual work space. As a result, the
algorithm proposed through this study showed excellent performance in cargo object recognition rate
and real-time detection rate. Satisfactory performance results are expected to produce the same results
in real-world environments. This study proposed an algorithm to enhance the recognition performance
of unstructured courier cargo by selecting an automatic up-and-down unloading device in the logistics
field. The fuzzy convergence algorithm is a proposed form combining the existing algorithms YOLOv2
and Mask R-CNN. When comparing each algorithm, the fuzzy C mean convergence algorithm has
a lower FPS mean than YOLOv2 and a lower recognition rate than Mask R-CNN. However, the
fuzzy C mean convergence algorithm compensated for the shortcomings of the two existing algorithms
and showed high cargo recognition bounding box density of the existing algorithms. Furthermore,
the fuzzy convergence algorithm was applied with the fuzzy C means method, which improved the
accuracy of recognizing objects in more detail. The results of this study can be utilized in efficient
automatic cargo unloading systems and, more broadly, have a positive impact on the logistics sector.
The object recognition field is showing progress from day to day, and in the future, research will be
conducted to improve algorithms to meet this trend.
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