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Abstract: The Weibull distribution is regarded as among the finest in the
family of failure distributions. One of the most commonly used parameters of
the Weibull distribution (WD) is the ordinary least squares (OLS) technique,
which is useful in reliability and lifetime modeling. In this study, we propose an
approach based on the ordinary least squares and the multilayer perceptron
(MLP) neural network called the OLSMLP that is based on the resilience
of the OLS method. The MLP solves the problem of heteroscedasticity that
distorts the estimation of the parameters of the WD due to the presence
of outliers, and eases the difficulty of determining weights in case of the
weighted least square (WLS). Another method is proposed by incorporating
a weight into the general entropy (GE) loss function to estimate the param-
eters of the WD to obtain a modified loss function (WGE). Furthermore,
a Monte Carlo simulation is performed to examine the performance of
the proposed OLSMLP method in comparison with approximate Bayesian
estimation (BLWGE) by using a weighted GE loss function. The results of the
simulation showed that the two proposed methods produced good estimates
even for small sample sizes. In addition, the techniques proposed here are
typically the preferred options when estimating parameters compared with
other available methods, in terms of the mean squared error and requirements
related to time.

Keywords: Weibull distribution; maximum likelihood; ordinary least squares;
MLP neural network; weighted general entropy loss function

1 Introduction

The parameters of the Weibull distribution are widely used in reliability studies and many
engineering applications, such as the lifetime analysis of material strength [1], estimation of
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rainfall [2], hydrology [3], predictions of material and structural failure [4], renewable and alternative
energies [5–8], power electronic systems [9], and many other fields [10–12].

The form of the probability density function (PDF) of two parameters of WD is given by:

f(x; ϑ , λ) = λ

ϑ

( x
ϑ

)(λ−1)

exp
[
−

( x
ϑ

)λ
]

, x > 0 ϑ , λ > 0 (1)

The cumulative distribution function (CDF) and the survival function S of the WD can be
expressed as

F(x; ϑ , λ) = 1 − exp
[
−

( x
ϑ

)λ
]

, x > 0 ϑ , λ > 0 (2)

S(t; ϑ , λ) = exp

[
−

(
t
ϑ

)λ
]

, t > 0 ϑ , λ > 0 (3)

where the parameters ϑ and λ represent the scale and the shape of the distribution, respectively.

Several approaches to estimating the parameters of the WD have been proposed [13]. They can
generally be classified as manual or numerical [14].

Manual approaches include the ordinary least squares [15,16], unbiased good linear
estimators [17], and weighted least squares [18]. Computational methods include maximum likelihood
estimation [19], the moments estimation method [20], Bayesian approach [21], and least-squares
estimation with particle swarm optimization [22].

In addition to computational methods, many studies in the literature have attempted to use the
neural network (NN) to anticipate the parameters of the WD in many areas, such as the method
developed by Jesus that applies the Weibull and ANN analysis to anticipate the shelf life and acidity
of vacuum-packed fresh cheese [23]. In survival analysis, Achraf constructed a deep neural network
model called DeepWeiSurv. It was assumed that the distribution of survival times follows a finite
mixture of a two-parameter WD [24]. In another work in the field of electric power generation, an
artificial NN (ANN) and q-Weibull were applied to the survival function of brushes in hydroelectric
generators [25].

Recently, a few methods have been attempted to combine the robustness of the ANN and some of
the above statistical methods. Maria modeled the distribution of tree diameters using the OLS and
the ANN [26]. In the same way and based on the ability of the OLS, in its simplest form, which
assumes a linear relationship between the predictor and the unreliability function on one hand and the
robustness and rapidness of the single-hidden-layer networks to handle the linear functions compared
with multiple-hidden-layer [27] on the other hand, we will propose to combine OLS and a neural
network to predict the two-parameter WD.

In the proposed method, we solve the problem whereby the reliability of the OLS method
is compromised by outliers through the introduction of a pre-trained neural network after the
linearization of the CDF. The remaining sections of this paper are organized as follows: Section
2 provides a review of different numerical and graphical methods for estimating the parameters of
the WD, such as the MLE, OLS, WLS, and BLGE. In Section 3 we present the proposed methods.
To evaluate their appropriateness in comparison with competing methods, the relevant performance
metrics are covered in Section 4. The results are discussed in Section 5. Finally, the conclusions of this
study are provided in Section 6.
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2 Review of Numerical and Graphical Methods for Estimating Parameters of WD

The most commonly used approaches to estimate the parameters λ and ϑ of the WD are described
below.

2.1 Maximum Likelihood Estimator (MLE)

Let the set (x1, x2, x3, . . . xn) of n random lifetimes from the WD be defined by Eq. (1). Then, the
likelihood function Lf and its corresponding logarithm � for the given sample observations are shown
in Eqs. (4) and (5), respectively [28]:

Lf (x ; ϑ , λ) =
n∏

i=1

λ

ϑ

(xi

ϑ

)λ−1

exp
[
−

( x
ϑ

)λ
]

, (4)

� = nlnλ − n λlnϑ + (λ − 1)

n∑
i=1

lnxi −
n∑

i=1

(xi

ϑ

)λ

(5)

The partial derivatives of the equation for � with respect to the variables ϑ and λ are given by:

∂�

∂ ϑ
= −n

(
λ

ϑ̂

)
+ λ

ϑ̂

n∑
i=1

(
xi

ϑ̂

)
= 0, (6)

∂�

∂ λ
= n

λ̂
+

n∑
i=1

(xi

ϑ

)
−

n∑
i=1

(xi

ϑ

)λ

ln
(xi

ϑ

)
= 0 (7)

The MLE estimator ϑ̂MLE of ϑ is:

ϑ̂MLE =
[

1
n

n∑
i=1

(xi)
λ̂

] 1
λ̂

(8)

The parameter λ can be obtained by using any numerical method, such as the Newton–Raphson.

2.2 Ordinary Least Squares Method (OLS)

To estimate the parameters of the WD, the OLS method is extensively used in mathematics and
engineering problems [16]. We can obtain a linear relationship between parameters by taking the
logarithm of Eq. (2) as follows:

ln[−ln(1 − F(x; ϑ , λ)] = −λlnϑ + λlnx (9)

Let Yi = ln[−ln(1 − F(xi; ϑ , λ))], Xi = lnx(i), α0 = −λlnϑ , and β = λ. Then, Eq. (9) can be
written as Yi = α0 + βXi + εi

Let X(1), X(2), X(3), . . . X(n) be order statistics of X1, X2, X3, . . . Xn, and let x(1) < x(2) < x(3) <

. . . < x(n) be the ordered observations in a random sample of size n. To estimate the values of the
cumulative distribution function F(x(i)ϑ , λ), we use the mean rank method as follows:

F̂(xi) = (i − 0.3)/(n + 0.4), i = 1, 2, 3, . . . , n (10)
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The estimates α̂0 and β̂ of the regression parameters α0 and β minimize the function

Q(a, b ) =
n∑

i=1

(Yi − α0 − βlnx(i) )2 (11)

Therefore, the estimates α̂0 and β̂ of the parameters α0 and β are given by

β̂OLS =
n

n∑
i=1

lnx(i) ln[−ln(1 − F̂(xi)))] −
n∑

i=1

lnxi

n∑
i=1

ln[−ln(1 − F̂(xi)))]

n
n∑

i=1

ln2(xi) −
(

n∑
i=1

lnx(i)

)2 (12)

α̂0OLS
= 1

n

n∑
i=1

ln[−ln(1 − F̂(xi)))] − β̂OLS

1
n

n∑
i=1

lnx(i) (13)

The estimates λ̂OLS and ϑ̂OLS of the parameters λ and ϑ are given by

λ̂OLS = n
∑n

i=1 lnxi ln[−ln(1 − F̂i)] − ∑n

i=1 lnxi

∑n

i=1 ln[−ln(1 − F̂i))]

n
∑n

i=1 ln2(xi) − (∑n

i=1 lnx(i)

)2 (14)

ϑ̂OLS = exp

[
−

∑n

i=1 ln[−ln(1 − F̂i))] − β̂OLS

∑n

i=1 lnx(i)

nβ̂OLS

]
(15)

2.3 Weighted Least Squares Method (WLS)

In the WLS estimate, the parameters λ and ϑ are the values of the parameters that minimize the
function:

Q∗
W(λ , ϑ ) =

n∑
i=1

Wi(ln[−ln (1 − F̂(xi))] + lnϑ − λlnx(i))
2 (16)

The biggest challenge in the application of the WLS is in finding the weights Wi in Eq. (15). We
use the delta method [29] to find them:

Var (ln[−ln (1 − F̂(xi))] ) ∝ 1

[(1 − F̂(xi))ln(1 − F̂(xi))]
2 (17)

Hence, the weights can be written as follows:

Wi = [(1 − F̂(xi))ln(1 − F̂(xi))]
2∑n

i=1 [(1 − F̂(xi))ln(1 − F̂(xi))]
2 , i = 1 , 2, 3, . . . , n. (18)

Minimizing Q∗
W(λ , ϑ) we obtain the WLS estimates of λ and ϑ as

λ̂WOLS =
∑n

i=1 Wi DiAi −
(∑n

i=1 Wi Di

) (∑n

i=1 Wi Ai

)∑n

i=1 Wi Di
2 − (∑n

i=1 Wi Di

)2 (19)
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ϑ̂WOLS = exp

[
ψ̂W

λ̂WOLS

]
, (20)

where

ψ̂W = λ̂WOLS

n∑
i=1

Wi Di −
n∑

i=1

Wi Ai, with Di = lnx(i) and Ai = ln[−ln(1 − F̂(xi) )]

2.4 Approximate Bayes Estimator

In this section, the approximate Bayesian estimator under a GE loss function of the parameters
λ and ϑ of the WD is discussed. We assume a non-informative (vague) prior according to [30] as

π(λ , ϕ) ∝ 1
λϑ

(21)

The parameters λ and ϕ are estimated using Lindley’s approximation technique. The posterior
expectation E is given by Eq. (22) [31]:

E[u(φ)|x] = ∫ Ω u(φ)π(φ)L(φ|x) dφ

∫ Ω π(φ)L(φ|x) dφ
(22)

Moreover, it can be asymptotically estimated by:

E[u(φ)|x] = u + 1
2

∑
i

∑
j

(uij + 2uiρj)σij + 1
2

∑
i

∑
j

∑
k

∑
l

Lijk σijσklui (23)

where i, j, k, l = 1, 2, . . . m, φ = (φ1, φ1, . . . φm), π(φ) represents the prior distribution
of φ, u = u(φ), L = L(φ) is the likelihood function, ρ ≡ ρ(φ) = ln(π(φ)), ρi = ∂ρ

∂φi
, ui = ∂u

∂φi
,

uij = ∂2u
∂φi∂φj

, Lijk = ∂3L
∂φi∂φj∂φk

, and σij = element ( i, j) of the covariance matrix of the parameter
estimators.

For the two-parameter case φ = (λ, ϕ), Eq. (22) reduces to:

E [(φ|x)] = u + 1
2

[u11σ11 + u22σ22] + u1ρ1σ11 + u2ρ2σ22 + 1
2

[L30u1σ
2
11 + L03u2σ

2
22] (24)

The functions in Eq. (24) are computed using MLEs with respect to λ and ϕ.

To apply the Lindley model of Eq. (24) to estimate the parameters of the WD, the following are
obtained from Eq. (23):

ρ(ϕ, λ) = ln
1

λϑ
= −ln(ϕ) − ln(λ)

ρ1 = ∂ρ

∂ϕ
= −

(
1
ϕ

)

ρ2 = ∂ρ

∂λ
= −

(
1
λ

)
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The elements σij of the covariance matrix are expressed by

L20 = n
(

λ

ϕ2

)
−

(
λ2

ϕ2

) n∑
i=1

(
xi

ϕ

)λ

−
(

λ

ϕ2

) n∑
i=1

(
xi

ϕ

)λ

σ11 = (−L20)
−1

L30 = −2n
(

λ

ϕ3

)
+ 2

(
λ2

ϕ3

) n∑
i=1

(
xi

ϕ

)λ

+
(

λ3

ϕ3

) n∑
i=1

(
xi

ϕ

)λ

+ 2
(

λ

ϕ3

) n∑
i=1

(
xi

ϕ

)λ

+
(

λ2

ϕ3

) n∑
i=1

(
xi

ϕ

)λ

L02 = −
(

n
ϕ2

)
−

n∑
i=1

(
xi

ϕ

)λ

ln2

(
xi

ϕ

)
σ22 = (−L02)

−1

L03 = 2
( n
λ3

)
−

n∑
i=1

(
xi

ϕ

)λ

ln3

(
xi

ϕ

)
.

2.4.1 Estimates Based on General Entropy Loss Function

The general entropy loss function L for φ, shown in Eq. (24), is expressed by the following form
[32]:

L(φ̂, φ ) ∝
(

φ̂

φ

)q

− qln

(
φ̂

φ

)
− 1, q �= 0, (25)

where φ̂ is an estimate of φ. The Bayes estimator of φ, denoted by φ̂GE, is the value φ̂ that minimizes
Eq. (26):

φ̂GE = [Eϑ(φ
−q)]−

1
q (26)

The BLGE of λ̂BLGE for λ from Eq. (24) is found by the following expressions:

u = (λ)−q, u2 = ∂u
∂λ

= −q(λ)−q−1, u22 = ∂2u

∂(λ)
2 = −(−q2 − q)(λ)−q−2

u1 = 0, u11 = 0

In the same way, the BLGE of ϑ̂BLGE for ϑ is found by the following expressions:

u = (ϑ)−q, u1 = ∂u
∂ϑ

= −q(ϑ)−q−1, u11 = ∂2u

∂(ϑ)
2 = −(−q2 − q)(ϑ)−q−2

u2 = 0, u22 = 0.

3 Proposed Methods

In the following sections, we describe the proposed BLWGE and OLSMLP methods.



CMC, 2022, vol.71, no.2 4039

3.1 Weighted General Entropy Loss Function

The WGE loss function was proposed as dependent on the weighted loss GE function as follows:

Lw(φ̂, φ ) ∝ w(φ)

[(
φ̂

φ

)q

− qln

(
φ̂

φ

)
− 1

]
, q �= 0 (27)

where φ represents the estimated parameters that minimize the expectation of the loss function
(Eq. (27)), and w(φ) represents the proposed weighted function as expressed by Eq. (28):

w(φ) = 1
φz

(28)

Based on the posterior distribution of the parameter φ, and by using the WGE function given in
Eq. (28), we obtain the estimated BLWGE of the parameter ϑ as follows:

E[Lw(φ̂, φ)] = ∫
∀φ

Lw(φ̂, φ)f (φ|x) dφ

= ∫
∀φ

w(φ)[(φ̂/ φ)
q − qln(φ̂/ φ) − 1]f (φ|x) dφ

= ∫
∀φ

1
φz [(φ̂/ φ)

q − qln(φ̂/ φ) − 1]f (φ|x) dφ

= ∫
∀φ

1
φz (φ̂/ φ)q f (φ|x) dφ − ∫

∀φ

qlnφ̂

φz
f (φ|x) dφ + ∫

∀φ

qlnφ

φz
f (φ| x) dφ − ∫

∀φ

1
φz

f (φ|x) dφ

= φ̂q ∫
∀φ

1
φz+q

f (φ|x) dφ − qlnφ̂ ∫
∀φ

1
φz

f (φ|x) dφ + q ∫
∀φ

lnφ

φz
f (φ|x) dφ − ∫

∀φ

1
φz

f (φ| x) dφ

E[Lw(φ̂, φ)] = φ̂q E (φ−(z+q)| x) − qlnφ̂ E (φ−z)| x) + qE
(

lnφ

φ
| x

)
− E (φ−z)| x)

∂Lw(φ̂, φ)

∂φ̂
= q φ̂q−1 E (φ−(z+q)| x) − q

φ̂
E (φ−z)| x) = 0

Thus, we can find that

q φ̂q−1 E (φ−(z+q)| x) = q

φ̂
E (φ−z)| x)

Consequently, the BLWGE of parameter φ, obtained by using the WGE loss function, is φ̂BLWGE

as presented in Eq. (29):

φ̂WGE = E (φ−(z+q)| x)

E (φ−z)| x)
where, z + q �= 0 (29)

provided that Eφ(φ
−z) and Eφ(φ

−(z+q)) exist and are finite, where Eφ represents the expected value.

We note that the GE is a special case of the WGE when z = 0 in Eq. (29).
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3.1.1 Estimates of Parameters of WD Based on Weighted General Entropy Loss Function

Based on the WGE and by using Eq. (29), the approximate Bayes estimator λ̂BLWGE for λ is shown
as:

λ̂BLWGE =
[

E(λ −(z+q)| x)

E(λ −z)| x)

]− 1
q

=
[

I1

I2

]− 1
q

(30)

where

I1 = u∗ + 1
2

[u∗
11σ11 + u∗

22σ22] + u∗
1ρ1σ11 + u∗

2ρ2σ22 + 1
2

[L30 u∗
1 σ 2

11 + L03 u∗
2 σ 2

22] (31)

u∗ = (λ)−(Z+q), u∗
2 = ∂u

∂β
= −(z + q)(λ)−(q+z)−1, u∗

22 = ∂2u

∂(λ)
2 = −(−(z + q)

2 − (q + z))(λ)−(q+z)−2

u∗
1 = 0, u∗

11 = 0

and

I2 = u∗∗ + 1
2

[u∗∗
11σ11 + u∗∗

22σ22] + u∗∗
1 ρ1σ11 + u∗∗

2 ρ2σ22 + 1
2

[L30 u∗∗
1 σ 2

11 + L03u∗∗
2 σ 2

22] (32)

Thus, the BLWGE λ̂BLWGE for the shape parameter λ is

λ̂WGE

[
I1

I2

]− 1
q

=
[

u∗ + 1
2
[u∗

11σ11 + u∗
22σ22] + u∗

1ρ1σ11 + u∗
2ρ2σ22 + 1

2
[L30 u∗

1 σ 2
11 + L03 u∗

2 σ 2
22]

u∗∗ + 1
2
[u∗∗

11σ11 + u∗∗
22σ22] + u∗∗

1 ρ1σ11 + u∗∗
2 ρ2σ22 + 1

2
[L30 u∗∗

1 σ 2
11 + L03u∗∗

2 σ 2
22]

]− 1
q

(33)

Similarly, the BLWGE ϑ̂BLWGE for ϑ , is given by Eq. (34):

ϑ̂WGE =
[

E(ϑ −(z+q)| x)

E(ϑ −z)| x)

]− 1
q

=
[

I3

I4

]− 1
q

(34)

where

I3 = ν + 1
2

[ν11σ11 + ν22σ22] + ν1ρ1σ11 + ν2ρ2σ22 + 1
2

[L30ν1σ
2
11 + L03ν2σ

2
22] (35)

ν = (ϑ)−(z+q), ν1 = ∂u
∂ϑ

= −(z + q)(ϑ)−(q+z)−1, ν11 = ∂2u

∂(ϑ)
2 = −(−(z + q)

2 − (z + q))(ϑ)−(z+q)−2

ν2 = 0, ν22 = 0,

and

I4 = ν∗ + 1
2

[ν∗
11σ11 + ν∗

22σ22] + ν∗
1ρ1σ11 + ν∗

2ρ2σ11 + 1
2

[L30 ν∗
1 σ 2

11 + L03ν
∗
2 σ 2

22] (36)

ν∗ = (ϑ)−z, ν∗
1 = ∂u

∂ϑ
= −z(ϑ)−z−1, ν∗

11 = ∂2u

∂(ϑ)
2 = −(z2 − z)(ϑ)−z−2

ν∗
2 = 0, ν∗

22 = 0.
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Thus, the weighted Bayes estimator for the shape parameter ϑ is

ϑ̂BLWGE

[
I3

I4

]− 1
q

=
[

ν + 1
2
[ν11σ11 + ν22σ22] + ν1ρ1σ11 + ν2ρ2σ22 + 1

2
[L30ν1σ

2
11 + L03ν2σ

2
22]

ν∗ + 1
2
[ν∗

11σ11 + ν∗
22σ22] + ν∗

1ρ1σ11 + ν∗
2ρ2σ11 + 1

2
[L30 ν∗

1 σ 2
11 + L03ν

∗
2 σ 2

22]

]− 1
q

(37)

3.2 Ordinary Least Squares and the Multilayer Perceptron Neural Network (OLSMLP)

As previous studies have shown [14,33], manual calculations yield the smallest standard deviation
(STD) in the parameter λ, and are consequently more accurate than computational methods. More-
over, methods of manual estimation are more accurate for small sample sizes [14]. However, these
computational methods, especially the OLS, are sensitive to outliers and specific residual behavior
[34]. To solve these problems, many studies have proposed different methods, such as the iterative
weighting method based on the modified OLS [34], the WLS, and many other methods based on the
WLS [35]. A major challenge in these methods is determining the weights.

3.2.1 Proposed Method to Estimate Parameters of WD

We now describe the proposed method, which is divided into two main parts: the linearization of
the CDF, and the application of a feedforward network with backpropagation to estimate the values
of λ and ϑ of the WD.

The OLS method takes the CDF defined in Eq. (2) and linearizes it as described in Eq. (10). It
then determines the coefficients α0 and β via linear regression by using the slope and the intercept.
The principle of the method used by the OLS to compute α0 and β can be violated even with a few
outliers.

Therefore, instead of using the slope and the intercept, we propose applying Algorithm 1 as
described below.

• Application of Proposed Model to Estimate Parameters of WD

The steps used to evaluate the parameters of the WD from the input csv file are described by
Algorithm 1.

Input: Three comma separated value file (CSV) files containing the matrices Xi and Yi, and their
corresponding parameters (shape and scale) SCi.
Output: The predicted shape λ̂OLSMLP and scale ϑ̂OLSMLP for the test set.
1: Normalize the inputs matrices Xi, Yi, and SCi separately to unit norm using RobustScaler followed
by MinMaxScaler norm.
2: Split the normalized Xi, Yi, and SCi into random training and test subsets.
3: Create the neural network model (define the input layer, hidden layer, and output layer).
4: Compile the model and fit it to the data.
5: Predict λ̂OLSMLP and ϑ̂OLSMLP for the test set.
6: Evaluate the performance of the proposed model.
Steps 2, 3, 4, and 5 are explained in more detail in the following subsections:

• Data Normalization

Normalization is an essential preprocessing tool for a neural network [36,37]. Before training a
neural network model, the input data are scaled using the RobustScaler norm in a preliminary phase,
where each sample with at least one non-zero component is rescaled using the median and quartile
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range as described by Eq. (38). The RobustScaler norm is used to remove the influence of outliers.
Following this, the MinMaxScaler, defined by Eq. (39), is applied to the output of the RobustScaler.
The MinMaxScaler scales all the data features to the range [0, 1]:

X sm
i = Xi − Q1(X)

Q3(X) − Q1(X)
(38)

where X is a feature vector, Xi is an element of feature X , X sm
i is the rescaled element obtained by

using MinMaxScaler, and Xsr
i is the rescaled element obtained by using RobustScaler.

X sr
i = X sr

i − min(X sr)

max(X sr) − min(X sr)
(39)

• Structure of the Proposed Neural Network

To estimate the parameters of the WD, we propose using a multilayer perceptron (MLP), which is a
feedforward network with backpropagation [38]. According to the structure of the MLP, the proposed
network, as shown in Fig. 1, consists of an input layer (with n neurons), a hidden layer (with k neurons),
and an output layer (with m neurons that yield the Weibull parameters as the output of the network).

hidden layer

.

.
.

.

Input layer

( , and ) Dropout layer

Output layer

Figure 1: Topology of the proposed MLP

Various criteria have been proposed in the literature to fix the number of hidden neurons [39]. In
our architecture, we use the rule whereby “the number of hidden neurons k should be 2/3 times the
size of the input layer, plus the size of the output layer” [38–40].

The hyperbolic tangent activation function (tanh) is proposed here in the input layer, and the
sigmoid function in the output layer. They are used frequently in feedforward nets, and are suitable
for shallow networks as well as applications of prediction and mapping [38,41].

The objective of our neural network is a model that performs well on the data used in both the
training and the test datasets. For this reason, we add a well-known regularization layer as described
in the next section.

• Regularization

Regularization is a technique that can prevent overfitting [37,38]. A number of regularization
techniques have been develop in the literature, such as L1 and L2 regularizations, bagging, and
dropout. In the proposed structure, we use dropout, a well-known technique that randomly “drops
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out” or omits hidden neurons of the neural network to make them unavailable during part of the
training [38,42]. This reduces the co-adaption between neurons, which results in less overfitting [38].

• Optimization Algorithm

The optimization of deep networks is an active area of research [43]. The most popular gradient-
based optimization algorithms are Adagrad, Momentum, RMSProp, Adam, AdaDelta, AdaMax,
Nadam, and AMSGrad [38,43,44]. We chose Nadam due to its superiority in supervised machine
learning over the other techniques, especially for a deep network [43]. Moreover, it combines the
strengths of the Nesterov acceleration gradient (NAG) and the adaptive estimation (Adam) algorithms
as described in [44]:

wt+1 = wt − αnad√
v̂t + ε

(
β1m̂t + 1 − β1

1 − β t
1

∗ ∂L
∂wt

)
(40)

where

m̂t = mt

1 − β t
1

v̂t = vt

1 − β t
2

mt = β1mt−1 + (1 − β1)
∂L
∂wt

vt = β2vt−1 + (1 − β2)

[
∂L
∂wt

]2

t: time step

αnad : learning rate

vt : the exponential average square of gradients

mt : momentum vector

wt : the weight that we want to update

ε : smoothing term
∂L
∂wt

: gradient of L; the loss function to minimize.

β1, β2: momentum decay and scaling decay, respectively

4 Performance Metrics

To evaluate the proposed methods with respect to other methods, we used two statistical tools,
the mean squared error (MSE) and the mean absolute percentage error (MAPE) [5], in addition to the
computation time.
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5 Results and Discussion
5.1 Dataset Description

We generated 250,000 random data points from the WD for different parameters and different
values of ϑ ranging from 1 to 299, and those of λ ranging from 0.5 to 100. For each shape/scale pair,
we generated 10,000 samples of different sizes n = 10, 20, 30, 40, and 50.

We used the same dataset for the neural network in the training phase, but applied one sample to
each shape/scale pair. This was unlike in the other methods (MLE, OLS, WLS, BLGE, and BLWGE),
which used 10,000 samples to estimate the parameters of the WD. This dataset was divided into two
subsets. The first subset was used to fit the model, and is referred to as the training dataset; it was
characterized by known inputs and outputs. The second subset is referred to as the test dataset, and
was used to evaluate the fitted machine learning model and make predictions on the new subset, for
which we did not have the expected output. We chose the train–test procedure for our experiments
because we guessed that we had a sufficiently large dataset available.

5.2 Experimental Setting
5.2.1 Parameter Selection for OLSMLP

In all experiments, we trained the model with Google Collaboratory (GPU) for 25 epochs. We used
the Nadam optimizer with learning rate of αnad = 0.001; terms representing the momentum decay,
scaling decay, and smoothing were kept at their default values: β1 = 0.9, β2 = 0.999, and ε = 10−7. A
dropout with a ratio of 0.6 was applied to the hidden layer. As described in Section 3, the hidden and
output layers used the tanh and sigmoid activation functions, respectively. The error function or loss
function was the mean squared error, and was used to estimate the loss of the model.

5.2.2 Parameter Selection of BLGE and BLWGE

In all experiments, the parameters of the BLWGE and BLGE were empirically determined. The
values of the weights q and z of the BLWGE were −3 and 6, respectively. For the BLGE, the parameter
q = 1.5.

5.3 Estimating Parameters of Weibull Distribution
5.3.1 Effect of Sample Size on Estimation of WD Parameters Using Prevalent Methods

Fig. 2 shows the evolution of the average MSE as a function of the sample size n. The MSE
decreased quasi-linearly from n = 10 to n = 40 for all methods. Fig. 2 shows that the BLWGE, WLS,
BLGE, and MLE had the lower MSE values for the different sample sizes compared with the OLS.
We can deduce also that the WLS, GE, and MLE gave similar results with a slightly better start for
the MLE at n = 10.

5.3.2 Effect of Sample Size on Estimation of WD Parameters Using Proposed Method

To illustrate how the sample size affects the calculation of the MSE, Fig. 3 shows the evolution of
the latter as a function of the sample size n from 10 to 50.

From Fig. 3, we can deduce that as the sample size increased, the estimate of the MSE by the
proposed method decreased and fluctuated. This fluctuation was due to the random nature of the
information used and the limited number of samples (one sample) for each pair of shapes/scales.

Tabs. 1 and 2 show the results of the simulation of the proposed method and the other methods
considered above. The results show the following:
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Figure 2: The evolution of the MSE using the parameters ϑ = 2.5 and λ = 1.685 as a function of
n = [10 − 40] for the MLE, OLS, WLS, BLGE, and BLGWGE

Figure 3: The evolution of the MSE using the parameters ϑ = 0.75 and λ = 1.75 as a function of
n = [10 − 50]

1. The MLE and WLS behaved similarly as shown in Tab. 1: Their MSE values decreased
gradually when their shape values increased at a fixed scale. Conversely, when the scale value
increased with a fixed shape, the MSE increased.
2. The behavior of the OLS and GE was the opposite of that of the MLE and WLS. As depicted
in Tab. 1, the MSE increased when the shape increased (at a fixed scale), and decreases when
the scale increased (with a fixed shape).
3. The BLWGE and the OLSMLP behaved similarly in terms of scale estimation, as shown in
Tab. 1.
4. All methods had the same global variation function, as shown in Fig. 4 and Tab. 2.
5. The MLE was slightly superior globally in terms of scale estimation to the other methods,
but had the worst estimation of shape, as shown in Tab. 2.
6. The proposed MLP neural network acceptably estimated the scale, better than some
methods. By contrast, it outperformed all other methods in terms of shape estimations most
of the time.
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Table 1: MSEs of the estimated ϑ with varying values of the parameters λ and ϑ for different
parameters of WD estimation methods

Scale (ϑ) Shape (λ) ϑ̂MLE ϑ̂OLS ϑ̂WLS ϑ̂BLGE ϑ̂BLWGE ϑ̂OLSMLP

1 1.5 0.049387 0.056885 0.056176 0.085488 0.096340 0.066142
1 1.75 0.034172 0.555655 0.038032 0.088573 0.094040 0.027932
1 2 0.027430 0.982985 0.030333 0.103455 0.095413 0.014994
2.5 4 0.043991 2.225489 0.047444 0.310981 0.419640 0.643763
3.25 4 0.072562 0.587675 0.078860 0.277142 0.538829 0.904675
4 4 0.110517 0.116685 0.118746 0.269783 0.636383 1.331979

Table 2: MSEs of the estimated λ with varying values of the parameters λ and ϑ using different methods
to estimate the parameters of the WD

Scale (ϑ) Shape (λ) λ̂MLE λ̂OLS λ̂WLS λ̂BLGE λ̂BLWGE λ̂OLSMLP

1 1.5 0.348991 0.236889 0.209179 0.243708 0.199329 0.042465
1 1.75 0.457484 0.314301 0.284707 0.320195 0.263958 0.026617
1 2 0.604420 0.420835 0.376867 0.423471 0.348965 0.178389
2.5 4 2.429318 1.643576 1.499686 1.693472 1.387491 3.685218
3.25 4 2.407258 1.636167 1.479661 1.679463 1.378634 1.997234
4 4 2.461472 1.658105 1.496513 1.726041 1.418305 0.925600

Figure 4: MSEs of λ̂ with varying values of the parameters ϑ = [1 1 1 2.5 3.25 4] and λ =
[1.5 1.75 2 4 4 4] for the MLE, OLS, BLGE, WLS, and the proposed methods

From Tab. 3, we see that both statistical indicators, MSE and MAPE, yielded different values.
The global rank was calculated to evaluate the best method. The results in the table indicate that the
proposed method offered the best compromise between shape and scale estimation, as indicated by
the global rank. Moreover, it retained the speed of the OLS and enhanced the accuracy of estimation
of the parameters of the WD compared with the MLE, BLGE, and BLWGE.



CMC, 2022, vol.71, no.2 4047

Table 3: Performance evaluation of the MLE, OLS, WLS, BLGE, BLWGE, and OLSMLP methods
using different statistical indicators

Parameters of WD ϑ = 3, λ = 8.5 and n = 10

Methods Estimated
shape
(λ̂)

Estimated
scale
(ϑ̂)

Statistical analysis

MSE Ranking MAPE (%) Ranking Global
rank

Time
Computation

λ̂(.) ϑ̂(.) λ̂(.) ϑ̂(.) λ̂(.) ϑ̂(.) λ̂(.) ϑ̂(.) λ̂(.) ϑ̂(.)

MLE 9.95111 2.98894 11.05354 0.01459097 6 1 0.27084 0.0319 6 1 6 1 2.87 ms
OLS 8.23364 3.00974 7.47628 30.15793 4 6 0.24563 0.64591 5 6 5 6 0.9 us
WLS 8.01792 3.00197 6.871836 0.01563281 3 2 0.2394 0.033138 4 2 4 2 0.98 us
BLGE 9.06909 1.8185 7.744257 1.509358 5 5 0.23293 0.39383 3 5 3 5 2.81 ms
BLWGE 8.40374 2.09433 6.369233 0.8291446 2 4 0.22206 0.30189 2 4 2 4 2.77 ms
OLSMLP 8.1827 2.95646 0.424712 0.0380619 1 3 0.061342 0.051703 1 3 1 3 17.61 us

6 Conclusion

This study proposed a method to estimate the parameters of the WD. This method is based on
the OLS graphical method and the MLP neural network. The MLP solves the problems caused by
the presence of outliers and eases the difficulty of determining the weights in the WLS method. It
yielded acceptable results in simulations, especially in terms of shape estimation. It is also faster than
the MLE, BLGE, and BLWGE.

We also proposed a second method (BLWGE), in which we introduced weight to the GE loss
function. The results of simulations showed that BLWGE yields good results, especially in terms of
shape estimation, compared with the other methods.
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[18] K. Jabłońska, “Dealing with heteroskedasticity giving the example of modelling quality of life of older
people,” Statistics in Transition, New Series, vol. 19, no. 3, pp. 433–452, 2018.

[19] H. Saleh, A. E. A. Aly and S. Abdel-Hady, “Assessment of different methods used to estimate Weibull
distribution parameters for wind speed in Zafarana wind farm, Suez Gulf, Egypt,” Energy, vol. 44, no. 1,
pp. 710–719, 2012.

[20] R. B. Abernethy, in the New Weibull Handbook: Reliability and Statistical Analysis for Predicting Life,
Safety, Supportability, Risk, Cost and Warranty Claims, 5th edition, Hickory: Barringer & Associates, 2006.

[21] K. Ullah, M. Aslam and T. N. Sindhu, “Bayesian analysis of the Weibull paired comparison model using
informative prior,” Alexandria Engineering Journal, vol. 59, no. 4, pp. 2371–2378, 2020.



CMC, 2022, vol.71, no.2 4049

[22] N. Qiu, Q. Liu and Z. Zeng, “Particle swarm optimization and least squares method for geophysical
parameter inversion from magnetic anomalies data,” in 2010 IEEE Int. Conf. on Intelligent Computing
and Intelligent Systems, Xiamen, China, pp. 879–881, 2010.

[23] J. A. Sánchez-González and J. F. Oblitas-Cruz, “Application of Weibull analysis and artificial neural
networks to predict the useful life of the vacuum-packed soft cheese,” Revista Facultad de Ingeniería
Universidad de Antioquia, vol. 82, pp. 53–59, 2017.

[24] A. Bennis, S. Mouysset and M. Serrurier, “Estimation of conditional mixture Weibull distribution with right
censored data using neural network for time-to-event analysis,” in 2020 Pacific-Asia Conf. on Knowledge
Discovery and Data Mining, Singapore, pp. 687–698, 2020.

[25] E. M. De Assis, C. L. S. Figueirôa Filho, G. A. D. C. Lima, L. A. N. Costa and G. M. D. O. Salles,
“Machine learning and q-Weibull applied to reliability analysis in hydropower sector,” IEEE Access, vol.
8, pp. 203331–203346, 2020.

[26] M. J. Diamantopoulou, R. Özçelik, F. Crecente-Campo and Ü. Eler, “Estimation of Weibull function
parameters for modelling tree diameter distribution using least squares and artificial neural networks
methods,” Biosystems Engineering, vol. 133, pp. 33–45, 2015.

[27] T. Nakama, “Comparisons of single-and multiple-hidden-layer neural networks,” in 2011 Conf. Advances
in Neural Networks, Guilin, China, vol. 6675, pp. 270–279, 2011.

[28] S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton and D. E. Keyes, “Parallel approximation of the maximum
likelihood estimation for the prediction of large-scale geostatistics simulations,” in 2018 IEEE Conf. on
Cluster Computing (CLUSTER), Belfast, UK, pp. 98–108, 2018.

[29] W. L. Hung and Y. C. Liu, “Estimation of Weibull parameters using a fuzzy least-squares method,”
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 12, no. 5, pp. 701–711,
2004.

[30] S. K. Sinha and J. A. Sloan, “Bayes estimation of the parameters and reliability function of the 3-parameter
Weibull distribution,” IEEE Transactions on Reliability, vol. 37, pp. 364–369, 1988.

[31] L. M. Lye, K. P. Hapuarachchi and S. Ryan, “Bayes estimation of the extreme-value reliability function,”
IEEE Transactions on Reliability, vol. 42, no. 4, pp. 641–644, 1993.

[32] R. Calabria and G. Pulcini, “Point estimation under asymmetric loss functions for left-truncated exponen-
tial samples,” Communications in Statistics-Theory and Methods, vol. 25, no. 3, pp. 585–600, 1996.

[33] F. N. Nwobi and C. A. Ugomma, “A comparison of methods for the estimation of Weibull distribution
parameters,” Metodoloski Zvezki, vol. 11, no. 1, pp. 65, 2014.

[34] M. Bashiri and A. Moslemi, “The analysis of residuals variation and outliers to obtain robust response
surface,” Journal of Industrial Engineering International, vol. 9, no. 1, pp. 1–10, 2013.

[35] L. F. Zhang, M. Xie and L. C. Tang, “On weighted least squares estimation for the parameters of Weibull
distribution,” in Recent Advances in Reliability and Quality in Design, London, UK: Springer, pp. 57–84,
2008.

[36] E. Hoffer, R. Banner, I. Golan and D. Soudry, “Norm matters: Efficient and accurate normalization
schemes in deep networks,” in 2018 32nd Conf. on Neural Information Processing Systems, Montréal,
Canada, 2018.

[37] G. Abosamara and H. Oqaibi, “An optimized deep residual network with a depth concatenated block for
handwritten characters classification,” Computers Materials & Continua, vol. 68, no. 1, pp. 1–28, 2021.

[38] J. Heaton, in Artificial Intelligence for Humans, 3rd edition, vol. 1, St. Louis: Charleston Createspace, 2015.
[39] K. G. Sheela and S. N. Deepa, “Review on methods to fix number of hidden neurons in neural networks,”

Mathematical Problems in Engineering, vol. 2013, pp. 1–11, 2013.
[40] J. Heaton, “The number of hidden layers,” 2021, [online]. Available: https://www.heatonresearch.co

m/2017/06/01/hidden-layers.html [Accessed 19 April 2021].
[41] T. Szandała, “Review and comparison of commonly used activation functions for deep neural networks,”

in Bio-inspired Neurocomputing, Singapore: Springer, pp. 203–224, 2021.

https://www.heatonresearch.com/2017/06/01/hidden-layers.html
https://www.heatonresearch.com/2017/06/01/hidden-layers.html


4050 CMC, 2022, vol.71, no.2

[42] N. Srivastava, G. Hinton, A. Krizhevsky, L. Sutskever and R. Salakhutdinov, “Dropout: A simple way
to prevent neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[43] D. Soydaner, “A comparison of optimization algorithms for deep learning,” International Journal of Pattern
Recognition and Artificial Intelligence, vol. 34, no. 13, pp. 2052013, 2020.

[44] E. M. Dogo, O. J. Afolabi, N. I. Nwulu, B. Twala and C. O. Aigbavboa, “A comparative analysis of gradient
descent-based optimization algorithms on convolutional neural networks,” in 2018 Conf. on Computational
Techniques, Electronics and Mechanical Systems, Belgaum, India, pp. 92–99, 2018.


	Estimating Weibull Parameters Using Least Squares and Multilayer Perceptron vs. Bayes Estimation
	1 Introduction
	2 Review of Numerical and Graphical Methods for Estimating Parameters of WD
	3 Proposed Methods
	4 Performance Metrics
	5 Results and Discussion
	6 Conclusion


