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Abstract: Federated learning (FL) activates distributed on-device computa-
tion techniques to model a better algorithm performance with the interac-
tion of local model updates and global model distributions in aggregation
averaging processes. However, in large-scale heterogeneous Internet of Things
(IoT) cellular networks, massive multi-dimensional model update iterations
and resource-constrained computation are challenging aspects to be tackled
significantly. This paper introduces the system model of converging software-
defined networking (SDN) and network functions virtualization (NFV) to
enable device/resource abstractions and provide NFV-enabled edge FL (eFL)
aggregation servers for advancing automation and controllability. Multi-agent
deep Q-networks (MADQNs) target to enforce a self-learning softwarization,
optimize resource allocation policies, and advocate computation offloading
decisions. With gathered network conditions and resource states, the pro-
posed agent aims to explore various actions for estimating expected long-
term rewards in a particular state observation. In exploration phase, optimal
actions for joint resource allocation and offloading decisions in different
possible states are obtained by maximum Q-value selections. Action-based
virtual network functions (VNF) forwarding graph (VNFFG) is orchestrated
to map VNFs towards eFL aggregation server with sufficient communica-
tion and computation resources in NFV infrastructure (NFVI). The pro-
posed scheme indicates deficient allocation actions, modifies the VNF backup
instances, and reallocates the virtual resource for exploitation phase. Deep
neural network (DNN) is used as a value function approximator, and epsilon-
greedy algorithm balances exploration and exploitation. The scheme primarily
considers the criticalities of FL model services and congestion states to
optimize long-term policy. Simulation results presented the outperformance
of the proposed scheme over reference schemes in terms of Quality of Service
(QoS) performance metrics, including packet drop ratio, packet drop counts,
packet delivery ratio, delay, and throughput.
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1 Introduction

The fast-growing deployment of Internet of Things (IoT) in cellular networks has exponentially
increased in massive data volumes and heterogeneous service types with the requirement of ultra-
reliable low-latency communication (URLLC). By 2025, International Data Corporation (IDC) fore-
casts that the growth of data generated from 41.6 billion IoT devices will reach 79.4 ZB, which requires
big data orchestration and network automation to be intelligent and adequate in future scenarios
[1,2]. To control abundant IoT taxonomies and provide sufficient resources, machine learning and
deep learning algorithms have been applied to develop smart solutions in edge intelligence for various
service purposes by gathering local data for model training and testing [3,4]. Meanwhile, because
IoT deployment has grown rapidly in various privacy-sensitive sectors such as Internet of Healthcare
Things (IoHT), Internet of Vehicles (IoV), and Internet of People (IoP), the uses of local raw data
have to be user-consented and legally authorized before being transmitted to the central cloud [5,6].
With these challenging issues, an intelligent provisioning scheme necessitates considering the security
of local data privacy, communication reliability, and adequate computation resources.

Federated learning (FL) secures local data privacy, reduces communication costs, and provides
a latency-efficient approach by distributing global model selection and primary hyperparameters,
denoted as W 0

G, from central parameter server to local k clients for local model computation [7,8]. In t
iterations, W t

G obtains the optimal model performance by aggregation averaging of multi-dimensional
local model updates in a single parameter server. However, over numerous iterations, the client
and parameter server communications generate heavy traffic congestions and unreliable processes,
particularly in peak hour intervals. Edge FL (eFL) partitions the iterations of round communications
in two preeminent steps: (1) The local models wn

k on n data batch from selected k participants are
aggregated in optimal edge server selection, and (2) Global communications are orchestrated to
transmit between edge servers and a central parameter server in an appropriate interval [9–11]. This
technique reduces cloud-centric communications and improves learning precision. Therefore, a system
model for offering edge aggregation servers based on specific service-learning model criticalities is
applicable to enhance resource-constrained IoT environments.

Multi-access edge computing (MEC) leverages computation powers and storage capacities of
the central cloud to provide a latency-efficient system, adequate Quality of Service (QoS) perfor-
mance, and additional serving resources in edge networks [12,13]. 5G radio access networks (RAN)
support stable connectivity and adaptability between massive users and MEC entities for driving
big data communication traffics with the deployment of millimeter-Wave (mmWave), multiple-input
and multiple-output (MIMO) antennas, device-to-device (D2D), and radio resource management
(RRM) functions. Moreover, to extend a global view of network environments and efficiently control
heterogeneous MEC entities, software-defined networking (SDN) has been adopted. An adaptive
transmission architecture in IoT networks is advanced by joint SDN and MEC federation to enable
an intelligent edge optimization for low-deadline optimal path selection [14]. SDN separates the data
plane (DP) and control plane (CP) to enable programmable functions, which adequately control
the policies, flow tables, and actions on domain resources management within RAN, core side,
network functions virtualization (NFV), and MEC [15,16]. The convergence of MEC, SDN, and
NFV enables the networking application programming interfaces (API), sufficient resource pools,
flexible orchestration, and programmability for logically enabling resource sharing virtualization in an
adaptive approach. To optimally allocate the resources and recommend the offloading decisions within
NFV infrastructure (NFVI)-MEC, an intelligent agent or deep reinforcement learning approaches
have a capability to apply as enablers for network automation (eNA) in order to interact with particular
IoT device statuses, resource utilization, and network congestion states.
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Deep Q-network (DQN) has notably been used for addressing resource allocation and com-
putation offloading problems in massive IoT networks [17]. There are three main procedures to
construct DQN-based model, including epsilon-greedy strategy, deep neural network (DNN) function
approximator, and q-learning algorithm based on Bellman equation for handling Markov decision
process (MDP) problem. S, A, R, and γ represent the batch of potential states, actions, rewards, and
discount factors for future rewards, respectively [18,19]. In the initial step t, the agent explores by
epsilon-greedy method and randomly selects an action at for sampling the reward rt(st, at) in order
to further calculate q-value of that particular st. At time t + 1, the environment feedbacks the next-
state observation st+1 based on the transition p(.|st, at). This exploration strategy will iteratively execute
until the optimal q-value and policy are defined. Algorithm design based on reinforcement principles
feasibly observes scheduler states and explores rule actions to propose scheduling rules for adaptive
resource management and enabling QoS provisioning scheme. Moreover, a model-free multi-agent
approach feasibly tackles the heterogeneity of core backbone network for efficient traffic control and
channel reassignment in SDN-based IoT networks [20].

1.1 Paper Contributions

In this paper, the proposed system architecture is adopted to deploy multi-controller placement in
NFV architecture for observing various state abstractions. Multi-agent DQNs (MADQNs) explores
actions on resource placement and computation decisions for offloading wn

k towards appropriate eFL
aggregation server. Centralized controller abstracts IoT device and resource statuses to gather state
spaces for the proposed adaptive resource allocation agent (PARAA). Decentralized controllers as
a virtualized infrastructure manager (VIM) and VNFs are presented to abstract NFVI states for
proposed intelligent computation offloading agent (PICOA). MADQNs obtain the maximum future
long-term reward expectation of joint state spaces by using q-value function and DNN approximator.
The optimal policy is defined before exploitation phase and obtained by a centralized controller. The
proposed scheme extends MADQNs by rendering virtual network functions (VNF) forwarding graph
(VNFFG) and upgrading the deficient allocation actions to approach sufficient serving MEC resource
pools. The proposed controller updates the forwarding rule reactively for long-term sufficiency. An
experimental simulation is conducted to illustrate the performance of proposed scheme. The custom
environment and DQN agent were developed by using OpenAI Gym library, TensorFlow, Keras, and
the concept of Bellman equation. To evaluate the QoS metrics in SDN/NFV aspects, Mininet and
RYU SDN controller are conducted. In NFV management and orchestration (MANO), mini-nfv
framework is applied on top of Mininet to develop the descriptors using TOSCA NFV template.
Finally, simulation on 5G new radio (NR) networks is conducted to present an end-to-end (E2E)
perspective by using ns-3, a discrete-event network simulator.

1.2 Paper Organizations

The rest of the paper is organized as follows. The system models, including architectural frame-
work and preliminaries of proposed MADQNs components, are presented in Section 2. The proposed
approach is thoroughly described in Section 3. In Section 4, simulation setup, performance metrics,
reference schemes, and result discussions are shown. Section 5 presents the final conclusion.
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2 System Models
2.1 Architectural Framework

In the system architecture, SDN CP allows a programmable DQN-based mechanism to observe
states of the network environment via OpenFlow (OF) protocol in southbound interface (SBI),
which allows the cluster head to contribute significant roles for data of IoT nodes and resource
utilization collection [21]. The proposed SDN/NFV-enabled architecture for supporting MADQNs
programmability and offering multiple eFL servers within NFVI-MEC environment is shown in Fig. 1.
In the proposed system architecture, the centralized SDN controller communicates with NFV-MANO
layer for management functions in VNF manager (VNFM) and VIM through orchestration interfaces
[22]. Ve-Vnfm interface interacts between SDN controller as VNFs and VNFM for operating the
lifecycle network services and resources management. Nf-Vi interface allows the controllability of
NFVI resource pools for central SDN controller as a VIM [23]. To activate connectivity services
between virtual machine (VM) and VNFs, Vn-Nf logical interface is used in the proposed architecture
to adjust the virtual storage and computing resources based on VNFs mapping orchestration.
To configure resource allocation based on optimal PARAA policy, decentralized SDN controllers
as a VIM and VNFs are proposed in this scheme to formulate the parameterization of action-
based VNFFG rendering for service function chaining (SFC) management system. The proposed
MANO manages the VNF placement with appropriate element management system (EMS), virtual
deployment unit (VDU), and VM capabilities based on allocation policy in particular congestion state
spaces. The resource-constrained state observation leads to a prior for agents to adjust the backup
instances with model service prioritization. After the resources are adjusted, PICOA computes the
policy to advocate eFL server for local model aggregation offloading. Within multi-controllers, the
flow entry installation process is configured reactively in the centralized entity. Each cluster head is
commanded by OF protocol with a flow rule installation. Since proactive mode has the capability for
each OF-enabled switch to set up the flow rules internally, the proposed agent controller will prioritize
the reactive rule installation to ensure the proposed central policy configuration. Agent controller
checks the packet flow with all the global tables and updates counters for instruction set executions. In
our proposed scheme, the flow priority, hard timeout, and idle timeout are measured by the remaining
MEC resources, time intervals, and criticalities of FL model services. However, if there is no match
within global tables, the agent controller executes the add-flow method based on the particular state-
action approximation to accordingly append datapath id, match details, actions, priority, and buffer
id. With different dimensional features and scale values, SDN database entity is expected to handle
the storage and preprocessing phases. For the proposed agent model, the data requiring from SDN
database is uplink/downlink resource adjustment statuses, resource of eFL MEC nodes, and default
core resource utilization system. With these features, the agent feasibly acquires the state observation
spaces for sampling and exploring the potential actions.

2.2 Proposed DQN Components

In this context, main components of MADQNs consist of state, action, reward, and transition
probability. For the hyperparameters, the values are optimized by standard parameterization for
controlling the behavior of the learning model such as learning rate α, discount factor γ , epsilon ε, and
mini-batch sizes qm. In software-defined IoT networks, the local, distributed, and centralized resources
for communication and computation are complex to measure thoroughly. Moreover, the observation
and discrete values will be challenging to capture. Therefore, each element was assigned in percentile
scales.
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Figure 1: The system architecture for MADQNs approach and virtualization of eFL servers

State: in MADQNs environment, the state spaces are comprised of two main observations for
PARAA and PICOA. For PARAA, the state consists of control statuses and a global functional view,
including the extant maximum and minimum resources denoted as resmax and resmin, respectively. For
PICOA, the state spaces are abstracted by decentralized controllers, including the maximum eFL node
i capacities, cost of VNF m placement at eFL node i, and computation cost of local model wn

k at
eFL node i, denoted as resi

mec, cvnf i
m, and cpi

w, respectively. The joint state observation contains two
significant spaces such as uplink/downlink resource statuses and resource increment/decrement dis-
crete adjustment in default resource utilization system, which is denoted as resc and respace, respectively.
Eqs. (1) and (2) presents the expression of state spaces. The increment/decrement level was indicated
according to the positive and negative weights, denoted as ω+ and ω−, of a particular peak/off-peak
network congestion. Based on the experience replay, optimal resource targets are defined.

SPARAA = {resmax, resmin, resc, respace} (1)

SPICOA = {resi
mec, cvnf i

m, cpi
w, resc, respace} (2)

Action: in this environment, the batch of potential actions refers to the resource updates and
SFC, which are collectively mapped by VNFFG parameterization towards virtual MEC resource
pools in the NFVI entity. Numerically, the action spaces a specify the discretization operation scale of
increment, decrement, and static, denoted as APARAA ε {0, 1, 2}. The percentage of applied action values
is set within a restrained allocation step to reach an optimal balance of downlink and uplink capacities.
The scheme forecasts computing and storage resources for processing VNF m and allocation index in
serving eFL node i, denoted as (cpm, srm) and aii

m, respectively. In the proposed system architecture, i
eFL aggregation server decisions are provided in PICOA as APICOA ε {1, 2, . . . , i} by evaluating the task
execution efficiency.
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Reward: the intermediate reward in a particular time t, denoted as rt(st, at), is maximized when
the agent reaches the optimal resource allocation resoe, which is adaptable based on three essential
conditions, including transmission intervals, experienced q-value, and the remaining resource per-
centile. Moreover, in IoT peak hour congestion, the resource increment requires the extra serving
available resources in virtual computational blocks, denoted as resxt. The output of computational
capabilities from the selected action towards virtual MEC resource pools in each VNF is the main
component for model aggregation completion. The reward considers the number of VNF requests
and the computational costs of each VNF in that particular selected VNFFG rendering. The output
of reward determines the efficiency of resource allocation and eFL server selection from actions of
PARAA and PICOA agents in a defined state.

Transition Probability: different policy determines distinct transition step for sampling the next
state observation. In the early stage, the randomness of transition policy allows the agents to explore
the actions without specified probabilities. However, once the exploration strategy reaches an optimal
goal of resource allocation rewards, epsilon-greedy policy executes the transition, denotes as p(.|st, at),
by performing the exploitation strategy follows the given action to its state pair. Thereafter, when the
agent receives the next state spaces st+1 from environment feedback, the agent will check the variation
and diversity in the experience pools to enforce a particular action for that state space.

3 Multi-Agent Deep Q-Networks for Efficient Edge Federated Learning Communications

To describe the MADQNs softwarization framework with the proposed controllers towards
virtual resource allocation and eFL aggregation server selection, this section delivers two primary
aspects of the proposed scheme, including the algorithm flows for multi-agent in NFVI-MEC and
self-organizing agent controllers for collaborative updates in NFV-enabled eFL.

3.1 Algorithm Flow for MADQNs in Proposed Environment

To optimize the policy of the model, q-table and DNN are computing in parallel behavior to
support the trade-off between time-critical and precision. However, DNN acts as a central control
which structures as a prime approximator. Each potential state-action pair has a q-value that
accumulates in both q-table and approximated DNN output layer after the exploration strategy. With
a feedforward network, numerous weight initializations, neurons, and multiple layers of perceptron,
the q-value decision-making is more accurate, yet execution time is simultaneously high. To optimize
a policy for a long-term self-learning environment, the randomness in exploration processes of the
networking environment has to be handled. The hyperparameters are required to be well-assigned
and related to the fine-grained scenario. The optimal policy for exploitation strategy as the end goal is
denoted as π ∗, which further expresses in Eqs. (3)–(6). Each policy interprets the agent and observation
differently based on the value function and q-value function with distinct transition probability p. The
required parameter consists of the beginning state resource conditions s0, current state st, next state st+1

observation of [resi
mec, cvnf i

m, cpi
w, resc, respace], criticality intervals, and sample action at. Subsequently,

the working process of MADQNs elements in NFVI-MEC environment is described in three major
functional phases, including value and q-value functions, function approximator, and experience
replay.

π ∗ = argmax
π

Eπ

[
endT∑
t=0

γ trt | π

]
(3)
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s0 ∼ p(s0) (4)

at ∼ π(.|st[resi
mec, cvnf i

m, cpi
w, resc, respace]) (5)

st+1[(resi
mec)t+1, (cvnf i

m)t+1, (cpi
w)t+1, (resc)t+1, (respace)t+1] ∼ p(.|st, at) (6)

The value function is computed for policy transformation and low-dimensional perspective to get
the value of state s and create sample paths. It is significant to identify the resource condition at a
particular time. To differentiate between each random exploration policy, the cumulative reward is a
key value to maximize the expectation. Value function captures a vector of reward to follow a particular
policy π for evaluating the performance of an agent by defining the expected future rewards. The value
function denoted as V π(s[resi

mec, cvnf i
m, cpi

w, resc, respace]) of an input state observation s into a policy π is
used for returning the expected outcome following the MDP. In our proposed environment, the value
function is executed in exploitation strategy following the policy. The q-value function can be expressed
in order to adapt to a specific computation state, which follows the Bellman Equation to label the q-
value for state-action pairs. Towards the optimal q-value Q∗(st, at), the formulation with proposed
state observations and action spaces in our setup environment features is presented (see Eq. (7)). The
expected main requirements are the rewards of that particular state-action pair and the value of the
next state that the environment ends up in, which is expressed as s′[(resi

mec)
′, (cvnf i

m)′, (cpi
w)

′, res′
c, res′

pace].
The expectation Es′∼ε expresses the randomness of state s′ observation. To solve for the optimal policy,
the iterative update has to be executed. With known optimal policy, the best action will be chosen at
state s′ to maximize the q-value. However, this process is only supported in the short-period networking
simulation process, but not supported in long-term sustainability and iterative execution; therefore, the
function approximator comes to take place.

Q∗(s, a) = Es′∼ε

[
r + γ max

a′ Q∗(s′[(resi
mec)

′, (cvnf i
m)′, (cpi

w)
′, res

′
c, res

′
pace], a′)

]
(7)

DNN estimates the functions Q(s, a; θ , b) based on biases b and weights θ on each neuron
connector between each perceptron which is equivalent to peak hour and off-peak hour intervals in
networking priority. The input processing of each possible state observation from time 0 to initial
time t, including the resource conditions of the network environment, towards an optimal action-
value selection is based on the congestion status. And weights and bias in one sample perceptron
are adjusted. The rectified linear unit (ReLU) activation function is used to transform the sum of
each connector weight and bias intervals from input until the output layer. Algorithm 1 presents the
MADQNs flow towards the optimal resource allocation policy and eFL selection in the proposed
framework. Agent execution starts with hyperparameters and parameters initialization. The total
reward container per episode, particular reward in each episode, the number of episodes, discrete
state spaces, q-table, the starting epsilon value, the final epsilon value, and particular epsilon-decaying
value are denoted as re, er, nume, sdiscrete, qtable, εs, εe, and ε−, respectively. The scheme targets the
gathered state observations for applying agent learning. The joint allocation and computation costs
are considered for calculating expected rewards, including the number of VNFs to attain eFL node i
decision, denoted as nvnfi. However, to detail the architectural stack of applied DNN, a TensorFlow-
based implementation is designed to reach the optimal model with accurate parameter estimation.
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The experience replay, denoted as et = (st, at, rt, st+1), feeds the online and target networks for
choosing the actions and approximating its q-value. Since there are numerous possible continuous
networking states, the discrete state observations are utilized to input in the first layer as a mini-batch of
resource conditions for approximating an optimal increment/decrement between uplink and downlink
communications. However, if ω+ is high, the resource utilization system is also increasingly enlarged
to solve the bottleneck issues. The double dense layers with ReLU are applied to analyze the state
differentiation and suitable actions to maximize the upcoming reward. For the output layer with linear,
the action q-value is triggered based on the dense layer conditions. If the gradient update evaluates an
unsatisfied precision, the model will be reprocessed. Until the model is accepted, the compiling process
is executed with Adam optimizer and mean squared error (MSE) metric.

Algorithm 1: Pseudocode for the proposed MADQNs towards optimal action selection
Require: s [resi

mec, cvnf i
j , cpi

w, resc, respace], resmin, resmax, A, resoe, resxt, ω−, ω+

Ensure: optimal actions on allocation policies and eFL server selection from each episode for
orchestrating NFVI-MEC resource pools
1: Initialize re, γ , α, nume, qm, sdiscrete, qtable, ε, εs, εe, ε−

2: for each episode in range (nume) do
3: Initialize each episode reward er

4: Transform the state s to sdiscrete

5: while true do
6: if random() > ε then
7: Agent selects action a by a = argmax(qtable[sdiscrete])/DNN
8: else
9: Agent selects random action a
10: end if
11: Calculate reward r based on computation and placement costs
12. Perform selected action a, then enter next-state s′ by p(.|s, a)

13: Add the defined reward r to the initialized episode reward er

14: Transform the next-state s′ to the clustering chunk s′
discrete

15: if the next-state resource resc has a stable and optimal allocation statuses do
16: Input the maximum q-value for state-action pair
17: else
18: Initialize future maximum q-value by max(qtable[s′

discrete])
19: Initialize current-q-value Qc for state-action pair
20: QNEW ← (1 − α)Qc+ α · (Q∗(s, a) − Qc) (see Eq. (7))
21: Input new q-value QNEW for the state-action pair
22: end if
23: Update sdiscrete to s′

discrete

24: end while
25: if εe ≥ episode ≥ εs then
26: ε− = ε−

27: end if
28: re.append(er)

29: end for

By applying the proposed MADQNs model, the average reward aggregation for the resource
allocation environment is obtained. The average reward output of optimal resource allocation is steady
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for most of the episodes but remains some downward marks towards limited resource utilization, which
leads to unstable management. The steady and unsteady state-action pairs are detected and needed to
be significantly enhanced for avoiding high packet drop scenarios in heterogeneous local model update
communications.

3.2 Self-Organizing Agent Controllers for Optimal Edge Aggregation Decisions

The implicit algorithm flow is proposed to handle the instability of MADQNs model in NFVI-
MEC environment by leveraging the capabilities of the agent controllers and orchestrator. The
proposed method installs flow rules for each IoT cluster head with the adjustment of uplink/downlink
resource utilization priority. The orchestrator configures VNFFG descriptors following the resource
allocation policy from Algorithm 1 towards eFL aggregation with optimal MEC resource pools. The
proposed agent controller requires to orchestrate the flow entry tables of multiple IoT cluster heads by
applying the convergence of resource allocation policy and OF controller flow stats. Each state-action
(s, a) pair from MADQNs-based model is transformed into the flow configuration pair (sf , af ) by
updating the uplink/downlink resource statuses and peak hour/off-peak hour intervals into instruction
sets and priority of the entries, respectively. Based on the priority and instruction sets of each traffic
flow, orchestrator gains the prior information to handle the virtual resource pool adjustment in NFVI.
Fig. 2 presents the state transition of MADQNs and controller management within SDN/NFV system.
When the client updates the local model, the pipeline processing is performed. Integrated PARAA and
PICOA algorithms optimize the resource allocation policies and eFL aggregation MEC selections as
described in Algorithm 1. Within the inspected deficient actions in training phase, the proposed scheme
adjusts the policy and appends sufficient virtual resource pools for optimizing the serving capacity of
the selected eFL node, as described in Algorithm 2.

4 Performance Evaluation

Open vSwitch gNB
NFV-enabled eFL-
Aggregation MEC

1. OFPT_PACKET_IN

2. Initial Context Setup Request

3. Initial Context Setup Response

9. OFPT_PACKET_OUT

8. Install or update the forwarding rule and execute the update process

5. Action-based VNF Placement 
and VNFFG Creation

Decentralized SDN 
Controllers (VIM and VNFs)

Centralized SDN 
Controller

7. Render VNFFG for SFC 
Management on each eFL service

4. Executing DQN Agent 1: Optimizing 
Resource Allocation Policies

6. Executing DQN Agent 2: Optimizing eFL 
Aggregation MEC Offloading Decisions

Figure 2: The state transition for proposed controllers to install forwarding rule of local model updates
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4.1 Simulation Setup

To prove the theoretical approach, this section describes the three main simulation adoption
environments, including MADQNs model construction, SDN/NFV control performance, and 5G NR
network experiment to capture the E2E QoS performances.

By using OpenAI Gym library [24], the environment setup requires four primary functions. The
initialization (init) function declares the available characteristics of state observations (see Eqs. (1) and
(2)) in the setup environment. The init explores s0 within the epsilon-greedy random exploration. The
allocation step function updates the new state environment, gives a reward, and completes statutes
after the agent controller performs any specific actions. Finally, whether restarting the simulation,
changing the network circumstances, or starting a new episode, the reset function is used. The goal
of the MADQNs model is to interact with the setup environment and choose the optimal action
for a specific networking state in order to optimize eFL offloading server decisions. To train and
test the models, we used TensorFlow and Keras [25,26]. Fig. 3 presents the total average rewards per
100 episodes with three α performances, including 0.01, 0.05, and 0.09. The rewards are outputted in
negative numbers since the setup assigned the non-optimal reward as −0.5, which was cumulatively
summed until the end of episodes. In each episode, the Q∗(s, a) are gathered. In this environment setup,
the optimal α is 0.09, which fluctuates around −128.3075.

Algorithm 2: Proposed self-organizing agent controllers for optimizing eFL aggregation selection
Require: PARAA and PICOA decisions based on optimal actions
Ensure: optimal flow entry installation, resource orchestration, and eFL server selection

1: for each local model update in t iteration do
2: Transform the discrete state st to match with the flow criteria (st)f

3: for each OFPT_PACKET_IN in range of cluster heads CH do
4: if no match found in local CH tables do
5: Apply optimal policies of PARAA and PICOA to bridge traffic through VNFs
6: Transform the optimal discrete action at to adapt with the flow stats (at)f

7: VNFFG creation for rendering to SFC, then, install the flow entry for execution
8: else
9: Execute the instruction sets of the found flow entry
10: end if
11: for each selected eFL server in range(i) do
12: Perform edge aggregation for optimal wt

i

13: end for [edge aggregation]
14: end for [OFPT_PACKET_OUT]
15: [Global Server]
16: Compute averaging aggregation on [wt

1, wt
2, . . . wt

i] for global model W t+1
G

17: end for [t iteration]

To capture the particular QoS performance metrics of the proposed controllers and NFV
modules, mini-nfv on top of Mininet is used to create the data plane topology, VNF descriptors, and
VNFFG descriptors. Mini-nfv supports the external SDN controller platform for experimentation.
The forwarding rule installation is configured by FlowManager and RYU-based platform [27–31].
The descriptors set the VDU and VM capabilities based on selected actions from the optimal policy
table. Each flow entry is configured following the forwarding graph. Fig. 4 presents the interaction
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of the convergence; however, the virtual links for communication perspective are still restricted for
explicit fine-grained performance.

Figure 3: The total average rewards per 100 episodes within MADQNs model construction

init function

allocation step function

multi-agent approach

OpenAI Gym and TensorFlow

Mininet, Mini-NFV, and RYU Controller

optimized policy outputs

Data plane topology  
configuration

VNF 
descriptors

VNF 
creation

VNFFG 
descriptors

VNFFG 
Creation

FlowManager: forwarding 
rule installation

Execute and capture 
QoS metrics

(1) sample s (with 
randomness function)

(2) select action a (3) new state, 
reward, and 

done statuses

(4) reset the state reset function

Figure 4: The interaction of optimal policy outputs for SDN/NFV-based control entities

A discrete-event network simulator, namely ns-3, is used in this environment to perform the E2E
convergence [32–34]. The simulation was executed for 430 s, which adjusted into 4 consecutive network
congestion conditions to reflect the service-learning criticalities of FL communication reliability. In
this setup, there are 4 eFL nodes, and the virtual extended networks loading was configured between
0 to 250. Additionally, there are 4 remote radio heads (RRHs), and the user data rate is between 20 to
72 Mbps. The model updates will rely on the network situation, and the congestion environment will
increase the loss probability between clients and aggregation servers. The congestion states lowered the
model accuracy and reduced global model reliability. The payload size was set to 1024 bytes, and QoS
class identifier (QCI) mechanism is set as user datagram protocol (UDP). At the core side, the point-to-
point (P2P) link bandwidth was configured to 9 Gb/s, and the buffer queuing discipline was operated
by random early detection (RED) queue algorithm. The default link delay of MEC was configured
as 2 ms. The hyperparameters of MADQNs are prior configured to conduct the experiments with
maximized output expectations in terms of computation intensity and time constraints. The learning
rate α is set to 0.09 in this environment. γ , nume, and ε values are set to 0.95, 1000, and 0.5, respectively.
The main hyperparameters and parameters configuration used in overall simulation is shown in Tab. 1.
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Table 1: Simulation parameters

Parameters Specifications

Simulation time 430 s
Number of RRHs 4
Virtual extended networks
loading

0 to 250

Virtual eFL MEC server 4
User data rate 20 to 72 Mbps
Payload size 1024 Bytes
P2P link bandwidth 9 Gbps
MEC link delay 2 ms
α 0.09
γ 0.95
nume 1000
ε value 0.5

4.2 Reference Schemes and Performance Metrics

To illustrate the proposed and reference approaches in overall performances, four different
resource control and eFL selection policies were simulated. The resource pools represented the
capacities extraction by the proposed actions of the model. Each scheme triggered different actions,
which contained the VNFFG mapping to particular virtual resources. Reference schemes were
simulated in control policy for IoT congestion scenarios, including maximal rate experienced-
based eFL selection (MRES), single-agent DQN-control (SADQN), and MADQNs. The proposed
scheme extended PARAA and PICOA policies by enhancing the deficient actions as described in
Algorithm 2.

The QoS metrics which were used to evaluate the comparison between the reference and proposed
approaches are presented as follows [35,36]. Delay specifies the latency time of data communications
from the sending node to the receiver node, including propagation, queueing, transmission, and control
at the core system, which are denoted as Dprop

(J) , Dqueue
(J) , Dtr

(J)
, and Dct

(J)
, respectively, as described in Eq. (8).

In the network simulation architecture, J = {1, 2, . . . , j} denotes the number of queueing buffers.

Delay =
j∑

J=1

(Dprop
(J)

+ Dqueue
(J)

+ Dtr
(J)

+ Dct
(J)

) (8)

TP refers to the communication throughput, which expresses the successful packets delivery
ratio over a given communication bandwidth bw (see Eq. (9)). The total, propagation, control, and
processing latencies of queued j entities are denoted as Tt

(J)
, Tprop

(J) , Tct
(J)

, and Tproc
(J) , respectively.

TP =
∑j

J=1(T
t
(J)

) × bw∑j

J=1(T
t
(J) + Tprop

(J) + Tct
(J) + Tproc

(J) )
(9)
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The packet drop ratio in the experimental simulation is the ratio formulation between total packet
lost and total packet successfully transmitted. The packet drop counts are illustrated to specifically
compare in this particular experimental setup. The packet delivery ratio in the simulation environment
is calculated by the subtraction between the total ratio and packet drop ratio.

4.3 Results and Discussions

The proposed agent outputted the offloading decisions of 142, 117, 371, and 370 local model
updates toward 4 eFL servers, respectively. In SDN/NFV-enabled architecture, the primary consider-
ation is the QoS metrics after installing and executing the forwarding rules [37,38]. The comparison
between proposed and reference schemes is shown in Fig. 5. Within 430 s of 4 consecutive network
congestion conditions, the average control delay is 8.4723 ms, which was 28.2833, 25.6824, and 11.7175
ms lower than MRES, SADQN, and MADQNs, respectively.

Figure 5: Comparison of average delay between proposed and reference schemes in SDN/NFV model

In E2E simulation, the emphasis of FL model reliability in real-time routing networks was
considered. Fig. 6a depicted the average delays of E2E communications in the edge cloud systems. The
data communication between the aggregation servers were utilized the IP network communications.
The graph presented the comparisons between the proposed and reference methods with various
possibilities of forwarding paths. The proposed scheme performed an average delay of 12.8948
ms, which was 64.3321, 150.9983, and 169.9983 ms lower than MADQNs, SADQN, and MRES,
respectively. The proposed scheme distinguished the loading metrics of every possible serving MEC
server. The predicted metrics represented the loading statuses of MEC server; therefore, the MEC,
which has the lowest loading metrics, will be considered as an optimal server for serving incoming
local model update requests. TP comparison is presented in Fig. 6b, which illustrated the notable
outperformance over other approaches. The proposed scheme, MADQNs, SADQN, and MRES
reached an average throughput of 659.0801, 113.7167, 50.8434, and 47.2032 bps, respectively. The
proposed scheme utilized the integrated multi-agent to predict the optimal route with the lowest
loading metrics for efficient eFL offloading. The average packet drops ratio of the proposed scheme
significantly reached 0.0284% within 430 s simulation, which is 0.1068%, 0.1482%, and 0.1446% lower
than MADQNs, SADQN, and MRES, respectively. In contrast, the proposed, MADQNs, SADQN,
and MRES schemes achieved a closing packet delivery ratio of 99.9965%, 99.9853%, 99.9501%, and
99.9384%, respectively. Figs. 6c, and 6d show the graphical comparison of packet drop ratio and packet
delivery ratio, respectively. Moreover, within a particular simulation setup, the packet drop counts of
the proposed scheme reached a total of 1309 packets, which was 4083, 9746, and 10847 packets lower
than MADQNs, SADQN, and MRES, respectively.
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Figure 6: Comparison of (a) E2E average delay, (b) throughput, (c) packet drop ratio, and (d) packet
delivery ratio between proposed and reference schemes in E2E communication perspective

MADQNs deployed the control policies of both deficient and efficient output episodes. The
downlink and uplink transmission are strongly congested in heavy multi-dimensional model updates,
while multiple virtual MEC is offloaded and reallocated deficiently. To gain unoccupied resource
pools for QoS assurances, the proposed scheme extended MADQNs and considered the optimal
resource pools for high mission-critical FL model traffics, which covers the networking states with
over-bottleneck peak hour circumstances. While the extant communication and computation resources
are used, the proposed controllers and orchestrator advance the positive weights ω+ to accelerate
the serving resources from NFVI. The conditional configuration and orchestration trigger a flexible
serving backup instance capacity.

In the congested FL communication networks, the local model wn
k updates and global model WG

distributions have to transmit through long-time queueing before entering the ingress buffer of the
routing or switching devices. During the heavy loading networks, the waiting time of the incoming
packets can be expired and discarded before forwarding to another network. Therefore, an eNA of
optimal resource allocation and sufficient eFL aggregation server offloading is applicable for enhanc-
ing reliability. In proposed scheme framework, the transmission from wn

k to eFL node i was enhanced
to aggregate reliable wi models based on the proposed PARAA and PICOA policies. The aggregation
averaging procedures between edge wi and parameter server were executed in appropriate intervals
or off-peak hours. Furthermore, the proposed approach is capable of alleviating the communication
overhead for both computation and communication latency since the proposed method determined
the optimal network interface with minimum cost for updating model parameters during congested
situations. The proposed scheme considered the serving cost of joint entities which are efficient to
each serving path. The queuing system of each SDN entity at the DP network and VNF entities were
handled separately. The computation overhead and queuing system in CP were considered. Therefore,
the proposed scheme avoided the data forwarding overhead from high computation intensity. In the
proposed system, SDN controller was scheduled for the optimal path local model computation with
adequate requests. Based on the comparisons, the proposed scheme significantly handled the routing
congestion in FL communications in order to meet the criteria of URLLC key performance indicators.
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5 Conclusion

This paper proposed a multi-agent approach, including PARAA for optimizing virtual resource
allocation and PICOA for recommending eFL aggregation server offloading, in order to meet the
significance of URLLC for mission-critical IoT model services. SDN/NFV-enabled architectural
framework for controlling the proposed forwarding rules and virtual resource orchestration is adopted
in software-defined IoT networks. MADQNs model interacted with the gathered state observations
and contributed a collection of exploration policies for sampling the allocation rules under the
expansion of edge intelligence. To obtain deficient policies, the proposed algorithms targeted weak
episodes with low aggregated rewards of optimal learning rate hyperparameter. The proposed agent
controller outputs a setup of long-term self-organizing flow entry with sufficient computation and
communications resource placement. The optimal actions are used to correspondingly configure the
VNFFG descriptors and map towards adequate virtual MEC resource pools with four experimental
congestion states. The simulation was conducted in three main aspects. Based on the validation, the
proposed scheme contributed a promising approach for achieving efficient eFL communications in
future massive IoT congestion states.
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