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Abstract: This paper presents a novel application of metaheuristic algorithms
for solving stochastic programming problems using a recently developed gain-
ing sharing knowledge based optimization (GSK) algorithm. The algorithm
is based on human behavior in which people gain and share their knowledge
with others. Different types of stochastic fractional programming problems
are considered in this study. The augmented Lagrangian method (ALM)
is used to handle these constrained optimization problems by converting
them into unconstrained optimization problems. Three examples from the
literature are considered and transformed into their deterministic form using
the chance-constrained technique. The transformed problems are solved using
GSK algorithm and the results are compared with eight other state-of-the-art
metaheuristic algorithms. The obtained results are also compared with the
optimal global solution and the results quoted in the literature. To investigate
the performance of the GSK algorithm on a real-world problem, a solid
stochastic fixed charge transportation problem is examined, in which the
parameters of the problem are considered as random variables. The obtained
results show that the GSK algorithm outperforms other algorithms in terms
of convergence, robustness, computational time, and quality of obtained
solutions.

Keywords: Gaining-sharing knowledge based algorithm; metaheuristic
algorithms; stochastic programming; stochastic transportation problem

1 Introduction

Optimization techniques include finding the best suitable values of decision variables that optimize
the objective function. They are used in various fields of engineering to solve real-world problems.
It has several applications in mechanics, economics, finance, machine learning, computer network
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engineering, etc. In real-world problems, the exact or deterministic information of the problems is
difficult to find; therefore, randomness or uncertainty takes place [1]. These problems come under
stochastic programming, where the parameters of the problems are characterized by random variables
which follow any probabilistic distribution [2]. Stochastic programming has several applications in
different areas such as transportation [3,4], portfolio optimization [5], supply chain management [6],
electrical engineering [7], lot sizing and scheduling [8,9], water resources allocation [10], production
planning [11], medical drug inventory [12] etc. The basic idea of solving a stochastic programming
problem is to convert probabilistic constraints into their equivalent deterministic constraints and then
are solved using analytical or numerical methods.

Stochastic programming is applied to a large number of problems of which fractional program-
ming problems are considered in this study. The stochastic fractional programming problems (SFPP)
optimize the ratio of two functions with some additional constraints, which include at least one
parameter that is probabilistic rather than deterministic. Additionally, some of the constraints may
be indeterministic. Charles et al. [13–16] considered the sum of the probabilistic fractional objective
function and solved by classical approaches. By using classical methods, several difficulties such as
finding optimal solution, handling constraints, high-dimensional problems etc. arise. To handle these
situations, metaheuristic algorithms have been developed over the last three decades. The algorithms
need not to calculate the derivative of the problem and are classified into four categories which
are shown in Fig. 1 [17,18]. These algorithms are nature inspired algorithms such as evolutionary
algorithms are inspired by natural evolution, swarm-based algorithms are based on the behaviour
of insects or animals, physics-based algorithms are inspired from the physical rule and human based
algorithms are based on the philosophy of human activity.

Figure 1: Classification of metaheuristic algorithms

Numerous evolutionary, swarm-based, and physics-based algorithms have been developed and
applied to solve different real-world problems [19]. Claro and Sousa [20] proposed multi-objective
metaheuristic algorithms for solving stochastic knapsack problems. Hoff et al. [21] considered a time-
dependent service network design problem in which the demand is in stochastic nature and the problem
is solved using metaheuristic algorithms. Differential Evolution (DE) algorithm with a triangular
mutation operator is proposed to solve the optimization problem [22] and applied to the stochastic
programming problems [23]. Many researchers presented the applications of metaheuristic algorithms
in different types of problems such as unconstrained function optimization [24], vehicle routing
problems [25–27], machine scheduling [28,29], mine production schedules [30], project selection [31],
soil science [32], feature selection problem [33,34], risk identification in supply chain [35] etc. For
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constrained optimization problems, Particle Swarm Optimization (PSO) with Genetic Algorithm (GA)
was presented and compared to other metaheuristic algorithms [36].

Agrawal et al. [17] presented an extensive review of the scientific literature, from which it can
be observed that there are only a few algorithms in the human-based category. Recently, Mohamed
et al. [18] developed a gaining sharing knowledge (GSK) based optimization algorithm that typically
depends on the ideology of gaining and sharing knowledge during the human life span. The GSK
algorithm comes under the human-based algorithm category and has been evaluated over test
problems from the CEC 2017 benchmark functions for different dimensions. They observed that
GSK algorithm gives significantly better results as compared to other metaheuristic algorithms in
terms of accuracy, convergence, and can find the optimal solutions. Moreover, Agrawal et al. [37–40]
proposed binary versions of the GSK algorithm and applied it to the real-world problems such as
feature selection problem, knapsack problem.

The SFPP problems are solved using classical approaches and obtained the solution by Charles
et al. [16]. While, Mohamed [22] solved the problems using modified version of DE algorithm and
found that the DE algorithm presented better results in comparison to the classical approaches. This
implies that the use of metaheuristic algorithm in solving stochastic programming problems will be
more efficient and effective approach.

Therefore, this paper presents SFPP and their deterministic models that are solved using the
GSK algorithm. To the best of our knowledge, it is the first study on applying GSK to stochastic
programming problems and an application of real-world problems. The obtained solutions are com-
pared with eight other state-of-the-art metaheuristic algorithms, quoted results in the literature [16]
and optimal global solution. The state-of-the-art metaheuristic algorithms include two evolutionary
algorithms i.e., Genetic Algorithm (GA) [41], Differential Evolution (DE) [42]; three swarm-based
algorithms i.e., Particle Swarm Optimization (PSO) [43], Whale Optimization Algorithm (WOA) [44],
Ant Lion Optimizer (ALO) [45]; two physics-based algorithms i.e., Water Cycle Algorithm (WCA) [46],
Multi-Verse Optimizer (MVO) [47] and one human-based algorithm i.e., Teaching Learning Based
Optimization (TLBO) [48].

As an application of stochastic programming to real-world problems, a transportation problem is
examined under a stochastic environment. Mahapatra et al. [49] considered a stochastic transportation
problem in which the parameters of the problem follow extreme value distribution. Yang et al. [3]
considered fixed charge transportation problem and used a tabu search algorithm to find the solu-
tion. Agrawal et al. [50] solved multi-choice fractional stochastic transportation problems involving
Newton’s Divided Difference interpolating polynomial.

In this study, the transportation problem is considered with multi-objective functions and proba-
bilistic constraints. The main aim of the problem is to minimize the transportation cost and the total
transportation time while fulfilling the demand requirements. The problem is solved by the GSK
algorithm, other metaheuristic algorithms and the solutions are compared to evaluate the relative
performance of the algorithms.

The organization of the paper is as follows: Section 2 describes the problem definition of SFPP,
Section 3 presents the methodology used in solving SFPP. The numerical examples SFPP are shown
in Section 4 and Section 5 represents the numerical results of the problems. A case study is given in
Section 6 and the analysis of the results is discussed in Section 7 which is followed by the conclusions
in Section 8.
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2 Problem Description

Stochastic programming problems deal with the situations when uncertainty or randomness takes
place. This section gives a detailed description of the stochastic fractional programming problems
(SFPP) dealing with the optimization of the ratio of functions, in which randomness occurs in at least
one of the parameters of the problem. The uncertain parameters are estimated as random variables
that follow probability distribution.

The sum of SFPP is considered from the literature [16], and their mathematical model is
demonstrated as:

max
z∈S

k∑
t=1

Nt(Z) + αt

Dt(Z) + βt

; t = 1, 2, . . . , k (1)

subject to

P

(
n∑

j=1

dijzj ≤ b(1)

i

)
≥ 1 − p(1)

i ; i = 1, 2, . . . , m (2)

n∑
j=1

eijzj ≤ b(2)

i ; i = m + 1, . . . , q (3)

where zj ∈ Z = (z1, z2, , zn) ⊂ Rn are deterministic decision variables and Nt(Z) =
n∑

j=1

htjzj, Dt(Z) =
n∑

j=1

ptjzj, where, htj, ptj are the coefficients of decision variables in the objectives functions and αt, βt

are constants. Out of Nt(Z), Dt(Z), dij and b(1)

i at least one parameter is a random variable therefore,
the problem is called as sum of SFPP. S = {Z : Eqs. (2), (23) and Z ≥ 0} is non-empty, convex,
and compact set in R

n (Feasible Set). There is total q number of constraints in which the number
of probabilistic constraints is m and rest are deterministic constraints. dij, eij are the coefficients of
decision variables in the constraints, b(1)

i , b(2)

i are the right-hand side of the constraints and p(1)

i is a
probability for the ith stochastic constraints of SFPP.

3 Methodology

This section is divided into two subsections: the first subsection describes the detailed description
of the GSK algorithm, and the second presents the constraint handling technique.

3.1 Gaining Sharing Knowledge-Based Algorithm (GSK)

Gaining sharing knowledge-based algorithm (GSK) is one of the metaheuristic optimization
algorithms [18]. GSK depends on the concept of gaining and sharing knowledge in the human life
span. The algorithm comprises two stages:

1. Junior (beginners) gaining and sharing stage
2. Senior (experts) gaining and sharing stage

In the human life span, all persons gain and share knowledge or views with others. The persons
from early middle age gain knowledge through their small connections such as from family members,
relatives and want to share their views or opinions with others who may or may not belong to their
group. Similarly, people from middle later age gain knowledge by interacting with their colleagues,
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friends, etc. They have the experience to judge people and categorize them as good or bad. Also, they
share their views or opinions with experienced or suitable persons so that their knowledge may be
enhanced.

The process, as mentioned above, can be mathematically formulated in the following steps:

Step 1: In the first step, the number of persons are assumed (Number of population size Npop). Let
zi (i = 1, 2, , Npop) be an individual of a population zij = (zi1, zi2, , ziN), where N is branch of knowledge
assigned to an individual. and Fi (i = 1, 2, , Npop) are the corresponding objective function values.

Step 2: At the beginning of the search, the number of dimensions for the junior and senior stage
should be computed. The number of dimensions that should be changed or updated during both the
stages must set on, and it is calculated by a non-linear decreasing and increasing equation:

Njunior = N ×
(

Gen − G
Gen

)k

(4)

Nsenior = N − Njunior (5)

Step 3: Junior gaining sharing knowledge stage: In this stage, early-middle aged people gain
knowledge from their small networks. Due to the curiosity of exploring others, they share their views
or skills with other people who may or may not belong to their group. Thus, individuals are updated
as follows:

1. According to objective function values, the individuals are arranged in ascending order as
zbest, . . . , zi−1, zi, zi+1, . . . , zworst

2. For every zi (i = 1, 2, , Npop), select the nearest best (zi−1) and worst zi+1 to gain the knowledge,
also select randomly (zr) to share the knowledge. Therefore, the updated new individual is as

znew
ij =

{
zi + kf [(zi−1 − zi+1) + (zr − zi)], if F(zr) < F(zi)

zi + kf [(zi−1 − zi+1) + (zi − zr)], otherwise (6)

where, kf > 0 is the knowledge factor.

Step 4: Senior gaining sharing knowledge stage: This stage comprises the impact and effect of other
people (good or bad) on an individual. The updation of the individual can be computed as follows:

1. The individuals are classified into three categories (best, middle and worst) after sorting
individuals in ascending order (based on the objective function values). best individual =
100p% (zp−best), middle individual = N−2 100p% (zmiddle), worst individual = 100p% (zp−worst).

2. For every individual zi, choose two random vectors of the top and bottom 100p% individual
for gaining part and the third one (middle individual) is chosen for the sharing part. Therefore,
the new individual is as

znew
ij =

{
zi + kf [(zp−best − zp−worst) + (zmiddle − zi)], if F(zmiddle) < F(zi)

zi + kf [(zp−best − zp−worst) + (zi − zmiddle)], otherwise (7)

where, p ∈ [0, 1] is the percentage of best and worst classes.

The flow chart of GSK is shown in Fig 2.
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Figure 2: The flow chart of GSK algorithm

3.2 Constraint Handling Technique

To solve constrained optimization problems, different types of constraint handling techniques are
used [51,52]. Deb [53] introduced an efficient constraint handling technique which is based on the
feasibility rules. The most commonly used approach to handle the constraints is the penalty function
method, in which the infeasible solutions are punished with some penalty for violating the constraints.
The mathematical formulation of a constrained optimization problem is given as

max f (Z) where Z = (z1, z2, , zN) ∈ RN (8)

subject to

gi(Z) ≤ 0 i = 1, 2, . . . , m (9)
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wk(Z) = 0 k = 1, 2, . . . , n (10)

Eq. (8) represents the objective function, Eq. (9) describes the inequality constraints and Eq. (10)
describes the equality constraints. In this study, the augmented Lagrange method (ALM) is used to
solve the constrained problem by converting it into an unconstrained optimization problem with some
penalty to the original objective function. Bahreininejad [54] introduced ALM for the water cycle
algorithm and solved real-time problems. The original optimization problem is transformed into the
following unconstrained optimization problem:

max = f (Z) + δ

N∑
i=1

{gi(z)}2 − λ

N∑
i=1

{gi(z)} (11)

where, f (Z) is the objective function given in the problem, δ is the quadratic penalty parameter,
N∑

i=1

{gi(z)}2 is quadratic penalty term and λ is the Lagrange multiplier.

The ALM is similar to the penalty approach method in which the penalty parameter is chosen
as large as possible. In ALM, δ and λ are chosen in such a way that λ can remain small to maintain
the strategic distance from ill conditions. The advantage of ALM is that it reduces the possibility of
ill-conditioning happening in the penalty approach method.

4 Numerical Examples

The three test examples of the sum of SFPP were taken from Charles et al. [16]. The detailed
description of each example can be found in [16].

4.1 Example 1

max R(Z) =
2∑

t=1

ht1
z1 + ht2

z2 + αt

pt1
z1 + pt2

z2 + βt

subject to

d11z1 + d12z2 ≤ 1; d21z1 + d22z2 ≤ b2; 16z1 + z2 ≤ 4; z1, z2 ≥ 0

The aforementioned problem is converted into deterministic one and the model is given as [16]:

max F(Z) = γ1 + γ2

subject to

(γ1 + 2γ2 − 5)z1 + (γ1 + 3γ2 − 4)z2 + 2γ1 + 4γ2 + 1.28
√

γ 2
1 + γ 2

2 ≤ 3;

(2z1 + z2) + 1.645
√

z2
1 + z2

2 ≤ 1; (3z1 + 4z2) + 0.84
√

2z2
1 + 3z2

2 + 2 ≤ 3;

16z1 + z2 ≤ 4; z1, z2, γ1, γ2 ≥ 0
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4.2 Example 2

max R(Z) =
3∑

t=1

ht1
z1 + ht2

z2 + αt

pt1
z1 + pt2

z2 + βt

subject to

d11z1 + d12z2 + d13z3 ≤ b1; d31z1 + d32z2 + d33z3 ≤ 20; z1 + z2 + z3 ≤ b3;

5z1 + 3z2 + 4z3 ≤ 15; z1, z2, z3 ≥ 0

The deterministic model of the example is given as:

maxF(Z) = γ1 + γ2 + γ3

subject to

(γ1 + 2γ2 + 4γ3 − 17)z1 + (γ1 + γ2 + γ3 − 19)z2 + (γ1 + 4γ2 + 7γ3 − 23)z3 + 2γ1 + 10γ2 + 5γ3+
1.645

√
(γ 2

2 + 0.5γ 2
3 )z2

1 + (0.5γ 2
2 + 2γ 2

3 )z2
2 + (2γ 2

2 + 3γ 2
3 )z2

3 ≤ 12;

(4z1 + 2z2 + 7z3) + 1.645
√

0.5z2
1 + 0.25z2

2 + 0.5z2
3 + 0.25 ≤ 12;

(6z1 + 4z2 + 6z3) + 1.28
√

z2
1 + 0.5z2

2 + 0.75z2
3 ≤ 20;

z1 + z2 + z3 ≤ 3.16; 5z1 + 3z2 + 4z3 ≤ 15; z1, z2, z3, γ1, γ2, γ3 ≥ 0

4.3 Example 3

max R(Z) =
2∑

t=1

ht1
z1 + ht2

z2 + αt

pt1
z1 + pt2

z2 + βt

subject to

d11z1 + d12z2 + d13z13 ≤ 27; 5z1 + 3z2 + z3 ≤ 12; z1, z2 ≥ 0

The deterministic model of the example is given as:

max F(Z) = γ1 + γ2

subject to

(20 − 2γ1 + 4γ2)z1 + (16 − 3γ1 − 2γ2)z2 + (12 − 5γ1 − 2γ2)z3

−10γ1 − 12γ2 − 1.28
√

(γ 2
1 + γ 2

2 + 10)z2
1 + (2γ 2

1 + γ 2
2 + 4)z2

2 + (3γ 2
1 + 2γ 2

2 + 5)z2
3 ≥ 3;

(3z1 + 4z2 + 8z3) + 1.645
√

2z2
1 + z2

2 + z2
3 ≤ 27; (5z1 + 3z2 + z3) ≤ 12;

z1, z2, z3, γ1, γ2 ≥ 0

5 Numerical Results

This section describes the parameters settings of the algorithms and the obtained results of the
numerical examples.
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5.1 Parameter Settings

The user defined parameters of the GSK algorithm are number of population (Npop), knowledge
factor (kf ), knowledge ratio (kr) and knowledge rate (k) and the considered values of each parameter
are Npop = 50, kf = 0.5, kr = 0.9, k = 10 (taken from [18]). The percentage of best and worst classes
in senior gaining sharing knowledge stage is p = 0.1. The parameters used in the ALM are δ = 102

and λ = −104. Also, the values of parameters of all compared algorithms are given in Tab. 1.

Table 1: Parameters Values for all compared algorithms

Parameters Values

Npop (Number of population) 50
Maximum number of function evaluations 25000
Crossover probability for GA 1
Mutation probability for GA 0.09
Scaling factor lower bound for DE 0.2
Scaling factor upper bound for DE 0.7
Crossover Probability for DE 0.95
c1 Cognitive factor for PSO 1.5
c2 Social factor for PSO 1.5
Wmax Maximum bound on inertia weight for PSO 1
Wmin Minimum bound on inertia weight for PSO 0.2
b (constant) for WOA 1
Number of streams for WCA 4
Evaporation condition constant (dmax) for WCA 1e-6
Minimum value for Wep (wormhole existence
probability) in MVO

0.2

Maximum value for Wep (wormhole existence
probability) in MVO

1

The following conditions are assumed:

1. To terminate the algorithms, the maximum number of function evaluations is assumed [55].
2. To handle the constraints, the parameter used in the ALM depends on each example.
3. A total of 25 independent runs are conducted, and the best results are recorded throughout the

process.
4. The results are compared among the algorithms (GSK, GA, DE, PSO, ALO, WOA, WCA,

MOV, and TLBO) and a previous study [16].
5. The numerical results are shown in terms of maximum (best) objective value, minimum (worst)

objective value, average objective value, standard deviation, and coefficient of variation (C.V.).
6. The results are obtained for the deterministic objective function F(Z).

5.2 Simulation Results

The considered numerical examples are solved by the GSK and other metaheuristic algorithms
using MATLAB R2015a on a personal computer having Inter Core™ i5@2.50GHz processor with
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4 GB RAM. To fair comparisons and obtain the optimal global solutions, the examples are solved
by LINGO 11.0 and the obtained results of each example are presented in Tabs. 2–4.

Table 2: Experimental results of example 1

Algorithms Maximum
(Best)

Mean Minimum
(Worst)

Std.
Deviation

C.V.

GSK 1.83246 1.83246 1.83246 0.00000 0.00000
GA 1.83142 1.57011 0.89299 0.32710 0.20833
DE 1.83246 1.83246 1.83246 0.00000 0.00000
PSO 1.50000 1.47000 0.75000 0.15000 0.10204
ALO 1.83246 1.83214 1.83115 0.00032 0.00018
WOA 1.83200 1.63303 1.47480 0.12887 0.07892
WCA 1.83246 1.83201 1.82998 0.00057 0.00031
MVO 1.83228 1.82881 1.82084 0.00321 0.00176
TLBO 1.83246 1.83246 1.83246 0.00000 0.00000
LINGO 1.83246 - - - -
Results in [16] 1.75533 - - - -

Table 3: Experimental results of example 2

Algorithms Maximum
(Best)

Mean Minimum
(Worst)

Std. Deviation C.V.

GSK 15.2256 15.2256 15.2256 0.0000 0.0000
GA 15.2255 15.0591 14.0484 0.2705 0.0180
DE 15.2256 15.2255 15.2240 0.0003 0.0000
PSO 15.2255 14.8238 13.9612 0.5519 0.0372
ALO 15.2255 15.2120 15.1558 0.0166 0.0011
WOA 14.8468 13.8022 11.2338 0.8402 0.0609
WCA 15.2256 15.1733 15.0933 0.0610 0.0040
MVO 15.2241 15.2068 15.0922 0.0271 0.0018
TLBO 15.2256 15.2256 15.2256 0.0000 0.0000
LINGO 15.2256 - - - -
Results in [16] 15.1931 - - - -

The results of example 1 depict that all the algorithms can find a feasible solution to the problem.
GSK, DE, and TLBO obtained the solutions equal to the optimal global solution (F(z) = 1.83246)

with a minimum standard deviation. The convergence graph of the GSK algorithm with other
metaheuristic algorithms is presented in Fig. 3 in which the comparison is shown among the GSK and
other algorithms. The convergence graph shows that GSK has the best convergence as compared to the
other algorithms. Also, the average elapsed time taken by the GSK algorithm is less than others, which
is presented in Fig 6. Moreover, the results obtained by metaheuristic algorithms are much better than
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the results in the literature (Charles et al. [16]) except for the PSO algorithm. Therefore, the values of
decision variables obtained by GSK algorithm are γ1 = 1.83246, γ2 = 0, z1 = 0.202324, z2 =
0.165433 and the values of the constraints are [−0.5901, − 5.9157e − 07, − 0.4956, − 0.5974],
that describes the feasibility of the solutions.

Figure 3: The convergence graph for the solution of Example 1

For the solution of example 2, the results are presented in Tab. 3. It indicates that the solutions
obtained by GSK, DE, and TLBO are equal to optimal solution with zero standard deviation, which
implies that these are efficient algorithms to solve the problem. The obtained results are better than the
results in (Charles et al. [16]). Moreover, the computational time is also noted throughout the process.
The average elapsed time taken by all algorithms is shown in Fig. 6, which establishes that the GSK
algorithm takes less computational time as compared to others. Also, Fig. 4 shows the convergence
graph of the GSK algorithm with other algorithms. To show the feasibility of the solutions, the values
of the constraints are [0, − 2.7569e − 06, − 1.9445, − 0.0536, − 3.9992] and the values of the
decision variables are γ1 = 15.22559, γ2 = 0, γ3 = 0, z1 = 0, z2 = 1.424836, z3 = 1.681578 that
are obtained by GSK algorithm.

Similarly, example 3 is also solved by the GSK algorithm and the other algorithms. The results
are shown in Tab. 4 in terms of maximum (best), minimum (worst) and average objective value with
their standard deviations and coefficient of variation. All algorithms GSK, GA, DE, PSO, WOA,
ALO, WCA, MVO, and TLBO can find the solution, but GSK and ALO algorithm find the optimal
solution, which has a 0% difference from the optimal global solution. The objective function value in
(Charles et al. [16]) is 3.6584 which is 53.5% of the global optimal solution (7.8808). The convergence
graph of example 3 by GSK and other algorithms is shown in Fig. 5. The average computational time
is presented in Fig. 6, which indicates that the GSK algorithm takes very less computational time.
The results obtained by GSK algorithm are: Objective function value=7.8808, value of the decision
variables γ1 = 0, γ2 = 7.88078, z1 = 2.4, z2 = 0, z3 = 0 and the value of the constraints are
[6.7823e − 05, − 14.2167, 0].
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Figure 4: The convergence graph for the solution of Example 2

Table 4: Experimental results of example 3

Algorithms Maximum
(Best)

Mean Minimum
(Worst)

Std. Deviation C.V.

GSK 7.88079 7.88079 7.88079 0.00000 0.00000
GA 7.88079 7.41234 6.81614 0.53938 0.07277
DE 7.88079 7.45492 5.75135 0.68726 0.09219
PSO 7.88079 7.35145 5.29517 0.80506 0.10951
ALO 7.88078 7.88078 7.88078 0.00000 0.00000
WOA 7.83065 6.65585 2.39331 1.44584 0.21723
WCA 7.88079 7.88067 7.87905 0.00043 0.00005
MVO 7.87867 7.86897 7.85739 0.00488 0.00062
TLBO 7.88079 7.62353 4.64353 0.77710 0.10193
LINGO 7.8808 - - - -
Results in [16] 3.6584 - - - -

5.3 Statistical Analysis

To validate the results obtained from the GSK and other algorithms, two non-parametric
statistical tests i.e., Friedman test and Wilcoxon signed rank test are performed using IBM SPSS 20.

5.3.1 Friedman Test

To compare the performance of algorithms simultaneously, the Friedman test is conducted by
calculating their mean ranks. The null hypothesis is “There is no significant difference among the
performance of the algorithms” whereas the alternative hypothesis is “There is significant difference
among the performance of the algorithms”. Using the Friedman test, the mean rank is obtained for
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each example and the acquired results are shown in Tab. 5. According to obtained mean ranks, the
ranks are assigned to the algorithms. The high ranks are assigned to the larger value of mean rank and
higher ranks indicate the better performance of the algorithm. The same is shown in Fig. 7 for each
example. From Tab. 5, it can be observed that the GSK algorithm obtains first rank among others for
each example. Moreover, it is noted that all the algorithms have significant differences at the 5% level
(p-value = 0.00 < 0.05) therefore, to check the pairwise comparison, the Wilcoxon signed rank test is
also performed.

Figure 5: The convergence graph for the solution of Example 3

Figure 6: Average Elapsed time of example 1, 2 and 3 for all algorithms
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Table 5: Results of Friedman Test

Example 1 Example 2 Example 3

Algorithms Mean Rank Ranking Mean Rank Ranking Mean Rank Ranking

GSK 8.52 1 8.96 1 7.22 1
GA 2.40 7 3.68 7 4.80 6
DE 8.18 2 7.26 3 5.32 4
PSO 1.56 9 3.44 8 5.12 5
ALO 5.48 4 4.56 4 4.36 7
WOA 2.12 8 1.16 9 1.78 9
WCA 5.44 5 4.20 5 6.64 2
MVO 4.00 6 4.12 6 3.24 8
TLBO 7.30 3 7.62 2 6.52 3
p-value 0.00∗ 0.00∗ 0.00∗

Note: ∗ indicates that the value is less than 0.05

Figure 7: The mean ranks of the algorithms obtained by Friedman test

5.3.2 Wilcoxon Signed Rank Test

To check the pairwise comparison between the algorithms (GSK vs. GA, GSK vs. DE, GSK vs.
PSO, GSK vs. ALO, GSK vs. WOA, GSK vs. WCA, GSK vs. MVO and GSK vs. TLBO), Wilcoxon
signed-rank test is performed at the 5% level of significance. The obtained results are presented in
Tab. 6, in which S+, S− denote the sum of positive ranks and negative ranks, respectively. From
Tab. 6, it can be observed that the GSK algorithm obtains a higher S+ value than S− for every pairwise
comparison. As obtained p−value < 0.05, it can be observed that the GSK algorithm performs better
when compared to all other algorithms.6.
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Table 6: Results of Wilcoxon signed rank test

Algorithms Example 1 Example 2 Example 3

S+ S− p-value S+ S− p-value S+ S− p-value
GSK vs. GA 325 0 0.00∗ 325 0 0.00∗ 66 0 0.00∗

GSK vs. DE 15 0 0.04∗ 276 0 0.00∗ 36 0 0.01∗

GSK vs. PSO 325 0 0.00∗ 325 0 0.00∗ 45 0 0.01∗

GSK vs. ALO 325 0 0.00∗ 325 0 0.00∗ 325 0 0.00∗

GSK vs. WOA 325 0 0.00∗ 325 0 0.00∗ 325 0 0.00∗

GSK vs. WCA 325 0 0.00∗ 325 0 0.00∗ 15 0 0.04∗

GSK vs. MVO 325 0 0.00∗ 325 0 0.00∗ 325 0 0.00∗

GSK vs. TLBO 231 0 0.00∗ 325 0 0.00∗ 6 0 0.11
∗ indicates that the value is less than 0.05

Table 7: Nomenclature of solid stochastic fixed charge transportation problem

i the index for source locations

t the index for destination locations
k the index for conveyances
zitk the amount of product that should be

transported from ith source to
tth destination by kth conveyance

αitk direct transportation cost
βitk the fixed cost
ξitk transportation time
ai total availability at ith supply location.
bt minimum requirement at tth destination location
qk the capacity of kth conveyance

6 A Case Study

This section contains a case study based on a stochastic transportation problem. The transporta-
tion problem is considered with cost objective function in which the main aim is to minimize the total
transportation cost and find the total transportation time in Tab. 7.

A cement company transports cement from its 4 distributors (source locations) to 5 retailers
(destination locations) with 2 conveyances. In this problem, two categories of transportation cost are
asummed: direct costs and fixed costs. The direct cost is paid according to per unit of the transport
product and the fixed cost will be charged if the transportation facility occurs between source locations
to destination locations. Mathematically, the fixed cost can be formulated by introducing the variables
as:

y(zitk) =
{

1, if zitk > 0
0, Otherwise
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Thus, the total transportation cost can be calculated as

Cost = fcost =
4∑

i=1

5∑
t=1

2∑
k=1

(αitk zitk + βitk y(zitk)) (28)

Also, the total transportation time will be minimized when the transportation activity holds
between ith source locations to tth destination locations. Thus, the objective function for the total
transportation time can be formulated as

Time = ftime =
4∑

i=1

5∑
t=1

2∑
k=1

(ξitk y(zitk)) (29)

In the classical transportation problem, the data is already known to the decision maker but in real-
world problem, the data cannot be obtained in advance. It can be obtained by statistical experience or
observed from a previous activity. Hence, the parameters of the problem; ai, bt, qk, αitk, βitk, ξitk

are treated as random variables. Therefore, the problem becomes a solid stochastic fixed charge
transportation problem (SSFCTP). The mathematical model of the SSFCTP can be formulated as:

min fcost =
4∑

i=1

5∑
t=1

2∑
k=1

(αitk zitk + βitk y(zitk)) (30)

subject to

P

(
5∑

t=1

2∑
k=1

zitk ≤ ai

)
≥ γi; i = 1, 2, 3, 4 (31)

P

(
4∑

i=1

2∑
k=1

zitk ≥ bt

)
≥ ηt; t = 1, 2, 3, 4, 5 (32)

P

(
4∑

i=1

5∑
t=1

zitk ≤ qk

)
≥ ζk; t = 1, 2 (33)

zitk ≥ 0; y(zitk) = 0 or 1; for every i, t, k (34)

where, γi, ηt, ζk are probability confidence levels.

In order to obtain the solution of the problem, the usual procedure cannot be applied. Since the
parameters in the objective functions are random variables, the expected minimization model is used
to obtain the optimal solution and the chance constrained technique is applied to the probabilistic
constraints. The data used for the said problem is taken from Yang et al. [3].

The problem is solved by the GSK and the other algorithms (TLBO, DE, WCA, GA, MVO,
WOA). The independent runs for every algorithm are taken to be 15 and, the results are noted
throughout the process. The obtained solutions are shown in Tab. 8. It can be observed that the
GSK algorithm gives the lowest transportation cost (fcost = 1360.4) as compared to the other
algorithms. In the case of average cost, the GSK algorithm has the minimum average cost relative to the
other algorithms. The minimum and average transportation costs are also presented in Fig. 8 which
describes that the GSK algorithm is more efficient in comparison with others. The corresponding
total transportation time taken by all transportation activities is ftime = 42 hours and the optimal
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transportation plan is: z112 = 0.03, z121 = 0.02, z141 = 0.06, z212 = 27.57, z221 = 27.67, z222 =
18.36, z241 = 0.02, z442 = 34.45 and all other decision variables are zero.

Table 8: The transportation cost obtained by algorithms

Algorithms GSK TLBO DE WCA GA MVO WOA

Minimum
(Best) Cost

1360.4 1631.2 1897.1 1818.0 1662.9 2163.0 2528.5

Average
Cost

1702.6 1800.7 2117.8 1969.9 1890.4 2385.5 3592.7

Maximum
(Worst)
Cost

1839.5 1867.6 2192.8 2273.1 1969.6 2933.4 6710.5

Figure 8: The average and minimum transportation cost

To validate the efficiency and robustness of the GSK algorithm, Friedman Test and Wilcoxon
signed-rank test are performed. The obtained results from the tests are shown in Tabs. 9 and 10
respectively. To check the difference among all the algorithms, the Friedman test is applied and it is
observed that they are significantly different at (5%) level. To know the pairwise comparison between
the GSK algorithm and all other considered algorithms, Wilcoxon signed-rank test is performed. It
can be observed that the GSK algorithm is significantly different when compared to other algorithms
at the (5%) level except for the TLBO algorithm.

7 Results Analysis

From the experimental results, it can be observed that the GSK algorithm performs better in all
SFPP examples in terms of convergence, robustness and ability to find the optimal solutions.

In example 1, ALO, PSO, WOA algorithms have premature convergence and do not find the
optimal solution of the problem. While GSK algorithm has a fast convergence speed and does not
trap into local optima due to its good exploration and exploitation quality. It explores the search
space efficiently and effectively and converges to the optimal solution. Moreover, the GSK algorithm
proves its robustness quality by obtaining zero standard deviation in all the test examples of SFPP. In
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case of other algorithms, the techniques do not converge to the optimal solution in every simulation.
Also, due to two main pillars of the GSK algorithm i.e., junior and senior gaining sharing stage, the
algorithm can find the optimal solution with great convergence. Hence, it can be concluded that the
GSK algorithm is a very effective approach to solve the SFPP.

Table 9: Results of Friedman test for SSFCTP

Algorithms Mean Rank Rank

GSK 1.60 1
TLBO 1.73 2
WOA 6.93 7
DE 4.87 5
WCA 3.53 4
GA 3.33 3
MVO 6.00 6
p-value 0.00∗

Table 10: Results of Wilcoxon test for SSFCTP

Algorithms S+ S− p-value

GSK vs. TLBO 31 89 0.10
GSK vs. WOA 120 0.0 0.01∗

GSK vs. DE 120 0.0 0.01∗

GSK vs. WCA 116 4.0 0.01∗

GSK vs. GA 120 0.0 0.01∗

GSK vs. MVO 120 0.0 0.01∗

In addition, the GSK algorithm shows promising results in comparison with other metaheuristic
algorithms. While other algorithms are not even able to find the optimal solution to the SFPP problem,
GSK algorithm convergences to the optimal solution at an early stage of the optimization process. It
makes a proper balance between its exploration and exploitation characteristics and finds the solution.
Moreover, it consumes very less computational time which is an important characteristic to find the
optimal solution. Statistically, it is also shown that the GSK algorithm presents significantly better
results as compared to other algorithms by applying statistical tests.

Moreover, based on the results of the stochastic transportation problem, all algorithms other
than the GSK did not perform well and also did not obtain the minimum transportation cost of the
problem. However, the GSK algorithm obtained the minimum transportation cost and transportation
time of the problem, this proves its efficiency to solve real-world problems. Thus, it can be used to
solve all optimization problems (unconstrained, constrained and multi-objective) with both discrete
and continuous spaces. It is considered a general-purpose algorithm and easy to understand and
implement.
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8 Concluding Remarks

This paper describes an application of a recently developed gaining sharing knowledge-based
algorithm (GSK) to stochastic programming. GSK algorithm is a metaheuristic algorithm which is
based on the human activity of gaining and sharing knowledge. To check the performance of the
algorithm in terms of convergence and finding the optimal solution, GSK is applied to stochastic
fractional programming problems with three different types of numerical examples. For comparative
assessment, metaheuristic algorithms from each category, such as GA and DE from evolutionary
algorithms; PSO, ALO, and WOA from swarm-based algorithms; WCA and MVO from physics-based
algorithm; and TLBO from human-based algorithms are considered.

From the comparative results, it can be concluded that the GSK algorithm performs better than
other algorithms. It converges to the optimal solution rapidly and takes less computational time. The
obtained results are also compared with the global optimal solution and results from a previous study.
For a fair comparison, non-parametric statistical tests (Friedman test and Wilcoxon signed-rank test)
are conducted at 5% level of significance and the GSK algorithm proves that it is significantly different
from other algorithms and outperforms them.

Besides, a solid stochastic fixed charge transportation problem, a real-world application of
stochastic programming, is studied under a stochastic environment, in which all parameters of the
problem are treated as random variables. The main objective of the problem is to find the optimal
transportation plan which has minimum transportation cost and minimum transportation time,
satisfying all the constraints. Metaheuristic algorithms are applied to the problem and solutions
are obtained. From the obtained results, it is observed that the GSK algorithm gives the minimum
transportation cost (fcost = 1360.4) and minimum transportation time (ftime = 42) as compared to
other algorithms in less computational time.

From these results, it can be concluded that the GSK algorithm performs significantly better than
other metaheuristic algorithms. It is highly noted that the empirical analysis of this study may differ
on another benchmark set or real-world problems according to the no-free-lunch theorem.

Acknowledgement: The authors would like to thank the Editor and the reviewers for their valuable
suggestions, that helped us to improve the quality of the paper.

The authors present their appreciation to King Saud University for funding this work through
Researchers Supporting Project Number (RSP-2021/305), King Saud University, Riyadh,
Saudi Arabia.

Funding Statement: The research is funded by Researchers Supporting Program at King Saud
University, (Project# RSP-2021/305).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Z. Qin, “Uncertain random goal programming,” Fuzzy Optimization and Decision Making, vol. 17, no. 4,

pp. 375–386, 2018.
[2] S. S. Rao, Engineering Optimization: Theory and Practice, John Wiley & Sons, Hoboken, New Jersey, USA,

2019.
[3] L. Yang and Y. Feng, “A bicriteria solid transportation problem with fixed charge under stochastic

environment,” Applied Mathematical Modelling, vol. 31, no. 12, pp. 2668–2683, 2007.



2866 CMC, 2022, vol.71, no.2

[4] M. Alizadeh, J. Ma, N. Mahdavi-Amiri, M. Marufuzzaman and R. Jaradat, “A stochastic programming
model for a capacitated location-allocation problem with heterogeneous demands,” Computers & Industrial
Engineering, vol. 137, pp. 106055, 2019.

[5] Y. Zhang, X. Li and S. Guo, “Portfolio selection problems with markowitz’s mean–variance framework: A
review of literature,” Fuzzy Optimization and Decision Making, vol. 17, no. 2, pp. 125–158, 2018.

[6] X. Zhang, S. Huang and Z. Wan, “Stochastic programming approach to global supply chain management
under random additive demand,” Operational Research, vol. 18, no. 2, pp. 389–420, 2018.

[7] F. Murphy, S. Sen and A. Soyster, “Electric utility capacity expansion planning with uncertain load
forecasts,” IIE Transactions, vol. 14, no. 1, pp. 52–59, 1982.

[8] Z. Hu and G. Hu, “A multi-stage stochastic programming for lot-sizing and scheduling under demand
uncertainty,” Computers & Industrial Engineering, vol. 119, pp. 157–166, 2018.

[9] H. Ke, W. Ma and J. Ma, “Solving project scheduling problem with the philosophy of fuzzy random
programming,” Fuzzy Optimization and Decision Making, vol. 11, no. 3, pp. 269–284, 2012.

[10] B. A. Foued and M. Sameh, “Application of goal programming in a multi-objective reservoir operation
model in Tunisia,” European Journal of Operational Research, vol. 133, no. 2, pp. 352–361, 2001.

[11] A. Baykasoglu and T. Gocken, “Multi-objective aggregate production planning with fuzzy parameters,”
Advances in Engineering Software, vol. 41, no. 9, pp. 1124–1131, 2010.

[12] E. Nikzad, M. Bashiri and F. Oliveira, “Two-stage stochastic programming approach for the medical drug
inventory routing problem under uncertainty,” Computers & Industrial Engineering, vol. 128, pp. 358–370,
2019.

[13] V. Charles and D. Dutta, “Linear stochastic fractional programming with branch-and-bound technique,”
in Proc. of the National Conf. on Mathematical and Computational Models, Coimbatore, India, Allied
Publishers, pp. 131, 2001.

[14] V. Charles, D. Dutta, and K. A. Raju, “Linear stochastic fractional programming problem,” in Proc. of
the Int. Conf. on Mathematical Modelling, University of Roorkee, India, Tata McGraw–Hill, pp. 211–217,
2001.

[15] V. Charles and D. Dutta, “A method for solving linear stochastic fractional programming problem with
mixed constraints,” Acta Ciencia Indica, vol. 30, no. 3, pp. 497–506, 2004.

[16] V. Charles and D. Dutta, “Linear stochastic fractional programming with sum-of-probabilistic-fractional
objective,” Optimization Online, 2005. http://www.optimizationonline.org.

[17] P. Agrawal, H. F. Abutarboush, T. Ganesh and A. W. Mohamed, “Metaheuristic algorithms on feature
selection: A survey of one decade of research (2009–2019),” IEEE Access, vol. 9, pp. 26766–26791, 2021.

[18] A. W. Mohamed, A. A. Hadi and A. K. Mohamed, “Gaining-sharing knowledge based algorithm for
solving optimization problems: A novel nature-inspired algorithm,” International Journal of Machine
Learning and Cybernetics, vol. 11, pp. 1501–1529, 2020.

[19] O. B. Haddad, M. Moravej and H. A. Loáiciga, “Application of the water cycle algorithm to the optimal
operation of reservoir systems,” Journal of Irrigation and Drainage Engineering, vol. 141, no. 5, pp.
04014064, 2014.

[20] J. Claro and J. P. de Sousa, “A multi-objective metaheuristic for a mean-risk static stochastic knapsack
problem,” Computational Optimization and Applications, vol. 46, no. 3, pp. 427–450, 2010.

[21] A. Hoff, A. G. Lium, A. Løkketangen, and T. G. Crainic, “A metaheuristic for stochastic service network
design,” Journal of Heuristics, vol. 16, no. 5, pp. 653–679, 2010.

[22] A. W. Mohamed, “An improved differential evolution algorithm with triangular mutation for global
numerical optimization,” Computers & Industrial Engineering, vol. 85, pp. 359–375, 2015.

[23] A. W. Mohamed, “Solving stochastic programming problems using new approach to differential evolution
algorithm,” Egyptian Informatics Journal, vol. 18, no. 2, pp. 75–86, 2017.

[24] A. Ibrahim, H. A. Ali, M. M. Eid and E. S. M. El-kenawy, “Chaotic harris hawks optimization for
unconstrained function optimization,” in 2020 16th Int. Computer Engineering Conf. (ICENCO), Cairo,
Egypt, IEEE, pp. 153–158, 2020.

http://www.optimizationonline.org


CMC, 2022, vol.71, no.2 2867

[25] F. Hernandez, M. Gendreau, O. Jabali and W. Rei, “A local branching metaheuristic for the multi-vehicle
routing problem with stochastic demands,” Journal of Heuristics, vol. 25, no. 2, pp. 215–245, 2019.

[26] I. Sbai, S. Krichen and O. Limam, “Two meta-heuristics for solving the capacitated vehicle routing problem:
The case of the Tunisian post office,” Operational Research, pp. 1–43, 2020.

[27] H. Yahyaoui, I. Kaabachi, S. Krichen and A. Dekdouk, A., “Two metaheuristic approaches for solving the
multi-compartment vehicle routing problem,” Operational Research, pp. 1–24, 2018.

[28] M. A. Abdeljaoued, N. E. H. Saadani and Z. Bahroun, “Heuristic and metaheuristic approaches for parallel
machine scheduling under resource constraints,” Operational Research, vol. 20, no. 4, pp. 2109–2132, 2020.

[29] El-Sayed M. El-kenawy, Hattan F. Abutarboush, Ali Wagdy Mohamed and Abdelhameed Ibrahim,
“Advance artificial intelligence technique for designing double T-shaped monopole antenna,” Computers,
Materials & Continua, vol. 69, no. 3, pp. 2983–2995, 2021.

[30] L. Montiel and R. Dimitrakopoulos, “A heuristic approach for the stochastic optimization of mine
production schedules,” Journal of Heuristics, vol. 23, no. 5, pp. 397–415, 2017.

[31] J. Panadero, J. Doering, R. Kizys, A. A. Juan and A. Fito, “A variable neighborhood search sim heuristic
for project portfolio selection under uncertainty,” Journal of Heuristics, vol. 26, no. 3, pp. 353–375, 2018.

[32] N. Kumar, A. Poddar, A. Dobhal and V. Shankar, “Performance assessment of pso and ga in estimating
soil hydraulic properties using near-surface soil moisture observations,” Compusoft, vol. 8, no. 8, pp. 3294–
3301, 2019.

[33] El-Sayed M. El-kenawy and Marwa Eid, “Hybrid gray wolf and particle swarm optimization for feature
selection,” International Journal of Innovative Computing Information and Control, vol. 16, no. 3, pp. 831–
844, 2020.

[34] E. S. M. El-Kenawy, S. Mirjalili, A. Ibrahim, M. Alrahmawy, M. El-Said et al., “Advanced meta-
heuristics, convolutional neural networks, and feature selectors for efficient COVID-19 X-ray chest image
classification,” IEEE Access, vol. 9, pp. 36019–36037, 2021.

[35] M. K. Dhadwal, S. N. Jung and C. J. Kim, “Advanced particle swarm assisted genetic algorithm for
constrained optimization problems,” Computational Optimization and Applications, vol. 58, no. 3, pp. 781–
806, 2014.

[36] A. A. Salamai, E. M. El-kenawy and I. Abdelhameed, “Dynamic voting classifier for risk identification in
supply chain 4.0,” Computers, Materials & Continua, vol. 69, no. 3, pp. 3749–3766, 2021.

[37] P. Agrawal, T. Ganesh and A. W. Mohamed, “A novel binary gaining–sharing knowledge-based optimiza-
tion algorithm for feature selection,” Neural Computing and Applications, vol. 33, no. 11, pp. 5989–6008,
2020.

[38] P. Agrawal, T. Ganesh and A. W. Mohamed, “Chaotic gaining sharing knowledge-based optimization
algorithm: An improved metaheuristic algorithm for feature selection,” Soft Computing, vol. 25, pp. 1–24,
2021.

[39] P. Agrawal, T. Ganesh and A. W. Mohamed, “Solving knapsack problems using a binary gaining sharing
knowledge-based optimization algorithm,” Complex & Intelligent Systems, vol. 2021, pp. 1–21, 2021.

[40] P. Agrawal, T. Ganesh, D. Oliva and A. W. Mohamed, “S-shaped and V-shaped gaining-sharing knowledge-
based algorithm for feature selection,” Applied Intelligence, vol. 2021, pp. 1–32, 2021.

[41] J. H. Holland, “Genetic algorithms,” Scientific American, vol. 267, no. 1, pp. 66–73, 1992.
[42] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic for global optimization over

continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.
[43] R. Eberhart and J. Kennedy, “Particle swarm optimization,” in Proc. of the IEEE Int. Conf. on Nueral

Networks, Citeseer, vol. 4, pp. 1942–1948,. 1995.
[44] S. Mirjalili, and A. Lewis, “The whale optimization algorithm,” Advances in Engineering Software, vol. 95,

pp. 51–67, 2016.
[45] S. Mirjalili, “The ant lion optimizer,” Advances in Engineering Software, vol. 83, pp. 80–98, 2015.
[46] H. Eskandar, A. Sadollah, A. Bahreininejad and M. Hamdi, “Water cycle algorithm–a novel metaheuristic

optimization method for solving constrained engineering optimization problems,” Computers & Structures,
vol. 110, pp. 151–166, 2012.



2868 CMC, 2022, vol.71, no.2

[47] S. Mirjalili, S. M. Mirjalili and A. Hatamlou, “Multi-verse optimizer: A nature-inspired algorithm for
global optimization,” Neural Computing and Applications, vol. 27, no. 2, pp. 495–513, 2016.

[48] R. V. Rao, Teaching-Learning-Based Optimization Algorithm, Springer, pp. 9–39, 2016.
[49] D. R. Mahapatra, S. K. Roy and M. P. Biswal, “Multi-choice stochastic transportation problem involving

extreme value distribution,” Applied Mathematical Modelling, vol. 37, no. 4, pp. 2230–2240, 2013.
[50] P. Agrawal and T. Ganesh, “Solving transportation problem with stochastic demand and non-linear multi-

choice cost,” in AIP Conf. Proc., vol. 2134, pp. 060002, 2019.
[51] C. A. C. Coello, “Theoretical and numerical constraint-handling techniques used with evolutionary

algorithms: A survey of the state of the art,” Computer Methods in Applied Mechanics and Engineering,
vol. 191, no. 11–12, pp. 1245–1287, 2002.

[52] E. Mezura-Montes, Constraint-Handling in Evolutionary Optimization, Springer, Switzerland, vol. 198,
2009.

[53] K. Deb, “An efficient constraint handling method for genetic algorithms,” Computer Methods in Applied
Mechanics and Engineering, vol. 186, no. 2–4, pp. 311–338, 2000.

[54] A. Bahreininejad, “Improving the performance of water cycle algorithm using augmented lagrangian
method,” Advances in Engineering Software, vol. 132, pp. 55–64, 2019.
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